组合数公式性质

合集下载

数学组合数公式

数学组合数公式

数学组合数公式组合数是高等数学中一种很重要的概念,是指从n个不同的元素中取出m个元素组成的集合的个数,用C(n,m)表示。

组合数的计算公式为:C(n,m) = n!/m!(n-m)!其中,n!表示n的阶乘,即n×(n-1)×(n-2)×…×1。

这个公式很简单,但是它隐藏着很多深刻的数学思想和应用。

组合数是数学组合问题的基础,也是统计学和概率论中重要的工具。

用组合数可以计算出在一定条件下,某些事件的可能性或者数量,如在扑克牌中,如果从52张牌中抽出5张牌,那么不同的组合数就是C(52,5)=2,598,960种。

这个数值可以用于计算扑克牌的概率或者比较两手牌大小的概率。

组合数还有很多有趣的性质,比如组合恒等式、排列组合恒等式等等。

组合恒等式是指:C(n,m) = C(n-1,m) + C(n-1,m-1)即从n-1个元素中取m个元素再加上从n-1个元素中取m-1个元素,恰好可以得到从n个元素中取m个元素的组合数。

这个公式的证明可以通过下降归纳法或者条件计数法来完成。

排列组合恒等式是指:P(n,m) = C(n,m) × m!即从n个元素中取m个元素,再对这m个元素的排列方式进行全排列,可以得到从n个元素中取m个元素的排列数。

这个公式的含义是,先从n个元素中取m个元素,再确定它们的排列顺序。

这个公式的证明可以用乘法原理和加法原理来完成。

总之,组合数在数学中有着重要的应用和研究价值,无论是在学术研究中还是在实际问题中,都有着广泛的应用。

对于我们每一个数学爱好者来说,熟练掌握组合数的概念和公式是非常重要的,更要通过实践和思考来加深对组合数的理解和认识。

组合和组合数公式

组合和组合数公式

组合和组合数公式组合是组合数学中的一个重要概念,用来计算从n个元素中选取r个元素的方式数。

组合数公式是用来计算组合数的公式。

本文将详细介绍组合和组合数公式,并说明其应用和性质。

1.组合的定义组合由n个元素中选取r个元素所组成的集合,称为从n个元素中选取r个元素的组合。

组合中的元素是无序的,即选取的元素的顺序对组合没有影响。

2.组合的表示方法组合通常用C(n,r)来表示,其中n是总的元素个数,r是选取的元素个数。

例如,从4个元素中选取2个元素的组合可以表示为C(4,2)。

组合数公式用于计算从n个元素中选取r个元素的方式数。

常用的组合数公式有以下几种:3.1乘法法则根据乘法法则,从n个元素中选取r个元素的方式数等于从n中选择1个元素的方式数乘以从n-1个元素中选取r-1个元素的方式数。

这一公式可以表示为:C(n,r)=C(n-1,r-1)*n/r3.2递推公式根据递推关系,可以通过前一项的组合数计算后一项的组合数。

递推公式可以表示为:C(n,r)=C(n-1,r-1)+C(n-1,r)3.3组合公式组合公式是计算组合数的一种常用方法。

组合公式可以表示为:C(n,r)=n!/(r!(n-r)!)其中n!表示n的阶乘,即n!=n*(n-1)*(n-2)*...*14.组合的性质组合具有以下几个重要的性质:4.1对称性组合数具有对称性,即C(n,r)=C(n,n-r)。

