星形胶质细胞的生物学功能及其与疾病的关系研究进展

合集下载

星形胶质细胞在调节突触可塑性中的作用

星形胶质细胞在调节突触可塑性中的作用

星形胶质细胞在调节突触可塑性中的作用【摘要】突触传递的可塑性被认为是学习和记忆的神经生物学基础,其取决于不同的神经元突触前和突触后机制。

然而,最近有越来越多的研究涉及可塑性的第三个要素——突触周围的胶质细胞。

传统观念一直认为星形胶质细胞(astrocyte,AS)仅是被动的辅助角色, 起支持和营养等作用。

近年的研究发现,无论在中枢还是外周神经系统,星形胶质细胞都主动参与了信息的传递与整合,并通过其释放的神经胶质递质等直接影响突触的可塑性。

本文结合近年来的研究结果,对AS在突触可塑性中的研究进展作一综述。

【关键词】AS;突触可塑性;神经递质;突触传递在由神经元和胶质细胞构成的神经系统中,胶质细胞数量占90%,其中星形胶质细胞(astrocyte,AS)是体积最大,也是分布最为广泛的胶质细胞。

过去认为AS主要是对神经元起支持和营养作用。

然而,近年来越来越多的证据表明AS 在维持神经系统的正常生理活动、脑的发育和神经病理等过程中发挥着重要作用[1]。

突触是神经元之间信息传递过程中的重要结构。

最新观点认为,AS与突触前和突触后神经元共同构成三重突触(tripartite synapses)结构,参与信号的传导和整合[2]。

1 突触可塑性突触可塑性是指突触在一定时期,一定条件下突触数目、结构和功能的改变,既包括突触传递效能的变化,又包括突触形态结构以及亚微结构的变化,来调节神经传导和神经分泌等[3]。

根据作用时间,突触可塑性可分为短时效的和长时效的。

根据接收条件刺激的突触前纤维与传递效应改变的突触之间的对应关系,可分为同突触型,即条件刺激和可塑性改变发生在同一条突触通路上;和异突触型,指条件刺激作用于传入神经,而可塑性改变发生在没有接受刺激的突触通路上[4]。

2 AS与突触可塑性AS与突触前、后神经元的位置关系密切,在神经系统内与突触结构紧密相连。

早在1997年,Barres等[5]就报道,胶质细胞可以促进突触间的联系。

胶质瘤研究进展

胶质瘤研究进展

胶质瘤研究进展郭鹏超【摘要】胶质瘤是恶性原发性脑肿瘤的最常见形式,呈弥漫性、浸润性增长,其发病机制尚不明确,肿瘤增殖/凋亡理论认为肿瘤的发生是由于细胞增殖与细胞凋亡失衡所致,细胞内的抗凋亡基因过表达导致细胞凋亡减少,细胞发生恶性增殖,进而诱导肿瘤的发生.过去的几年里关于脑胶质瘤的研究,尤其关于低级别胶质瘤(WHOⅡ级和Ⅲ级),其分类和治疗的研究取得了实质性的进展,FDA也批准了新诊断胶质母细胞瘤的新疗法.本文将综述脑胶质瘤的发生机制、诊断及治疗方式等方面的最新进展.【期刊名称】《济宁医学院学报》【年(卷),期】2019(042)001【总页数】4页(P47-50)【关键词】胶质瘤;诊断;治疗【作者】郭鹏超【作者单位】济宁医学院,济宁272067;济宁医学院附属医院,济宁272029【正文语种】中文【中图分类】R739.4神经上皮细胞肿瘤是最常见的神经系统肿瘤,其包括两大类:一类由神经系统的间质细胞(即胶质细胞)形成,称为脑胶质瘤(Glioma cerebri,GC),而“脑胶质瘤”的概念由Nevin于1938 年首次提出;另一类由神经系统的实质细胞( 即神经元)形成。

GC是最常见的神经上皮细胞肿瘤类型,具有神经胶质细胞弥漫性增生[1]。

陆建勋等[2]研究显示胶质瘤中最多的是星形胶质细胞瘤。

近年来大量的研究显示,无论是胶质瘤组织或胶质瘤细胞系中,均存在少量的胶质瘤干细胞(Glioma Stem Cell,GSC)[3]。

GSC的生物学特性不同于普通胶质瘤细胞,GSC被认为是胶质瘤发生发展与维持的基础,与肿瘤的复发、转移和对药物治疗抵抗有关[4]。

许蓓等[5]发现GC组织中有肿瘤干细胞,为进一步研究GC的细胞生物学和分子生物学特征提供新途径。

1 GC发病机制胶质瘤的病因尚不明确,目前已确定的两个相关危险因素:1)暴露在高剂量电离辐射中;2)罕见综合征相关的高外显率基因遗传突变。

对于高剂量电离辐射,可以加大防护力度,避免客观人为地暴露在辐射中,减少胶质瘤的发病率;对于基因突变遗传,可以运用检测基因手段,减少高外显率基因突变胶质瘤的携带者,从而减少胶质瘤的发病率。

