数学物理方法习题
数学物理方法典型习题

典型习题一、填空题:1的值为 , , 。
2、1-+的指数表示为_________ ,三角表示为 。
3、幂级数2k k=1(k!)k z k ∞∑的收敛半径为 。
4、ln(5)-的值为 。
5、均匀介质球,半径为0R ,在其中心置一个点电荷Q 。
已知球的介电常数为 ε,球外为真空,则电势所满足的泛定方程为 、 。
6、在单位圆的上半圆周,积分11||__________z dz -=⎰。
7、长为a 的两端固定弦的自由振动的定解问问题 。
8、具有轴对称性的拉普拉斯方程的通解为 。
9、对函数f(x)实施傅里叶变换的定义为 ,f (k )的傅里叶逆变换为 。
10、对函数f(x)实施拉普拉斯变换的定义为 。
二、简答题1、已知()f z u iv =+是解析函数,其中22v(x,y)=x y +xy -,求 (,)u x y 。
2、已知函数1w z=,写出z 平面的直线Im 1z =在w 平面中的,u v 满足的方程。
3、将函数21()56f z z z =-+在环域2||3z <<及0|2|1z <-<内展开成洛朗级数. 4、长为L 的弹性杆,一端x=0固定,另一端沿杆的轴线方向被拉长p 后静止(在弹性限度内),突然放手后任其振动。
试写出杆的泛定方程及定解条件。
三、计算积分: 1. ||22(1)(21)z zdz I z z ==-+⎰2.||2sin (3)z zdz I z z ==+⎰ 3.22202(1)x I dx x ∞=+⎰ 4.||1(31)(2)z zdz I z z ==++⎰ 5. ||23cos z zdz I z ==⎰ 6. 240x dx 1x I ∞=+⎰ 7、0sin x dx x ∞⎰ 8、20cos 1x dx x∞+⎰ 四、使用行波法求解下列方程的初值问题五、求解下列定解问题:1. 2.在水平向右的均匀外电场E 中置入半径为0R 的导体球,如图所示。
数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =Q ,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=Q 。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法题库

z 4 dz ,其中积分路径 C 为: 9, 计算 C z2 1 1 1 , z 1 ; (3) , z 2。 (1) , z 1 ; (2) 2 2
10, 设 f z
C
3 7 1 d ,其中积分路径 C 为圆周 x 2 y 2 3 ,求 f '(1 i ) 。 z
xn (n 1, 2,) 及 yn (n 1, 2,) 分别以 x0 及y 0 为极限。
17,证明:三角形三内角和等于 。
3
第二章
习题 1, 证明下列函数在 z 平面上处处不可导。 (1) z 。 2, 试证 (1) f ( z ) x iy 仅在原点有导数。
3 3
解析函数
2 2 2
(2) cos z cos xchy i sin xshy 。 (4) cos z cos x sh y 。
2 2 2
15, 证明 sin z 与 cos z 是以 2 为周期的函数,而 e , shz , chz 是以 2i 为周期的函数。
x
16, 证明 w 3 z 的三个单值分支在割破的 z 平面上的任一区域上都是解析的。 17, 设 w 3 z 确定在沿负实轴割破了的 z 平面上,并且 w(i ) i ,求 w(i ) 。 18, 试解方程 (1) e 1 i 3 。
2 2
11, 证明 f ( z ) 与 f ( z ) 必同时为解析函数或不是解析函数。 12, 设 w 是 z 的解析函数,证明 13, 定义 shz
x y x y , , ( w u iv, z x iy ) 。 u v v u
e z e z e z e z 和 chz 分别为双曲正弦函数及双曲余弦函数,试证 2 2
数学物理方法习题

数学物理方法期末考试试题

数学物理方法期末考试试题# 数学物理方法期末考试试题## 第一部分:选择题(每题2分,共20分)1. 以下哪个不是数学物理中的常用方法?A. 傅里叶变换B. 拉普拉斯变换C. 泰勒级数展开D. 牛顿迭代法2. 求解偏微分方程时,分离变量法的基本思想是什么?A. 将偏微分方程转化为常微分方程B. 将偏微分方程分解为几个独立的方程C. 将偏微分方程转化为线性方程D. 将偏微分方程转化为积分方程3. 在数学物理中,格林函数通常用于解决什么问题?A. 线性代数问题B. 非线性偏微分方程C. 边界值问题D. 初始值问题4. 以下哪个是求解波动方程的典型方法?A. 特征线法B. 有限差分法C. 有限元法D. 蒙特卡洛方法5. 拉普拉斯方程在数学物理中通常描述了什么类型的物理现象?A. 波动现象B. 热传导现象C. 流体动力学问题D. 电磁场问题## 第二部分:简答题(每题10分,共30分)6. 简述傅里叶变换在数学物理中的应用。
