学案5函数的单调性与最值

合集下载

学案5:1.3.2 余弦函数、正切函数的图象与性质(二)

学案5:1.3.2 余弦函数、正切函数的图象与性质(二)

1.3.2 余弦函数、正切函数的图象与性质(二)|目 标 索 引|1.能借助单位圆中的正切线画出y =tan x 的图象.2.理解正切函数的定义域、值域、周期性、奇偶性及单调性,并掌握其应用.函数y =tanx 的图象与性质解析式 y =tan x图象定义域 ⎩⎨⎧x ⎪⎪⎭⎬⎫x ∈R 且x ≠k π+π2,k ∈Z值域 R 周期 π 奇偶性单调性在⎝⎛⎭⎫-π2+k π,π2+k π(k ∈Z)内都是1.判断正误(正确的打“√”,错误的打“×”) (1)正切函数在整个定义域内是增函数.( ) (2)存在某个区间,使正切函数为减函数.( ) (3)正切函数图象相邻两个对称中心的距离为周期π.( )(4)函数y =tan x 为奇函数,故对任意x ∈R 都有tan(-x )=-tan x .( ) 2.函数y =tan(2x +φ)的图象过点π12,0,则φ可以是( )A .-π6 B.π6C .-π12D.π123.函数y =tan ⎝⎛⎭⎫3x -π4的最小正周期为________. 题型探究题型一 求函数的定义域例1 函数f (x )=tan x -1+4-x 2的定义域为________.【知识点拨】 求定义域时,一定要注意正切函数自身的定义域.另外,这类问题都是由构造三角不等式来确定自变量的范围.解三角不等式时要充分利用三角函数的图象或三角函数线.变式训练1-1 求下列函数的定义域. (1)y =tan ⎝⎛⎭⎫2x -π6;(2)y =tan x 2sin x -2.题型二 函数的性质例2 求函数y =tan ⎝⎛⎭⎫12x -π6的定义域、周期及单调区间.【知识点拨】 1.正切函数的单调性表现为在每一单调区间内只增不减,这一点必须注意. 2.正切函数的图象的对称中心为⎝⎛⎭⎫k π2,0(k ∈Z),而不是(k π,0)(k ∈Z),它没有对称轴. 3.y =A tan(ωx +φ)的最小正周期为π|ω|.变式训练2-1 函数f (x )=tan ⎝⎛⎭⎫x +π4的单调递增区间为( ) A.⎝⎛⎭⎫k π-π2,k π+π2,k ∈Z B .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎫k π-3π4,k π+π4,k ∈Z D.⎝⎛⎭⎫k π-π4,k π+3π4,k ∈Z题型三 正切函数的图像例3 函数y =A tan(ωx +φ)(0<φ<π)的图象与x 轴相交的两邻点坐标分别为⎝⎛⎭⎫-π2,0,⎝⎛⎭⎫π6,0,且过点(0,-3),求此函数的表达式.变式训练3-1 将函数y =tan2x 的图象上所有的点向右平移π8个单位长度,再把所得图象上各点的横坐标缩短到原来的12(纵坐标不变),则所得函数的图象( )A .关于点⎝⎛⎭⎫π16,0中心对称B .关于直线x =7π4对称C .关于点⎝⎛⎭⎫π8,0中心对称 D .关于直线x =3π4对称随堂练习1.函数y =sin x 与y =tan x 在区间⎝⎛⎭⎫-3π2,3π2上的交点个数是( ) A .3 B.4 C .5D.62.在下列函数中,同时满足以下三个条件的是( ) ①在⎝⎛⎭⎫0,π2上单调递减;②最小正周期为2π;③是奇函数. A .y =-sin xB.y =cos xC .y =tan x D.y =sin2x 3.若f (x )=tan ⎝⎛⎭⎫x +π4,则( ) A .f (-1)>f (0)>f (1) B.f (0)>f (1)>f (-1) C .f (1)>f (0)>f (-1)D.f (1)<f (-1)<f (0)4.下列关于函数y =tan ⎝⎛⎭⎫x +π3的说法正确的是( ) A .在区间⎝⎛⎭⎫-π6,5π6上单调递增 B .最小正周期为πC .图象关于点⎝⎛⎭⎫π4,0成中心对称 D .图象关于直线x =π6成轴对称5.求函数y =-tan 2x +10tan x -1,x ∈⎣⎡⎦⎤π4,π3的值域.【参考答案】奇函数 增函数1.答案:(1)× (2)× (3)× (4)×【解析】(1)如x 1=π4,x 2=2π3,但tan π4>tan 2π3.(2)正切函数在每个单调区间上都为增函数. (3)正切函数图象相邻两个对称中心的距离为半周期π2.(4)当x =π2+k π(k ∈Z )时,tan x 没有意义,此时式子tan(-x )=-tan x 不成立.2.