星形胶质细胞原代培养与神经干细胞诱导分化生物学研究

星形胶质细胞原代培养与神经干细胞诱导分化生物学研究
胎 牛血清
PB S V E G F bFG F
phosphat e buffered sal i ne V ascular endot hel i al grow t h factor B asi c fi brobl ast grow t h factor
磷 酸 盐缓冲液 血管 内皮生长 因子 碱性 成纤维生 长 因子
缩 略语注 释
英 文 缩 写 英 文 词 汇 中文 词 汇
A ST G FA P
C N S bF G F
ast rocyte Gl i al fi bri l l ary aci di c protei n
C entral nervous system B asi cf ibrobl ast grow th factor
c e l l s in d u c e d . B u t th e b io lo g ic a l c h a r a c t er i s t ic s o f a s tr o c y t e s f r o m tw o m e t h o d s n e e d t o b e fu r t h e r stu d ie d . In t h i s s tu d y , t h r o u g h c e l l g r ow t h ,

4
中文 摘 要
5
英文摘要

7


9
材料 与方法
11


20


2 6



30
参考 文 献


31



3 4
m m

少突胶质细胞生物学功能与相关疾病研究进展_胡建国

少突胶质细胞生物学功能与相关疾病研究进展_胡建国

·小专论·少突胶质细胞生物学功能与相关疾病研究进展*胡建国1 陆佩华1 徐晓明1,2(1上海第二医科大学神经生物学实验室,上海200025;2肯塔基脊髓损伤研究中心,肯塔基40292,美国)摘要 长期以来认为,少突胶质细胞的作用仅限于形成中枢神经系统髓鞘。

但近年的研究表明,少突胶质细胞也可分泌一些神经营养因子和生长因子,并表达多种轴突生长抑制分子,在生理和病理状态下广泛发挥作用。

少突胶质细胞与多发性硬化症、创伤性脊髓损伤、少突胶质细胞瘤等中枢神经系统疾病密切相关,参与这些疾病的病理过程。

少突胶质细胞移植有望成为治疗中枢神经系统脱髓鞘疾病的新策略,目前,已在动物实验中取得令人鼓舞的进展。

关键词 少突胶质细胞;生物学功能;中枢神经系统疾病;细胞移植中图分类号 R329.2 中枢神经系统的细胞由神经元和胶质细胞组成,胶质细胞又包括星形胶质细胞、少突胶质细胞和小胶质细胞。

长期以来,认为少突胶质细胞的主要功能就是形成中枢系统轴突的髓鞘、营养和保护轴突,但近年的研究发现少突胶质细胞尚有为中枢神经系统提供神经营养因子和生长因子、表达轴突生长抑制分子等其它作用。

在临床上,少突胶质细胞与多发性硬化症、脊髓损伤等中枢神经系统疾病关系密切。

本文就少突胶质细胞的生物学功能、与临床疾病的关系,以及少突胶质细胞移植治疗脱髓鞘疾病的研究进展作一简要综述。

一、少突胶质细胞的生物学功能(一)形成中枢神经系统轴突的髓鞘[1] 包绕在轴突周围的髓鞘构成了脊椎动物神经系统内的大量膜结构,髓鞘高脂低水的独特成分使轴突具有电绝缘的特性,其独特的节段状结构使脊椎动物神经系统细纤维能跳跃式传导神经冲动。

因此,脊椎动物神经系统髓鞘具有高速、精确传导长距离信号及节约空间的优点。

髓鞘由成髓鞘胶质细胞延伸的胞质膜所构成,在中枢神经系统,髓鞘形成细胞是少突胶质细胞。

这些细胞由胞质膜发出“帆样”突起,每一个突起构成髓鞘的一个结间段,突起呈螺旋状缠绕轴突,形成同心圆状板层。

LINGO-1在神经系统疾病中的研究进展2024(全文)

LINGO-1在神经系统疾病中的研究进展2024(全文)

LINGO-1在神经系统疾病中的研究进展2024(全文)摘要LINGO-1是富含亮氨酸重复序列和免疫球蛋白结构域的Nogo 受体作用蛋白-1,在神经系统疾病中特异性表达。

近年来,越来越多证据表明LINGO-1在神经胶质瘢痕形成、细胞死亡及炎症反应中发挥重要作用。

LINGO-1会抑制少突胶质细胞活化,阻止轴突和髓鞘的形成和功能恢复,因此被认为是神经元存活、神经突延伸及轴突髓鞘化的负调节剂。

LINGO-1水平的变化与多种神经系统疾病的发生和发展存在一定联系。

该文对LINGO-1的生理功能进行阐述,并对LINGO-1在多发性硬化症、脊髓损伤、新生儿脑损伤及癫痫等神经系统疾病中的最新研究进展进行综述,旨在探寻神经系统疾病治疗的新策略。

儿童常见的神经系统疾病包括脊髓损伤(spinal cord injury,SCI)、新生儿脑损伤、癫痫、中枢神经系统(central nervous syetem,CNS)感染等,具有高致残率及病死率,严重威胁儿童健康[1 ]。

目前研究发现脑组织中富含亮氨酸重复序列和免疫球蛋白(Ig)结构域的Nogo 受体作用蛋白-1(LINGO-1)是神经再生的抑制因子,在髓鞘的形成和神经突的延伸中发挥重要作用,LINGO-1作为髓鞘再生治疗的新兴分子靶标,其表达水平可能是评估脑损伤严重程度的重要指标[2 ]。

本文主要综述了LINGO-1在多发性硬化症(multiple sclerosis,MS)、新生儿脑损伤、癫痫、SCI等神经系统疾病中的作用及机制,以期能够为神经系统疾病的治疗提供新思路。