这是因为从n个元素中选取r个元素的方式数与从n个元素中选取n-r个元素的方式数是一样的。

4.2递推性组合数具有递推性,即可以通过递推公式计算组合数。

这使得计算大规模组合数变得更加高效。

4.3性质的递推公式组合数的性质也可以通过递推公式计算。

例如,根据乘法法则和递推公式可以推导出组合数的对称性。

5.组合数的应用组合数在组合数学、概率论和统计学等领域具有广泛的应用。

以下是几个常见的应用:5.1排列组合组合数可以用于计算排列组合的方式数。

排列是组合的一种特殊情况,它要求选取的元素有序。

排列组合

排列组合

16. 某班选出的7名班委进行分工, 每人只担任一个职务,且每个职务 都不相同,其中 A 不当班长, B 不当文娱委员,这样的分配方案有 多少种?
17. 7名学生中每次选出5人排成一列, 其中A不能排在第一位,B不能排在 末位,共有多少种不同的排列方法?
18. f是集合 A={a,b,c,d},B={0,1,2} 的映射,如果B中的元素在A中都有 原象,求这样的映射的个数。若不 要求都有原象呢?
19. 6本不同的书分给甲、乙、丙三 人。 (1)甲得2本,乙得2本,丙得2 本有几种不同的分配方法; (2)甲得3本,乙得2本,丙得1 本有几种不同的分配方法; (3)一人得3本,一人得2本,一 人得1本有几种不同的分配方法。
20. 在连结凸五边形的三个顶点构成 的三角形中,求与原凸五边形没有 公共边的三边形的个数。凸六边形 呢?凸n边形呢?
• 13.把四本不同的书分给九个人中的四 人,每人一本,不同的分法有 种。
4 4 C9 P4
• 练习: 1.把三本不同的书分给十人中的三人, 3 3 种。 每人一本,不同的分法有 C10 P 3 2.把五本不同的书分给五名同学,每人 5 P 一本,共有 5 种分法。
• 15.投掷三枚相同的硬币,可能出现 4 种 结果; • 投掷三枚不同的硬币,可能出现 8 种结 果。
6. 有8本互不相同的书,其中数 学书3本,外文书2本,其他书3本.若将 这些书排成一列放在书架上,则数学 书恰好排在一起,外文书也恰好排在 一起的排法共有_____ 种 (结果用数 值表示).
7. 由数字 0 , 1 , 2 , 3 ,4 , 5 组成 没有重复数字的六位数,其中个位数 字小于十位数字的共有多少个?
8. 用0、1、2、3、4、5、6这七个 数字,可以组成多少个没有重复 数字的六位奇数?

高中数学 组合数及其运算性质

高中数学 组合数及其运算性质

复习
组合数公式
m An m Am
m Cn
=
=
n(n-1)(n-2) …(n-m+1) m﹗
组合数公式的另一形式
m An m Am n(n-1)(n-2) …(n-m+1) m﹗
m Cn
=
=
n(n-1)(n-2) …(n-m+1)(n-m) …3∙2∙1 = m﹗ (n-m) …3∙2∙1
=
n﹗ m﹗(n-m)﹗
例3求证: 2 cn cn cn cn 2
m 1
m 1
m
m 1
思考
求:
17-n
2n 3n 13+n
C
+ C
的值.
小节
1 知识点:组合数的两个性质
性质1 。 cn cn
m
nm
m m 1
性质2。c
m
cn cn n 1
2 能力训练要求(1)计算能力 (2)从特殊到一般的猜想推理能力
作业
P104 习题10.3
1,2, 5, 9
198 7
m
nm
例1。计算 (1) c200 , (2) c8 c9 c10 c11
小经验:当m超过n/2时计算组合数时常常 利用性质1简化计算
8
9
9
组合数的性质及应用
问题:一个口袋里装有8个白球1个黑球
(1)从口袋里取出6个球,共有多少种取法?
(2)从口袋里取出6个球,使其中1个是黑球 共有多少种取法?
巩固练习
5 ; 练1. 计算: C8
C3
8
C2
5
c
3 5
练2。计算 c2 c3 c4 c5 c6