答案:A【解析】∵y =tan(2x +φ)过⎝⎛⎭⎫π12,0. ∴tan ⎝⎛⎭⎫π6+φ=0,∴π6+φ=k π,k ∈Z ,∴φ=k π-π6,当k =0时,φ=-π6,故选A. 3.答案:π3题型探究例1 ⎣⎡⎭⎫-2,-π2∪⎣⎡⎭⎫π4,π2 【解析】 由题可得⎩⎪⎨⎪⎧tan x -1≥0,4-x 2≥0.∴⎩⎪⎨⎪⎧k π+π4≤x <k π+π2,k ∈Z ,-2≤x ≤2,∴-2≤x <-π2或π4≤x <π2,∴f (x )的定义域为⎣⎡⎭⎫-2,-π2∪⎣⎡⎭⎫π4,π2. 变式训练1-1 解:(1)要使y =tan ⎝⎛⎭⎫2x -π6有意义,则2x -π6≠k π+π2,∴x ≠k π2+π3(k ∈Z ),∴函数y =tan ⎝⎛⎭⎫2x -π6的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π3,k ∈Z . (2)要使y =tan x 2sin x -2有意义,则⎩⎨⎧x ≠k π+π2k ∈Z ,2sin x -2>0⇔2k π+π4<x <2k π+3π4k ∈Z ,∴2k π+π4<x <2k π+π2或2k π+π2<x <2k π+3π4(k ∈Z ),∴函数的定义域为2k π+π4,2k π+π2∪2k π+π2,2k π+3π4(k ∈Z ).例2 【解】 由12x -π6≠k π+π2(k ∈Z ),得定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠2k π+4π3,k ∈Z . ∴函数y =tan ⎝⎛⎭⎫12x -π6的定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫x ∈R ,且x ≠2k π+4π3,k ∈Z ; T =π|ω|=π12=2π;由k π-π2<12x -π6<k π+π2,k ∈Z ,得2k π-2π3<x <2k π+4π3,k ∈Z .∴函数y =tan ⎝⎛⎭⎫12x -π6的单调递增区间为⎝⎛⎭⎫2k π-2π3,2k π+4π3,k ∈Z . 变式训练2-1 C【解析】由k π-π2<x +π4<k π+π2,k ∈Z ,得k π-3π4<x <k π+π4,k ∈Z ,∴f (x )的单调递增区间为⎝⎛⎭⎫k π-3π4,k π+π4,k ∈Z ,故选C. 例3 答案:A【解】 由题意知函数的周期为T =π6-⎝⎛⎭⎫-π2=23π,所以ω=πT =32,故y =A tan ⎝⎛⎭⎫32x +φ.又函数图象过点⎝⎛⎭⎫π6,0,则有32×π6+φ=k π,k ∈Z ,故φ=k π-π4,k ∈Z .故φ=34π.又图象过点(0,-3),则有-3=A tan ⎝⎛ 32×0+⎭⎫34π,得A =3.故函数的表达式为y =3tan ⎝⎛⎭⎫32x +34π. 变式训练3-1 【解析】y =tan2x 的图象上所有的点向右平移π8个单位长度,得y =tan2⎝⎛⎭⎫x -π8=tan ⎝⎛⎭⎫2x -π4, 再把所得图象上各点的横坐标缩短到原来的12,得y =tan ⎝⎛⎭⎫4x -π4,由4x -π4=k π2,k ∈Z ,得x =k π8+π16,k ∈Z ,当k =0时,函数的一个对称中心为⎝⎛⎭⎫π16,0.故选A. 随堂练习1.A【解析】如图,函数y =sin x 与y =tan x 在区间⎝⎛⎭⎫-3π2,3π2上的交点个数是3.2.A【解析】y =cos x 为偶函数,y =tan x 在⎝⎛⎭⎫0,π2为增函数,y =sin2x 的最小正周期为π,故A 正确. 3.答案:D【解析】f (-1)=tan ⎝⎛⎭⎫π4-1,f (0)=tan π4,f (1)=tan ⎝⎛⎭⎫π4+1=tan ⎝⎛⎭⎫1-3π4, -π2<1-3π4<π4-1<π4, ∴tan ⎝⎛⎭⎫1-3π4<tan ⎝⎛⎭⎫π4-1<tan π4,∴f (1)<f (-1)<f (0).故选D. 4.B【解析】由k π-π2<x +π3<π2+k π,k ∈Z ,得k π-5π6<x <π6+k π,k ∈Z ,∴函数在⎝⎛⎭⎫-π6,5π6上不单调,A 错; 函数的周期为π,B 正确,故选B.5.解:由x ∈⎣⎡⎦⎤π4,π3,得tan x ∈[1, 3 ], ∴y =-tan 2x +10tan x -1=-(tan x -5)2+24.由于1≤tan x ≤3,∴8≤y ≤103-4,∴函数的值域是[8,103-4].。