1 LINGO-1的生物学功能1.1 LINGO-1的来源、结构和表达特点LINGO-1是一种重要的跨膜蛋白,由12个富含亮氨酸的重复序列和一个Ig结构域组成,共编码614个氨基酸。

LINGO-1基因位于15q24染色体上,具有强大的细胞外结构区域,包括N末端和C末端覆盖结构域、Ig结构域、一个跨膜结构域和一个短的细胞质尾部。

a1星形胶质细胞闹指标

a1星形胶质细胞闹指标

A1星形胶质细胞是一种在中枢神经系统中重要的神经胶质细胞类型。

它具有多种功能,包括支持神经元、调节神经元活动、合成和分泌多种生物活性物质等。

在A1星形胶质细胞的研究中,有一些重要的指标可以用来评估其功能和状态。

首先,A1星形胶质细胞的形态和结构是评估其功能的重要指标之一。

在健康状态下,A1星形胶质细胞的形态比较规则,细胞核大而圆,核仁明显,胞质中含有大量的线粒体和内质网等细胞器。

当A1星形胶质细胞受损或病变时,其形态和结构会发生改变,如细胞体积缩小,核仁消失,胞质中出现空泡等。

其次,A1星形胶质细胞的生物化学指标也可以用来评估其功能和状态。

例如,A1星形胶质细胞可以合成和分泌多种生物活性物质,如谷氨酸、天冬氨酸等神经递质以及细胞因子、生长因子等。

这些物质的合成和分泌水平可以反映A1星形胶质细胞的功能状态。

此外,A1星形胶质细胞的免疫学指标也可以用来评估其功能和状态。

例如,A1星形胶质细胞可以表达多种免疫相关分子和受体,如Toll样受体、白细胞介素受体等。

这些分子的表达水平可以反映A1星形胶质细胞的免疫应答能力。

总之,A1星形胶质细胞的研究对于理解中枢神经系统的生理和病理过程具有重要意义。

通过对A1星形胶质细胞的形态、结构、生物化学、免疫学等指标的观察和研究,可以帮助我们更好地了解中枢神经系统的功能和疾病机制。

神经胶质细胞的生物学功能和临床应用

神经胶质细胞的生物学功能和临床应用

神经胶质细胞的生物学功能和临床应用神经胶质细胞是人体中最丰富的细胞组织之一,它们的生物学功能和临床应用一直备受科研人员的关注。

本文将着重介绍神经胶质细胞的生物学功能和其在临床上的应用。

一、神经胶质细胞的生物学功能神经胶质细胞(glial cell)是中枢神经系统的支持细胞,可以从形态上分为三类:星形胶质细胞、少突胶质细胞和渐进性加速症胶质细胞。

除了为神经元提供支持,神经胶质细胞还有以下生物学功能:1.维持神经元的稳态神经胶质细胞可以通过释放神经营养因子、代谢产物和离子,维持周围神经元的微环境,进而影响神经元的生长、分化和成熟。