高中数学第一章计数原理1.3组合1.3.1组合与组合数公式课件北师大版选修2_3

高中数学第一章计数原理1.3组合1.3.1组合与组合数公式课件北师大版选修2_3
都是相同的组合.当两个组合中的元素不完全相同(即使只有一个 元素不同),就是不同的组合.
(3)组合与排列的共同点:从n个不同的元素中任取m个元素;不同 点:对于排列,取出元素后还需对所取出的元素进行排列,即对顺序 有要求,而组合对取出的元素无需排列,只需组成一组即可,对顺序 无要求.可总结为:有序排列,无序组合.
目标导航
知识梳理
典例透析
随堂演练
题型一
题型二
题型三
【变式训练1】 判断下列各事件是排列问题还是组合问题,并求 出相应的排列数或组合数.
(1)10人相互通一次电话,共通多少次电话? (2)10个球队以单循环进行比赛(每两队比赛一次),共进行多少场 次? (3)从10个人中选出3个作为代表去开会,有多少种选法? (4)从10个人中选出3个担任不同学科的课代表,有多少种选法? 分析:解答本题主要是分清取出的这m个(2个或3个)元素是进行 排列还是组合,即确定其与顺序有关还是无关.
目标导航
题型一
题型二
题型三
知识梳理
典例透析
随堂演练
解:(1)是组合问题,因为甲与乙通了一次电话,也就是乙与甲通
了一次电话,没有顺序的区别,组合数为C120 = 45. (2)是组合问题,因为每两个队比赛一次,并不需要考虑谁先谁后,
没有顺序的区别,组合数为C120 = 45. (3)是组合问题,因为 3 个代表之间没有顺序的区别,组合数为
12345
目标导航
知识梳理
典例透析
【做一做1】 给出下面几个问题,其中是组合问题的有( )
①由1,2,3,4构成的含有2个元素的集合个数;
②五个队进行单循环比赛的比赛场次数;
③由1,2,3组成两位数的不同方法数;

组合数的相关公式

组合数的相关公式

组合数的相关公式组合数是组合数学中的一个重要概念,也称为二项式系数。

它在组合学、概率论和数论等多个领域都有广泛的应用。

本文将全面介绍组合数的相关公式,以帮助读者更好地理解和应用这一概念。

1. 组合数的定义组合数是指从n个不同元素中选取r个元素的方式数,用C(n,r)或者表示。

其中n表示元素的个数,r表示选取的元素个数。

组合数的计算结果是一个非负整数。

2. 组合数的计算公式2.1. 基本公式组合数可以通过以下基本公式来计算:C(n,r) = n! / (r!(n-r)!)其中,"!"表示阶乘运算,即将一个正整数n与小于等于它的所有正整数相乘。

例如,5! = 5 × 4 × 3 × 2 × 1。

2.2. 递推公式组合数也可以通过递推公式来计算:C(n,r) = C(n-1,r-1) + C(n-1,r)递推公式的意思是,从n个元素中选取r个元素,可以分为两种情况:选取第n个元素和不选取第n个元素。