7. 解释什么是边界层理论,并说明它在流体力学中的重要性。
8. 描述格林函数在求解偏微分方程中的作用。
## 第三部分:计算题(每题25分,共50分)9. 给定函数 \( f(x) = x^2 - 4x + 3 \),使用泰勒级数展开在\( x = 1 \) 处展开 \( f(x) \) 并求出展开式。
10. 考虑一个无限长直导体,在 \( x \) 轴上,导体的电势 \( V(x) \) 满足泊松方程 \( \nabla^2 V = -\rho/\varepsilon_0 \),其中\( \rho \) 是电荷密度,\( \varepsilon_0 \) 是真空电容率。
假设\( \rho \) 是常数,求解 \( V(x) \)。
## 第四部分:论述题(共30分)11. 论述数学物理方法在解决实际物理问题中的应用,并给出至少两个具体的例子。
请注意,以上内容仅为示例,实际的数学物理方法期末考试试题可能会包含不同的问题和要求。
数学物理方法习题集

数学物理方法习题集第一章 复数与复变函数习题1,计算:(1),1)(1i ---。
(2),iii i 524321-+-+。
(3),5(1)(2)(3)i i i ---。
(4),4(1)i -。
(5),bi a +。
2,求下列复数的实部u 与虚部v ,模r 与幅角θ:(1),ii i i 524321----。
(2),1(2n+, 4,3,2=n 。
(3),i +1。
(4),3)i -。
(5),231i -。
3,设211i z +=,i z -=32,试用三角形表示21z z 及21z z 。
4,若21=+Z z θcos ,证明21=+m m zz θm cos 。
5,求下列复数z 的主幅角z arg :(1),iz 312+-=。
(2),6)z i =-。
6,用指数形式证明:(1),(1)2i i -+=+。
(2),i ii2125+=+。
(3),7(1)8(1)i i -+=-+。
(4),1011(12(1)--=-。
7,试解方程44(0)z a a +=>。
8,证明:(1),1212Re()Re()Re()z z z z +=+ ;一般1212Re()Re()Re()z z z z ≠。
(2),1212Im()Im()Im()z z z z +=+ ;一般1212Im()Im()Im()z z z z ≠。
(3),2121z z z z = ;一般2121z z z z +≠+。
9,证明:(1),2121z z z z +=±。
(2),2121z z z z ⋅=。
(3),1122(z zz z = (02≠z )。
(4),121212122Re()2Re()z z z z z z z z +==。
(5),()z z ≤Re ,()z z ≤Im 。
(6),2121212z z z z z z ≤+。
(7),222121212()()z z z z z z -≤+≤+。
数学物理方法习题解答
第八章习题P201:1,2,5,6,11,12,13,16,17,201.长为l 的弦,两端固定,弦中张力为T ,在距一端为0x 的一点以力0F 把弦拉开,然后突然撇除这力,求解弦的振动。
解:此题的定解问题为200000000,(0),(0,)(,)0,,(0),(,0)(),(),0.tt xx t t u a u x l u t u l t F l x x x x T l u x F x l x x x l T l u =⎧-=<<⎪==⎪⎪-⎧⎪<<⎪⎪⎨=⎨⎪⎪⎪-<<⎪⎩⎪⎪=⎩)4()3()2()1(令(,)()()u x t X x T t =代入泛定方程(1)中得X T X aTλ''''==- 可得20T a T X X λλ''⎧+=⎨''+=⎩ (0)()0X X l ==求解关于x 本征值问题,得到本征值和本征函数()2/n l λπ= (1,2,3,n =⋅⋅⋅⋅⋅⋅()sinn X x C x lπ= 将本征值代入关于t 的常微分方程,得到22220a n T T lπ''+= 其解为 ()cossin n n n n a n aT t A x B t l lππ=+ 1(,)()()cos sin sin n n n n a n a n u x t X x T t A t B t x l l l πππ∞=⎛⎫∴==+ ⎪⎝⎭∑将u 的级数解代入初始条件(4)得到001|sin cos sin t t n n t n n a n a n a n a n u A x B t xl l l l l πππππ∞===⎛⎫=-+ ⎪⎝⎭∑1sin 0nn n a n B x l lππ∞===∑ 0n B ∴=则1(,)cossin n n n a n u x t A t x l lππ∞=∴=∑ 根据初始条件(3)有0001000,(0),(,0)sin (),(),n n F l x x x x n T lu x A x F x l l x x x l T l π∞=-⎧<<⎪⎪==⎨⎪-<<⎪⎩∑02()sin l n n A d l l πϕξξξ=⎰ 000000022sin ()sin x l x F l x F x n n d l d l T l l l T l l ππξξξξξξ-=+-⎰⎰ 02000022222sin cos cos x lx F l x F x l n l n n l n l T l n l n l l T l n l ππξππξξξπππ⎧⎡⎤-⎪=--⎨⎢⎥⎣⎦⎪⎩020022sin cos lx F x l n n n T l n l l l ππξπξξπ⎫⎪⎡⎤--⎬⎢⎥⎣⎦⎪⎭000000000220()2sin cos cos cos xF l x l n x n x n x F x n x n l T n l l l T n l πππππππ⎧-⎪⎡⎤⎡⎤=---⎨⎢⎥⎢⎥⎣⎦⎣⎦⎪⎩0000022cos sin cos F x l n x n x n x n n T n l l l ππππππ⎫⎡⎤---+⎬⎢⎥⎣⎦⎭ 002221sin F l n x T n lππ=∴ 00221121(,)cos sin sin cos sin n n n F l n x n a n n a n u x t A t x t x l l T n l l l ππππππ∞∞==∴==∑∑2.求解细杆热传导问题,杆长l ,两端保持为零度,初始温度分布20/)(l x l bx u t -==。
数学物理方法习题答案
第11章综合习题11.1,设弦的初始位移为,初始速度为,求解无限长弦的自由振动.[答案 :解即为答朗贝尔公式 ()x ϕ()x ψ11(,)[()()]()d 22x at x at u x t x at x at a ϕϕψξξ+-=++-+⎰pause(0.0000001);end;11.2 半无限长弦的初始位移和速度都是零,端点作微小振动0|sin x u A t ω==,求解弦的振动.【答案 0,();sin (),()x x x u t u A t t a a aω=<=->】 11.3 求解细圆锥形均质杆的纵振动.【提示 作变换 u x =v/】【答案 12()()f x at f x at u x-++=】 11.4 半无限长杆的端点受到纵向力()sin F t A t ω=作用,求解杆的纵振动.【答案 00()()1,()d 221 ()d cos ()2x at at x x at at x x t u a a aA x aA t a YS a YS ϕϕψξξψξξωωω+-++->=+++--⎰⎰】 11.5已知初始电压分布为cos A kx ,cos kx ,求解无线长理想传输线上电压和电流的传播情况,【答案cos (),cos ()A k x at i k x at -=-v =】11.6 在GL CR =条件下求无限长传输线上的电报方程的通解.【答案 11{[()()]()d 22R x at t L x at e x at x at aϕϕψξξ+--++-+⎰】 11.7已知端点通过电阻R 而相接,初始电压分布为cos A kx ,初始电流分布为cos kx .求解半无限长理想传输线上电报方程的解;在什么条件下端点没有反射(遮住情况叫作匹配)?【答案 匹配的条件是0R =本章计算机仿真11.8 试用计算机仿真的方法,将11.2的弦振动规律以图形的分式表示出来.【解】计算机仿真程序w=pi;a=2;A=1.2;x=0:0.01:10;for t=1:0.5:25u=A*sin(pi*(t-x/a));plot(x,u);title('弦振动')xlabel('x')ylabel('u')11.9试用计算机仿真的方法,将11.5中的电压分布和电流分布用图形表示出来.【解】计算机仿真程序w=pi;a=2;A=1.2;k=2*pi;C=0.006;L=0.003;x=0:0.001:10;for t=1:0.5:25subplot(2,1,1);v=A*cos(k*(t-x/a));plot(x,v);title('电压动态分布')xlabel('x')ylabel('v')pause(0.0000001);subplot(2,1,2);i=sqrt(C/L)*A*cos(k*(t-x/a));plot(x,i);title('电流动态分布')xlabel('x')ylabel('i')pause(0.0000001);end;。