2.缓冲和转运神经元活动产生的乳酸和荷尔蒙等物质神经胶质细胞可以吞噬神经元代谢产生的废物,如二氧化碳和乳酸,并将其转运到邻近的血管中,从而促进废物的排泄。

3.维持血脑屏障的完整性神经胶质细胞可以通过形成血脑屏障,防止血液中有毒物质进入中枢神经系统,保护神经元的正常运行。

4.参与神经元的发育和再生神经胶质细胞可以分泌钙离子、神经营养因子和基质蛋白,在神经系统的发育和再生中发挥重要作用。

二、神经胶质细胞在临床上的应用神经胶质细胞的功能异常会导致多种疾病的发生,其中包括脑损伤、脊髓损伤、胶质瘤、帕金森氏病、阿尔茨海默病和白质脑病等。

针对这些疾病,神经胶质细胞在临床上的应用主要有以下几个方面:1.神经胶质细胞的移植神经胶质细胞的移植是一种常见的治疗脑损伤和脊髓损伤的方法。

移植的神经胶质细胞可以向神经元提供支持,并替代受损的神经胶质细胞。

此外,移植的神经胶质细胞还可以释放细胞因子,促进神经元的再生和修复。

2.神经胶质细胞的治疗药物研究针对神经系统疾病,科研人员正在研发以神经胶质细胞为靶点的治疗药物。

这些药物可以通过增强神经胶质细胞的功能,促进神经元的生长和发展,进而达到治疗疾病的效果。

3.神经胶质细胞的显微操作神经胶质细胞的显微操作技术可以通过操作神经胶质细胞,改变其功能,从而保护神经元免于损伤。

胶质纤维酸性蛋白

胶质纤维酸性蛋白
胶质纤维酸性蛋白可以与炎性细胞(如巨噬细胞、小胶质细胞)相互作用,调节它们的活性和功能, 从而影响炎症过程的发展和转归。
胶质纤维酸性蛋白与肿瘤的关系
肿瘤发生和发展
研究表明,胶质纤维酸性蛋白在多种肿瘤组织中的表达水平异常升高,这可能与肿瘤的发生、发展和转移密切相 关。胶质纤维酸性蛋白可能通过促进肿瘤细胞增殖、抑制凋亡、促进血管生成等方式参与肿瘤的发生和发展过程 。
01
维持星形胶质细胞形态
胶质纤维酸性蛋白通过形成中间丝网络,为星形胶质细胞提供机械支撑
,维持其形态和结构完整性。这对于中枢神经系统的正常发育和功能至
关重要。
02
参与细胞信号传导
胶质纤维酸性蛋白通过与其他分子如整合素、生长因子等的相互作用,
参与细胞信号传导过程,调节星形胶质细胞的生物学行为,如细胞增殖
胶质纤维酸性蛋白减少与疾病进展
研究表明,胶质纤维酸性蛋白在多种神经退行性疾病(如阿尔茨海默病、帕金森 病)中的表达水平降低,这可能导致了神经元的死亡和疾病的进展。
胶质纤维酸性蛋白与炎症性疾病
抗炎作用
胶质纤维酸性蛋白具有一定的抗炎作用,可以抑制炎症反应和炎性细胞的活性,减轻炎症对组织的损 害。
胶质纤维酸性蛋白与炎性细胞相互作用
病情监测
GFAP水平的变化与神经系统疾病的病情变化密切相关。因此 ,通过定期检测GFAP水平,可以监测疾病的进展和治疗效果 ,为医生调整治疗方案提供依据。
胶质纤维酸性蛋白作为治疗靶点
药物研发
以GFAP为靶点,可以开发针对神经系统 疾病的药物。通过调节GFAP的表达或功 能,达到治疗疾病的目的。这种策略有 望为神经系统疾病的治疗提供新的有效 途径。
胶质纤维酸性蛋白的结构
• 胶质纤维酸性蛋白的结构主要由中间丝域、氨基端域和羧基端域三个部分组成。其中,中间丝域是胶质纤维酸性蛋白的主 要结构域,由多个重复的氨基酸序列构成,形成了蛋白质的刚性骨架,赋予了蛋白质抵抗外力的能力。氨基端域和羧基端 域则相对较为灵活,参与蛋白质与其他分子的相互作用。胶Biblioteka 纤维酸性蛋白的生理功能早期研究
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