湘教版 学案 三次函数的性质 单调区间和极值

湘教版 学案   三次函数的性质 单调区间和极值

3.3.3三次函数的性质:单调区间和极值1.理解函数最值的概念,了解其与函数极值的区别与联系.2.会求某闭区间上函数的最值.极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质,但是我们往往更关心函数在某个区间上哪个值最大,哪个值最小,函数的极值与最值有怎样的关系?答:函数的最大值、最小值是比较整个定义区间的函数值得出的,函数的极值是比较极值点附近的函数值得出的,函数的极值可以有多个,但最值只能有一个;极值只能在区间内取得,最值则可以在端点处取得;有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点处取得必定是极值,所以在开区间(a,b)上若存在最值,则必是极值.三次函数的导数零点与其单调区间和极值设F(x)=ax3+bx2+cx+d(a≠0),F′(x)=3ax2+2bx+c(a≠0).填写下表:当a>0时,当a<0时,要点一求三次函数的单调区间和极值点例1求下列函数的单调区间和极值点:(1)f(x)=2x3+3x2+6x+1;(2)f(x)=-2x3+9x2-12x-7.解(1)f′(x)=6x2+6x+6=6(x2+x+1).由于f′(x)恒正,∴f(x)在(-∞,+∞)上递增.无极值点.(2)f′(x)=-6x2+18x-12=-6(x2-3x+2)=-6(x-1)(x-2).∴f′(x)在(-∞,1)和(2,+∞)上均为负,在(1,2)上为正,∴f(x)在(-∞,1)和(2,+∞)上递减,在(1,2)上递增,∴x=1是函数f(x)的极小值点,x=2为其极大值点.规律方法对此类题目,只要理解了f′(x)的符号对函数f(x)取极值的影响,所有问题便迎刃而解,所以重要的是方法的领悟.跟踪演练1求下列函数的单调区间和极值点:(1)f(x)=-x3+x2-x;(2)f(x)=x3-12x2-2x-5.解 (1)f ′(x )=-3x 2+2x -1, ∵Δ=22-4×(-3)×(-1)=-8<0, 又∵-3<0,∴f ′(x )<0恒成立. 故函数f (x )在R 上单调递减且无极值点. (2)f ′(x )=3x 2-x -2,令f ′(x )=0,即3x 2-x -2=0⇒x =1或x =-23. 所以当x ∈⎝ ⎛⎭⎪⎫-∞,-23时,f ′(x )>0,f (x )为增函数;当x ∈⎝ ⎛⎭⎪⎫-23,1时,f ′(x )<0,f (x )为减函数.当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.所以f (x )的递增区间为(-∞,-23)和(1,+∞),f (x )的递减区间为⎝ ⎛⎭⎪⎫-23,1.根据f (x )的单调性及f ′(x )=0的零点知x =1为函数f (x )的极小值点,x =-23为其极大值点.