数学物理方法习题2及答案
1. 计算221z dz z z --⎰的值,Г为包含圆周|z|=1在内的任何正向简单曲线。
解:我们知道,函数221z z z--在复平面内除z=0和z=1两个奇点外是处处解析的。
由于Г是包含圆周|z|=1在内的任何正向简单闭曲线,因此它也包含这两个奇点。
在Г内作两个互不包含也互不相交的正向圆周C1与C2,C1只包含奇点z=0,C2只包含奇点z=1。
那么根据复合闭路定理得: 221z dz z z --⎰=22122121c c z z dz dz z z z z --+--⎰⎰1122111111c c c c dz dz dz dz z z z z =+++--⎰⎰⎰⎰ =02204i i i πππ+++= 2. 求积分0cos i z zdz ⎰的值。
解:函数cos z z 在圈平面内解析,容易求得它有一个原函数为sin cos z z z +.所以 00111cos [sin cos ]sin cos 11122ii z zdz z z z i i i e e e e i e i ---=+=+--+=+-=-⎰ 3..试沿区域i 1ln(1)Im()0,Re()0||1,1z z z z dz z +≥≥=+⎰内的圆弧计算积分的值。
解:函数ln(1)1z z ++在所设区域内解析,它的一个原函数为21ln (1),2z +所以 i 222112222ln(1)11ln (1)|[ln (1)ln 2]12211ln 2ln 22243ln 2ln 2.3288i z dz z i z i i πππ+=+=+-+⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=--+⎰ 4.求下列积分(沿圆周正向)的值:1)||41sin 2i z z dz z π=⎰; 2)||412z 13z dz z =+-⎰(+); 解:由柯西积分公式得: ||41sin 2i z z dz zπ=⎰=0sin |0z z ==; ||4||4||12221226z 1313z z z dz dz dz i i i z z z πππ==+=•+•=+-+-⎰⎰⎰(+)= 5..求下列积分的值。
数学物理方法_汪德新答案
⎪ ⎪ a rc ta n
y
+ 2π ,
z在
第
IV象
限
⎩
x
6. 设 b
< 1,
a
=
1,
试证明
a−b 1− a∗b
=1
解 : 以 a = 1乘 分 母 , 得
. a−b 1 − a∗b
=
a−b a 1 − a∗b
=
a−b a − aa∗b
=
a−b a−b
=1
7.设复数
z1,
z2 ,
z3满足
z2 z3
− −
z1 z1
=
z1 − z3 ,试证 z2 − z3
z2 − z1
=
z3 − z1
=
z2 − z3
解 令分式等于 C.若 C=0,则 z1 = z2 = z3 ,结论得证;若 C ≠ 0
c = 1 只要证明
即可。原式取模,得 z1 − z3 2 = z2 − z1 z2 − z3
①
原式两边分别减 1 通分后取模得 z2 − z3 2 = z1 − z2 z3 − z1
2
2
取对数整理后可得
n>- lnε . ln 2
今取N=- lnε ,当n > N (ε )时 ln 2
即可满足上述要求。按极限的定义,即有
lim(
n→∞
1+i 2
)n
=
0
11.求下列序列的聚点和极限。
(1)zn =(3+4i)n 6
(2)zn
=(−1)n n 2n +1
(3)zn
=
in−1 n
(4)zn =(−1)n 1 2n +1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 分离变量法1、求解定解问题:20000000,(01),||0,,(0),|(),(),|0,(0).tt xx x x l t t u a u x u u n hl x x l n u h ll x x l l n l n u x l ====-=<<==⎧≤≤⎪⎪⎪=⎨-≤≤⎪-⎪⎪⎩=≤≤(P-223)2、长为l 的弦,两端固定,弦中张力为T ,在距一端为0x 的一点以力0F 把弦拉开,然后撤出这力,求解弦的震动。