星形胶质细胞的生物学功能及其与疾病的关系研究进展沈维高;何欣;王振江【摘要】星形胶质细胞As为中枢神经系统内多种胶质细胞中的一种.在正常中枢神经组织中,胶质细胞与神经元的比例是101~501,而星形胶质细胞在脑内数目最多,是中枢神经系统中最主要的大胶质细胞,并具有复杂多样的结构与功能.神经元-星形胶质细胞作为神经系统功能单位,它们之间的相互作用在中枢神经系统中非常重要,参与了中枢神经系统从胚胎发生到老化的各个活动,贯穿了神经元的整个发育过程.随着对中枢神经系统疾病病理机制和治疗手段的深入研究,人们认识到在神经系统发育、突触传递、神经组织修复与再生、神经免疫及多种神经疾病的病理方面都与星形胶质细胞密不可分.对星形胶质细胞的生物学功能及其与疾病的关系进行了较为系统的阐述,以期为相关疾病的临床治疗提供参考.【期刊名称】《北华大学学报(自然科学版)》【年(卷),期】2008(009)006【总页数】9页(P501-509)【关键词】星形胶质细胞;活化;功能【作者】沈维高;何欣;王振江【作者单位】北华大学,基础医学院,吉林,吉林,132013;北华大学,基础医学院,吉林,吉林,132013;北华大学,基础医学院,吉林,吉林,132013【正文语种】中文【中图分类】R741.02神经元是人脑基本的构成单位,它被胶质细胞紧紧包围,胶质细胞的数量比神经元多出10~50倍并占据了脑体积的一半.而在所有的胶质细胞中As数量最多[1].在丘脑,As占整个胶质细胞的30%~40%,在视皮层占 61.5%[2].一般认为,其正常功能有以下几方面:引导胚脑神经元迁移;缓冲细胞外离子浓度及pH;作为谷氨酸和γ-氨基丁酸(GABA)代谢的关键部位;可与神经元形成突触联系,并存在多种受体以接受多种物质的调控;摄取和(或)合成多种神经递质,产生一些营养因子等[3].研究表明,As在脑内的分布存在一定规律,阳性细胞在海马和齿状回呈明显的规则排列,这种有序性有利于它们与神经元建立固定的位置关系和稳定的功能关系,并且,它们通过缝隙连接,彼此相连,在CNS构成复杂的胶质网络,这一网络与神经元网络在功能上互相影响.它们还可能参与了脑的复杂功能活动,包括学习和记忆[4].1 星形胶质细胞的正常形态As是具有大量放射状突起的小圆锥细胞,直径为9~10 μm,核大,呈圆形或卵圆形,染色质稀少,核仁不明显.胞浆中除含有一般的细胞器外,尚含有许多由胶质丝组成的圆纤维结构,呈交错排列,在突起中的走向与突起纵轴平行.电镜下,As的细胞核不规则,色浅;胞浆中有丰富的糖原颗粒,但粗面内质网和高尔基体稀少.其显著特征是胞质中含有大量的胶质丝[5].2 星形胶质细胞的分类目前,一般根据As的形态和分布将其分为2大类[5-6]:原浆性As和纤维性As.前者含原纤维少,突起短而粗,分支较多,表面粗糙,多分布于灰质;后者含原纤维多,突起长而细,分支较少,表面光滑,多分布于白质.两者虽然形态、分布不完全一样,但功能上几乎相同.根据细胞免疫学反应,将GFAP+As分为Ⅰ型和Ⅱ型,Ⅰ型为GFAP+,A2B5和Ran-2+,Ⅱ型为GFAP+,A2B5+和Ran-2+(A2B5和Ran-2为2种单克隆抗体).进一步研究表明:Ⅰ型属原浆性,Ⅱ型属纤维性.此外,还有一些特殊的As,如视网膜中Müler细胞,只在小脑中出现的放射状排列的Bergman细胞,正中隆起等处的伸展细胞,脑垂体中的垂体细胞及胚胎期的辐射状胶质细胞等.3 星形胶质细胞的活化星形胶质细胞的活化是As可塑性的具体表现,又称反应性胶质增生,是中枢神经系统在许多病理生理情况下的常见反应,表现为As胞体肥大、肿胀、突起增多延长、GFAP表达增强等.活化后的表现:1)形态上:表现为胞体肥大,胞浆宽广,嗜酸性,变为肥胖型As;突起增粗、分支增多;同态性激活,无数量和核的变化.其功能的增强、改变是通过细胞内活性的增强、改变来实现的.2)数量上:表现为增多,原因存在争议.有人认为是有丝分裂的结果,也有人认为是由周围迁移到损伤区的.以往人们只注意到损伤后As的激活,而忽略了As凋亡,有人用TUNEL标记法和免疫组化法观察到受伤的脊髓中存在凋亡[7-8].一般认为As增多是增殖和迁移积聚的共同结果,并在数量上多于死亡所致.3)组织上:星形胶质细胞生成、分泌特异蛋白,发挥功能.增殖过程中幼稚的As先表达波形蛋白,是As幼稚和增生的标志,呈动态变化,以后变弱,成熟后则表达GFAP.成熟As活化则表现为GFAP表达增强,这是As胶质化的必要条件.As的骨架蛋白即结蛋白和肌球蛋白表达增强;As表达结蛋白具有特异性,损伤后结蛋白表达增强,7 d达到高峰,维持30 d左右,其强度与伤口距离成负相关,与胶质化密切相关.正常情况下As不表达肌球蛋白,损伤后表达肌球蛋白可能是As增生的一个标志.它们表达增强在维持细胞形态、损伤修复等方面起协同作用.S-100β蛋白升高,中枢神经中S-100β主要由As分泌,它是S-100家族中在脑内最具有活性的成分,血清S-100β升高是急性疾病脑破坏的一种标志,Kim等[9]认为它是迄今为止最能反应脑损伤程度的特异蛋白,也是星形细胞激活的标志.As还分泌其他许多蛋白,如脂蛋白、韧粘素、蛋白聚糖类、胶质细胞成熟因子等,发挥不同的作用.