如果选取第n个元素,那么就需要从剩下的n-1个元素中选取r-1个元素;如果不选取第n 个元素,那么就需要从剩下的n-1个元素中选取r个元素。

将这两种情况的结果相加,就可以得到总的组合数。

递推公式的优点是可以利用已知的组合数计算出其他组合数,从而减少重复计算的次数。

3. 组合数的性质组合数具有一些有趣的性质,对于计算和理解组合数的应用非常有用。

3.1. 对称性组合数具有对称性,即C(n,r) = C(n,n-r)。

这是因为从n个元素中选取r个元素,等价于从n个元素中选取n-r个元素。

例如,从{1,2,3,4}中选取2个元素的方式数与从{1,2,3,4}中选取3个元素的方式数是相同的。

3.2. 组合数的加法如果有两个集合A和B,且A和B的元素个数分别为n和m,那么从A和B的元素中选取r个元素的方式数为C(n+m,r)。

这是因为可以将A和B的元素合并成一个集合,然后从合并后的集合中选取r个元素。

课件6:1.2.2 第1课时 组合及组合数公式

课件6:1.2.2 第1课时 组合及组合数公式
剩下的n-m个元素的组合相对应 ↓ 作用 —→ 当m>n2时,计算Cmn 通常转化为计
算Cnn -m
2.与排列组合有关的方程或不等式问题要用到排列数、组合数公式,以及组 合数的性质,求解时,要注意由 Cmn 中的 m∈N+,n∈N+,且 n≥m 确定 m,n 的 范围,因此求解后要验证所得结果是否适合题意.
(1)【解析】 (1)C43+C53+C63+…+C23 016 =C44+C34+C35+…+C32 016-C44 =C45+C35+…+C32 016-1=… =C42 016+C32 016-1=C42 017-1. 【答案】 C
(2)解:由排列数和组合数公式,原方程可化为 3·(x(-x-7)3!)!4!=5·((xx- -46))! !, 则3(4x-!3)=x-5 6,即为(x-3)(x-6)=40. ∴x2-9x-22=0, 解得 x=11 或 x=-2. 经检验知 x=11 是原方程的根,x=-2 是原方程的增根. ∴方程的根为 x=11.
【答案】 (1)√ (2)√ (3)× (4)√ (5)×
教材整理 2 组合数公式及性质
阅读教材,完成下列问题.
组合数公式及其性质
Amn
n!
(1)公式:Cmn =_A__mm__=_m__!___n_-__m_.!
(2)性质:Cmn =_C__nn-_m_,Cmn +Cmn -1=_C_mn_+_1_.
(3)解:由 Cn4>Cn6,得
4!(nn! -4)!>6!(nn! -6)!, n≥6
⇒nn2≥-6,9n-10<0,
⇒-1<n<10, n≥6.
又 n∈N+,
∴该不等式的解集为{6,7,8,9}.
1.性质“Cmn =Cnn-m”的意义及作用

第一章 1.2 1.2.2 第一课时 组合与组合数公式

第一章    1.2    1.2.2    第一课时    组合与组合数公式
返回
返回
点击下图进入
课堂强化
返回
点击下图进入
课下检测
返回
关则是组合问题.
返回
[通一类] 1.判断下列问题是排列问题还是组合问题: (1)把当日动物园的4张门票分给5个人,每人至多分一 张,而且票必须分完,有多少种分配方法? (2)从2,3,5,7,11这5个质数中,每次取2个数分别作为分子 和分母构成一个分数,共能构成多少个不同的分数? (3)从9名学生中选出4名参加一个联欢会,有多少种不同 选法?
返回
[自主解答]
(1)已知集合的元素具有无序性,因此含 3 个元
素的 子集个数 与元素的 顺序无关, 是组合问 题,共有 C 3 7= 7! 7×6×5 = =35 个. 4!×3! 3×2×1 (2)发邮件有先后之分, 与顺序有关是排列问题, 共写了 A2 8= 8! =56 个电子邮件. 6!
11×10×9×8×7 = =462. 5×4×3×2×1
返回
[悟一法]
n 1.关于组合数的性质 1(Cm n =Cn
-m
)
(1)该性质反映了组合数的对称性, 即从 n 个不同的元素中 取出 m 个元素的每一个组合, 都对应着剩下的 n-m 个元素的 一个组合,反过来也一样,这是一一对应的关系. n n-m (2)当 m> 时,通常不直接计算 Cm ,而改为计算 C . n n 2
返回
解:(1)是组合问题.由于4张票是相同的(都是当日动物园的
门票),不同的分配方法取决于从5人中选择哪4人,这和顺序
无关.
(2)是排列问题,选出的2个数有角色差异(作分子与作分母).
(3)是组合问题,选出的4人无角色差异,不需要排列他们的顺 序.
返回
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合数公式性质
组合数的性质公式:1、组合数恒等式:若表示在n个物品中选取m个物品,则如存在下述公式: C(n,m)= C(n,n-m)= C(n-1,m-1)+C(n-1,m);2、互补性质:从m个不同元素中取出n个元素的组合数=从m个不同元素中取出(m-n)个元素的组合数。

组合数的性质公式
组合数概念:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。

在线性写法中被写作C(m,n)。

组合数的性质公式
组合数递推公式:c(n,m)=c(n-1,m-1)+c(n-1,m)。

等式左边表示从n个元素中选取m个元素,而等式右边表示这一个过程的另一种实现方法:任意选择n中的某个备选元素为特殊元素,从n中选m个元素可以由此特殊元素的被包含与否分成两类情况,即m个被选择元素包含了特殊元素和m个被选择元素不包含该特殊元素。

前者相当于从n-1个元素中选出m-1个元素的组合,即c(n-1,m-1);后者相当于从n-1个元素中选出m个元素的组合,即c(n-1,m)。

相关文档
最新文档