[提示:定解问题为200000000,(0),(0,)(,)0,,(0),(,0)(),(),|0.tt xx t t u a u x l u t u l t F l x x x x T lu x F x l x x x l T lu =-=<<==-⎧<<⎪⎪=⎨⎪-<<⎪⎩=] (P-227)3、求解细杆导热问题,杆长l ,两端保持为零度,初始温度分布2|()/t u bx l x l ==-。
[定解问题为220200,()(0),||0,|()/.txx x x l t k u a u a x l C u u u bx l x l ρ===⎧-==≤≤⎪⎪⎪==⎨⎪=-⎪⎪⎩] (P-230)4、求解定解问题2220,0,0220,0.03sin ,0.00u u a x l t t x u u x x l x u u A t l t t π⎧∂∂⎪-=<<>⎪∂∂⎪==⎨==⎪∂⎪===⎪∂=⎩4、长为l 的均匀杆,两端受压从而长度缩为(12)l ε-,放手后自由振动,求解杆的这一振动。
[提示:定解问题为20000,(0),||0,2|2(),|0.tt xx x x x x l t t t u a u x l u u u x l u ε====⎧-=<<⎪==⎪⎪⎨=-⎪⎪=⎪⎩] (P-236)5、长为l 的杆,一端固定,另一端受力0F 而伸长,求解杆在放手后的振动。
[提示:定解问题为2000000,(0),|0,|0,(,0),|0.tt xx x x x l x x t t u a u x l u u F u u x dx dx x YS u ===⎧-=≤≤⎪==⎪⎪⎨∂==⎪∂⎪=⎪⎩⎰⎰] (P-238)6、长为l 的杆,上端固定在电梯天花板,杆身竖直,下端自由、电梯下降,当速度为0v 时突然停止,求解杆的振动。
[提示:定解问题为2000,(0),(0,)0,(,)|0,(,0),(,0)|0.tt xx x x l t t v a v x l v t v l t v x v v x ==⎧-=<<⎪==⎪⎨=⎪⎪=⎩] (P-242)7、求解细杆导热问题,杆长l ,初始温度均匀为0u ,两端分别保持温度为1u 和2u 。
[提示:定解问题为201,2000,||,|.t xx x x l t u a u u u u u u u ===⎧-=⎪==⎨⎪=⎩] (P-251)8、在矩形区域0,0x a y b <<<<上求解拉氏方程0u ∆=,使满足边界条件00|(),|0.|sin,|0.x x a y y b u Ay b y u xu B u aπ=====-===(P-265)9、均匀的薄板占据区域0,0x a y <<<<∞,边界上温度000|0,|0,|x x a y u u u u ======,lim 0y u →∞=。
[提示:泛定方程为:0.xxyyu u +=](P-269)10、矩形膜,边长1l 和2l ,边缘固定,求它的本征振动模式。
[提示:定解问题为1221200()0,(0,0),|0,|0,|0,|0.tt xx yy x x l y x l u a u u x l y l u u u u ====-+=<<<<====] (P-271)11、细圆环,半径为R ,初始温度分布已知为()f ϕ,ϕ是以环心为极点的极角,环的表面是绝热的。
求解环内温度变化情况。
[提示:其定解问题为20,02,(),(2)().t t u a u u f u u ϕϕϕπϕϕπϕ⎧-=≤<⎪=⎨⎪+=⎩] (P-274)12、在圆形域内求解0u ∆=使满足边界条件 (1)|cos ,(2)|sin aau A u A B ρρϕϕ====+。
[提示:泛定方程为20110,.02a u u u ρρρϕϕρϕπρρ<<⎛⎫++= ⎪<<⎝⎭] (P-275) 13、半圆形薄板,板面绝热,边界直径上温度保持零度,圆周上保持0u ,求稳定状态下的板上温度分布。
[提示:定解问题为200110,(0,0),|0,|0,(0),|,0).R u u u R u u R u u ρρρϕϕϕϕπρρϕπρρρϕπ===⎧++=<<<<⎪⎪⎪=⎨⎪=<<⎪=<<⎪⎩] (P-276)14、在以原点为心,以1R 和2R 为半径的两个同心圆所围城的环域上求解20u ∇=,使满足边界条件1211|(),|()R R u f u f ρρϕϕ====。
[提示:泛定方程为122110,.02R R u u u ρρρϕϕρϕπρρ<<⎛⎫++= ⎪<<⎝⎭] (P-282) 15、两端固定的弦在线密度为(,)()sin f x t x tρρω=Φ的横向力作用下振动,求解其振动情况,研究共振的可能性,并求共振时的解。