脂蛋白有助于神经突触数量增加、传递效能增强,促进突触成熟和维护其可塑性;韧粘素参与胶质疤痕,抑制神经轴突再生;蛋白聚糖类则调节神经再生,还诱导附近As向损伤部位迁移,填充损伤部位;As正常不分泌胶质细胞成熟因子,在细胞受损伤时释放胶质细胞成熟因子,可以作为一种损伤信号,它既可促进分裂增殖,又可促进As成熟.4 星形胶质细胞的生物学功能4.1 支持、隔离、绝缘作用这也是人们对于星形胶质细胞最早的认识,星形胶质细胞在中枢神经系统内起结构支持作用,星形胶质细胞遍布整个中枢神经系统,中枢神经系统内神经元及其突起间的空隙几乎全部由As充填,As构成神经组织的网架,同它们周围的结构紧密接触并保持一定的间隙.星形胶质细胞及其突起有益于胶质分隔,维持了血管、神经元胞体、轴突和突触结构的稳定,并将神经纤维和末梢隔离,以及分束和绝缘.As的足突还形成了神经细胞与其他组织相邻界面间的界膜或鞘.4.2 指引神经元迁移中枢神经系统发育过程中,作为星形胶质细胞的前体细胞——放射胶质细胞指引有丝分裂后期的神经元由SVZ区迁移至靶位置.4.3 参与血脑屏障的诱导及血脑屏障的形成血脑屏障能限制血液循环中某些物质进入中枢神经系统,是中枢神经系统和血液的分界面,从而维持神经系统内环境的稳定.As与脑毛细血管共同培养,会诱导出血脑屏障的许多特征,参与血脑屏障形成,As的终足是诱导脑微血管内皮间紧密连接和维持血脑屏障的结构基础,能产生和释放血管细胞趋化因子,诱导As终足对毛细血管的包被,对脑内微环境的建立、保持起了基础性作用.4.4 调节神经细胞内、外离子浓度和物质的代谢星形胶质细胞上拥有多种离子通道,如:钾通道、电压门控的钙通道和钠通道及两型钙泵(Na+/Ca2+;Ca2+-ATPASe)和丰富的缝隙连接,可调节神经元内外的离子浓度、pH等,特别是控制神经元外K+浓度,以维持内环境的稳定性.缝隙连接把星形胶质细胞和神经元耦联在一起,使星形胶质细胞与神经元可相互直接传递信息.研究表明,星形胶质细胞的缝隙连接可在成年动物的神经系统中,作为K+的缓冲库,防止神经冲动传导时造成细胞外K+明显升高.星形胶质细胞还可通过释放柠檬酸,结合胞外Ca2+,Mg2+达到调节离子浓度和神经元的兴奋性作用.As内的葡萄糖-6-磷酸脱氢酶参与葡萄糖进入神经元.[10-12]4.5 参与神经递质和激素的代谢通过受体、神经活性氨基酸亲和载体、酶类参与神经递质摄取、灭活和供给.与星形胶质细胞的有关受体有:5-羟色胺、γ-氨基丁酸、乙酰胆碱、谷氨酸、花生四烯酸、激素、CR1、CR2、C5a等;酶类有:谷氨酰胺合成酶、单胺氧化酶、3-羟基-2氨基苯甲酸加氧酶、谷胱甘肽、超氧化物歧化酶、5-α -还原酶、3-α甾体脱氢酶、芳香化酶、葡萄糖-6-磷酸脱氢酶、内皮素转化酶、iNOS等;神经活性氨基酸亲和载体有:谷氨酸、天冬氨酸、γ-氨基丁酸、甘氨酸、牛黄酸等.星形胶质细胞上有很多种神经活性氨基酸的高亲和载体,其中最主要的是在突触间隙的谷氨酸和γ-氨基丁酸被星形胶质细胞相应的高亲和载体转运至星形胶质细胞内,在星形胶质细胞内谷氨酰胺合成酶作用下,合成谷氨酰胺,再转运给神经元,作为制造谷氨酸和γ-氨基丁酸的原料.星形胶质细胞灭活谷氨酸,限制了谷氨酸对神经元的兴奋毒性作用.星形胶质细胞还能摄取和灭活单胺类递质,如去甲肾上腺素、多巴胺和5-羟色胺.4.6 通过分泌大量的神经因子、细胞因子、细胞识别因子等来实现各种功能4.6.1 星形胶质细胞的营养特性及修复功能星形胶质细胞对于神经元的营养特性作为神经元的支持细胞,星形胶质细胞能分泌大量可扩散的神经营养因子和非扩散的神经元支持物质.其中,生长因子为:成纤维细胞生长因子、表皮生长因子、血小板源性生长因子、胰岛素样生长因子、转化生长因子β、胶质细胞成熟因子、内皮素等;神经营养因子包括:睫状神经营养因子、脑源性神经营养因子、神经生长因子、胶质细胞源性神经营养因子等;神经元支持物有:促进轴突生长的糖蛋白、神经营养因子膜结合分子、细胞粘附分子、层粘连蛋白等.通过这些物质的分泌,对神经元起到一定的营养作用,促进神经元的存活和发育.McFarland KN等[13]发现用星形胶质细胞条件培养液培养大脑皮质神经元,比无血清的培养液容易存活,并分离出一种Mr 5 000~30 000的胰岛素样的神经营养物质.他认为非扩散的神经元支持分子只有短期的刺激轴突生长作用,而可扩散的神经营养因子才具有长期的营养支持神经元作用.研究发现,由星形胶质细胞释放的非必需氨基酸L-丝氨酸是促进海马神经元的存活和生长所必需的.在研究帕金森病的过程中,人们也认识到胶质细胞具有营养特性,这种营养特性是多巴胺能神经元存活所必需的.有人发现纹状体的星形胶质细胞可以极大提高体外培养的中脑多巴胺能神经元的存活,同时减少神经元凋亡[14].研究表明,培养的多巴胺能神经元前9 d不依赖星形胶质细胞可生存,但在10 d后,则需星形胶质细胞的营养支持,否则就快速死亡.对星形胶质细胞有关营养因子作用于神经元的机制也有了新的进展,认为星形胶质细胞结合到神经元的Thy1(一种糖蛋白)位点诱导神经元轴突的生长.星形胶质细胞的营养特性还表现在参与突触的可塑性.星形胶质细胞伴随着整个中枢神经系统的突触存在,从前人们认为它是突触部位的支持细胞,起着从突触间隙清除离子和神经递质的作用,但越来越多的研究提示,星形胶质细胞可能同时还扮演着一个非常活跃的角色[15].已有体外实验证明星形胶质细胞使神经元不依赖动作电位的量子释放提高了12倍,所以,体外培养的神经元形成的突触是不成熟的、低效的,需要星形胶质细胞的信号才能更好地发挥功能[16].研究人员用一种新的方法培养视网膜节细胞,使其纯度达到99.5%,发现星形胶质细胞的条件培养基可以使突触的活动提高10倍,使成熟的、功能完善的突触增加了7倍,并且体外实验证明星形胶质细胞对于突触的维持也是必要的.在体外情况下,突触与胶质细胞的发育也是同步的.Hama 等[17]也认为星形胶质细胞可以通过integrin受体与神经元接触后,引起神经元蛋白激酶C的激活,从而促进突触的形成,这一过程可以被integrin和蛋白激酶C的抑制剂所阻断,提示蛋白激酶C信号通路的激活可能是星形胶质细胞促进神经元成熟的机制.这些资料显示,星形胶质细胞在突触成熟和维持突触稳定中发挥重要作用,中枢神经系统突触的数量在很大程度上受到非神经元信号的调节,这更加证实星形胶质细胞可能在维持突触可塑性的过程中起作用.星形胶质细胞对神经损伤修复的功能.胶质细胞的活化增生是中枢神经系统疾病以及老年神经元损伤最普遍的反应,并已证实帕金森病等中枢神经系统退行性疾病时胶质细胞的反应性增生确实具有保护作用,可能减轻神经损害.胶质源性神经保护作用通过不同的机制实现,其中,最初认识到的是胶质细胞产生神经营养因子的作用.有一些胶质细胞相关的营养因子已研究得较为透彻,如胶质细胞源性神经营养因子在出生后腹侧中脑培养物过程中,对黑质致密部多巴胺能神经元的自然、渐近性死亡发挥最重要的保护作用.值得强调的是,在损伤的啮齿类动物纹状体,胶质细胞源性神经营养因子引导多巴胺能神经纤维的生长.当胶质细胞源性神经营养因子的表达被注射的反义寡核苷酸阻断后,这种作用显著降低[18].而且,对MPTP处理的猴和小鼠,通过注射胶质细胞源性神经营养因子蛋白或表达胶质细胞源性神经营养因子基因载体都可以显著减少多巴胺能神经元的死亡,提高残存神经元的功能[19].但是,出现中枢神经系统损伤、脱髓鞘病和一些神经退行性疾病时,虽然增殖的星形胶质细胞可参与清除损伤部位的髓磷脂和神经元碎屑,并包裹损伤区,单纯胶质细胞增生却有相反的负作用,如阻碍髓鞘再生或阻碍轴突再生,从而干扰残存神经元环路功能等[20].4.6.2 星形胶质细胞对于神经毒性物质的抵抗功能许多研究发现,星形胶质细胞与神经元共培养时,可以保护神经元使其在一定程度上抵抗毒性物质的侵害.有人发现星形胶质细胞系和原代培养的星形胶质细胞来源的条件培养基可以保护神经母细胞瘤细胞抵抗谷氨酸盐的毒性作用,这提示保护作用是由星形胶质细胞释放到培养基中的因子实现的.而同时加入谷氨酸盐和条件培养基则无保护作用,可见条件培养基预处理后的保护作用呈时间依赖性.这说明星形胶质细胞释放的因子作用一段时间后神经元才能获得抵抗毒性物质损害的能力.保护作用可能不是直接阻止谷氨酸盐的损害,而是通过诱导神经元自身的调控机制来实现的.谷氨酸盐神经毒性的可能机制是由于其受体激活后,竞争性抑制了胱氨酸的摄取,导致谷胱甘肽降低.谷胱甘肽是抗氧化剂和自由基清除剂,谷胱甘肽缺乏则会使细胞发生氧应激而变性死亡.星形胶质细胞释放的因子可能起着调节胱氨酸的释放、谷胱甘肽合成和/或抗氧化作用.Brown等[21]发现星形胶质细胞抑制谷氨酸盐兴奋性毒性诱导的神经元凋亡作用有区域性差异,来自中脑的星形胶质细胞与大脑皮质星形胶质细胞的抗凋亡作用相比,前者更强.Langeveld 等[22]为了探求星形胶质细胞在帕金森病氧应激环节的作用,在星形胶质细胞条件培养基的存在下,观察H2O2对多巴胺能神经元的毒性作用.结果发现,纹状体和皮质星形胶质细胞都可以保护中脑多巴胺能神经元抵抗H2O2的毒性.6-羟多巴是选择性损伤多巴胺能神经元的毒性物质.有研究表明,对于6-羟多巴的毒性作用,中脑星形胶质细胞可能也起到保护作用,星形胶质细胞培养物中抵抗6-羟多巴的神经毒性的作用机制,可能包含特定的神经营养因子的释放,通过神经营养因子的释放,延长培养的中脑多巴胺能神经元的存活.许多神经营养因子对于培养的神经元间接发挥作用,某些因素刺激了星形胶质细胞增殖,从而释放了星形胶质细胞源性的神经营养因子.如果抑制这些星形胶质细胞源性神经营养因子的合成或增加降解,都可能导致神经元的退行性变.Saura等[23]的研究通过在体内实验更进一步证实了星形胶质细胞的保护特性,他通过在黑质内注射白介素lβ人为地造成黑质局部星形胶质细胞增生的动物模型,再注射6-羟多巴以选择性损伤多巴胺能神经元,结果星形胶质细胞增生存在的实验组多巴胺能神经元得到明显的保护.4.6.3 星形胶质细胞促进神经分化的功能星形胶质细胞促进神经干细胞和神经前体细胞的分化.在中枢神经系统,成年后神经元发生主要见于两个脑区,即室管下区与海马的颗粒下区.正常情况下,除上述脑区外的其他脑区能够产生神经胶质细胞,但不能产生神经元.