[提示:定解问题为2000()sin ,|0,|0,|0,|0.tt xx x x l t t t u a u x t u u u u ω====⎧-=Φ⎪==⎨⎪==⎩] (P-292)16、两端固定弦在点0x 受谐变力0(,)sin f x t f tρρω=作用而振动,求解振动情况。
[提示:外加力的线密度课表为0(,)sin ()f x t f t x x ρρωδ=-,所以定解问题为200000sin (),|0,|0,|0,|0.tt xx x x l t t t u a u f t x x u u u u ωδ====⎧-=-⎪==⎨⎪==⎩] (P-297)17、在矩形域0,22b bx a y <<-<<上求解22u ∇=-且u 在边界上的值为零。
(P-303)第二章 球函数1、在本来是匀强的静电场0E u r 中放置导体球,球的半径为a ,试研究导体球怎样改变了匀强静电场。
[提示:定解问题为20,u ∇=(1)000|cos ,(||.r r r a u E z E r u u C θ→∞→→≈-=-⎧⎨=⎩设导体放入前,=0),(2)和(3)](P-369)2、在点电荷04q πε的电场中放置导体球,球的半径为a ,球心与点电荷相距()d d a >,求解这个静电场。
[提示:定解问题为20,,|0,|0.r a r v q u v D v v =→∞⎧∇=⎪⎪=+⎪⎨⎪=⎪=⎪⎩] (P-370)3、求解220,(),|cos .r u r a u θ=⎧∇=<⎨=⎩(P-372)4、 在球坐标系中利用分离变量法求下列定解问题。
220(0)14sin cos sin 2r a r u r a u u θϕϕ==⎧∇=<<⎪⎪⎛⎫=+⎨ ⎪⎝⎭⎪⎪⎩有限(08~09)5、用一层不导电的物质把半径为a 的导体球壳分隔为两个半球壳,使半球各充电到电势为1v 和2v ,试解电场中的电势分布。
[提示:定解问题为20120,(),|,(0)(01),2|.,()(10)2i i r i r a u r a u v x u v x πθπθπ==⎧⎪⎪⎪⎪∇=<⎪⎨⎪⎧⎪≤<≤<⎪⎪⎪=⎨⎪⎪<≤-<≤⎪⎪⎩⎩有限,(自然边界条件)或或 (P-373)6、半球的球面保持一定温度0u ,半球底面(1)保持0C ︒,(2)绝热,试求这个半球里的稳定温度分布。
[提示:定解问题为20020,(),||,|0.r r a u r a u u u u πθ===⎧∇=<⎪⎪=⎨⎪=⎪⎩有限,](P-375)第三章 柱函数1、半径为R 的圆形膜,边缘固定,初始形状是旋转抛物面22|(1/)t u R H ρ==-,初速为零,求解膜的振动情况。
[提示:定解问题为2020021()0,||0,|(1),|0.ttR t t t u a u u u u u H u R ρρρρρρρ====⎧-+=⎪⎪⎪=⎨⎪⎪=-=⎪⎩有限,] (P-399)2、利用递推公式证明2001()()()J x J x J x x'''=-并计算41()x J x dx ⎰3、半径为R 的圆形膜,在0,ρϕ受到冲量K 作用,求解其后的振动。
[提示:定解问题为220,ttu a u -∇=(1)0|0,|R u u ρρ===⎧⎪⎨⎪⎩(膜边缘固定), 有限,(2)000|0,|t t t u u δρρδϕϕρ===⎧⎪⎨⎪⎩g 00(初位移为零),k =(-)(-)。
p(3)](P-401)4、半径为R 的圆形膜,边缘固定,求其本征频率和本征振动。
[提示:定解问题为22000,(0,0),||0,||0.tt R u a u R u u u u ρρϕϕπϕπρ====⎧-∇=≤≤≤≤⎪=⎨⎪==⎩有限,] (P-403)5、半径为R 而高为H 的圆柱体下底和侧面保持零度,上底温度分布为2()f ρρ=,求柱体内各点的稳恒温度。
[提示:定解问题为22000,|0,|,||0.Z Z H R u u u u u ρρρ====⎧∇=⎪==⎨⎪=⎩有限,] (P-404)6、圆柱体半径为R ,高为H ,上底有均匀分布的强度为0q 的热流流入,下底有同样热流流出,柱侧保持为0C ︒,求柱内的稳恒温度。
[提示:定解问题为2000,|()|()|0.Z Z H R u u qz z R q u z z Ru ρ===⎧∇=⎪∂⎪=⎪∂⎨∂⎪=⎪∂⎪=⎩热流方向与轴反向,热流方向与轴同向,] (P-409)7、确定球形铀块的临界半径。
[提示:铀块厚度超过临界厚度,则中子浓度奖随着时间而增长以致铀块爆炸,其定解问题为 22,|0.tr Ru a u u u β=⎧-∇=⎨=⎩] (P-422)8、均质球,半径为0r ,初始温度分布为()f r ,把球面温度保持为零度而使它冷却,求解球内各处温度变化情况。