为了研究神经元和/或神经胶质细胞对来源于成年的神经干细胞分化的影响,有人分离了成年大鼠海马的神经元和星形胶质细胞,将其分别或联合与来自成年的、依赖成纤维细胞生长因子2的神经干细胞共培养,意外地发现神经元促进神经干细胞分化为少突胶质细胞,而星形胶质细胞则促进神经干细胞分化为神经元[24].与不加星形胶质细胞的对照组相比,星形胶质细胞和神经干细胞共培养组的神经元数量增加了10倍以上.研究还发现,星形胶质细胞的上述促神经元发生作用具有区域特异性:海马的星形胶质细胞有此功能,而脊髓来源的星形胶质细胞却不能促进神经干细胞的神经元发生.也有实验证明,在体外星形胶质细胞可以促进中脑多巴胺能神经元的发育,并且这种对神经元发育的影响具有区域特异性.例如,纹状体是黑质神经投射的靶部位,来源于纹状体的星形胶质细胞与黑质多巴胺能神经元共培养,较单独培养的神经元或与非靶部位来源的星形胶质细胞共培养相比,可以使酪氨酸氢化酶阳性的神经元的数量增加400%.由此可见,星形胶质细胞在促进神经干细胞分化及神经元成熟中起一定的作用.促进其他来源干细胞的分化.研究者发现星形胶质细胞还可以促进骨髓基质干细胞分化为神经细胞.Joannides等[25]的实验表明,人骨髓基质细胞在体外用表皮生长因子、成纤维细胞生长因子2等因子作用后,可以出现一些β-tubulin和神经丝蛋白阳性的细胞,但这些细胞却呈现不成熟的圆形外观,且很少有突起形成,后续加入大鼠海马星形胶质细胞的条件培养基可以极大促进骨髓基质干细胞向神经元方向分化,出现大量有着丰富突起的β-tubulin和神经丝蛋白阳性的细胞.这一发现使得骨髓基质干细胞用于中枢神经系统疾病的细胞替代治疗的前景更加乐观.Zhong H等[26]发现一种来源于小鼠的骨髓细胞,命名为多潜能成体祖细胞.多潜能成体祖细胞注射入胚泡后,可以分化为包括脑细胞在内的大多数体细胞.进一步把多潜能成体祖细胞与星形胶质细胞共培养,可以诱导分化为与中脑神经元类似解剖学和电生理学特征的细胞.提示骨髓来源的细胞向神经元方向分化可能需得到星形胶质细胞的帮助,这与胚胎干细胞和神经干细胞分化为神经元的机制类似.由于骨髓来源的细胞容易由成人自体获得,无致瘤性,而且目前的研究认为其可能分化为神经元,所以对于神经系统疾病的细胞替代治疗有较大的意义.目前,对于干细胞和前体细胞分化为神经元的确切的分子机制尚不清楚,但研究证明星形胶质细胞可以促进干细胞向神经元方向分化、成熟、突触发生.4.6.4 星形胶质细胞的免疫调节功能近年来研究认为,As是脑内特化的免疫细胞,具有抗原递呈作用,参与中枢神经系统的免疫反应,其免疫功能表现在:1)诱导小胶质细胞分化、增殖.2)增加小胶质和巨噬细胞吞噬功能.体外实验表明,星形胶质细胞可增加巨噬细胞和小胶质细胞吞噬鞘磷脂功能.3)其细胞表面MHCⅡ和B7分子能结合处理过的外来抗原,再传递给CD4+,CD8+T细胞,引起T细胞增殖、活化,产生细胞免疫.4)产生多种细胞因子,特别是炎性细胞因子,参与炎性反应.5)对趋化因子发生反应,并吞噬外源颗粒.星形胶质细胞分泌众多活性成分,直接或间接的免疫介质或炎症介质,可参与脑内的免疫生理及病理反应.在用RT-PCR和ELISA研究INF-γ介导的化学因子中,Salmaggi 等[27]证实在多发性硬化中INF-γ介导的单核因子如归巢化学因子在微血管内皮细胞和星形胶质细胞持续表达,而这些因子正是诱导血源性的免疫细胞入侵CNS导致的脱髓鞘疾病的物质;TNF-α是一个17 ku的多肽,在中枢神经系统主要由小胶质细胞和星形胶质细胞产生.TNF-α可诱导神经元MHCⅡ表达上调,使它们易受MHCⅡ限制性毒性T细胞攻击.原代培养的星形胶质细胞在TNF-α诱导下可进一步分泌TNF-α,形成一个正反馈环路.星形胶质细胞还可以因TNF-α的诱导释放NO 、花生四烯酸和谷氨酸等神经毒性物质,并促进集落刺激因子(Colony Stimulating Factors,CSF)的释放.巨噬细胞炎症蛋白3-α,CCL20是最早被证实的对记忆/分化T细胞、B细胞和不成熟的树突状细胞的化学诱导分子.使用免疫组化方法证实在EAE中星形胶质细胞表达主要的中枢源性的CCL20,而抗CCL20抗体正是使活性星形胶质细胞刺激极性Th细胞发生迁移效应的物质,此发现提示通过分泌CCL20,星形胶质细胞在CNS炎症中募集特异性白细胞和中枢神经免疫反应的调控中起到重要作用[28].热休克蛋白(hsp)作为免疫物质的分子伴侣在很多免疫过程中表达增加.对于热休克蛋白的表达,急慢性多发性硬化损伤在肥大的星形胶质细胞中表达均增加[29].穿孔素是表达在细胞毒性T细胞和NK细胞的细胞溶解蛋白,使用单克隆和多克隆抗穿孔素蛋白抗体用Western杂交分析检测到在人致死星形胶质细胞和鼠自然杀伤细胞(NK cell)中有65 ku蛋白表达,Honarpour N等[30]也证实在神经变性脑的白质炎症病灶中的反应性星形胶质细胞可探测到穿孔素的表达,而在正常的成人脑组织中并没有.这些提示不仅在淋巴细胞中有穿孔素的表达,星形胶质细胞的亚群也可表达穿孔素,并在脑的炎症反应中起到一定作用[30].星形胶质细胞可能分泌的其他因子还有:IL-6,IL-1,IL-3,TNF-α,LT,bFGF,TGFβl,C3,备解素B,Sp,TX2,LTB4,LTC4,PGE2,。

相关文档
最新文档