要点二 含参数的函数的最值问题例2 已知a 是实数,函数f (x )=x 2(x -a ),求f (x )在区间上的最大值. 解 ∵f (x )=x 2(x -a ),∴f ′(x )=x (3x -2a ). 令f ′(x )=0,解得x =0或x =2a 3. 当2a3≤0,即a ≤0时,f (x )在上单调递增, 从而f (x )max =f (2)=8-4a .当2a3≥2,即a ≥3时,f (x )在上单调递减, 从而f (x )max =f (0)=0. 当0<2a3<2,即0<a <3时,f (x )在⎣⎢⎡⎦⎥⎤0,2a 3上单调递减,在⎣⎢⎡⎦⎥⎤2a 3,2上单调递增,从而f (x )max =⎩⎨⎧8-4a (0<a ≤2),0 (2<a <3),综上所述,f (x )max =⎩⎨⎧8-4a (a ≤2).0 (a >2),规律方法 由于参数的取值不同会导致函数在所给区间上的单调性的变化,从而导致最值的变化.所以解决这类问题常需要分类讨论,并结合不等式的知识进行求解.跟踪演练2 在本例中,将区间改为结果如何? 解 令f ′(x )=0,解得x 1=0,x 2=23a ,①当23a ≥0,即a ≥0时,f (x )在上单调递增,从而f (x )max =f (0)=0; ②当23a ≤-1,即a ≤-32时,f (x )在上单调递减, 从而f (x )max =f (-1)=-1-a ; ③当-1<23a <0,即-32<a <0时,f (x )在⎣⎢⎡⎦⎥⎤-1,23a 上单调递增;在⎣⎢⎡⎦⎥⎤23a ,0上单调递减,则f (x )max =f ⎝ ⎛⎭⎪⎫23a =-427a 3.综上所述:f (x )max=⎩⎪⎨⎪⎧-1-a ,a ≤-32,-427a 3,-32<a <0,0,a ≥0.要点三 函数极值的应用例3 设函数f (x )=tx 2+2t 2x +t -1(x ∈R ,t >0). (1)求f (x )的最小值h (t );(2)若h (t )<-2t +m 对t ∈(0,2)恒成立,求实数m 的取值范围. 解 (1)∵f (x )=t (x +t )2-t 3+t -1(x ∈R ,t >0), ∴当x =-t 时,f (x )取最小值f (-t )=-t 3+t -1, 即h (t )=-t 3+t -1.(2)令g (t )=h (t )-(-2t +m )=-t 3+3t -1-m ,由g ′(t )=-3t 2+3=0得t =1,t =-1(不合题意,舍去).当t变化时g′(t)、g(t)的变化情况如下表:maxh(t)<-2t-m对t∈(0,2)恒成立,也就是g(t)<0,对t∈(0,2)恒成立,只需g(t)max=1-m<0,∴m>1.故实数m的取值范围是(1,+∞)规律方法(1)“恒成立”问题向最值问题转化是一种常见的题型,一般地,可采用分离参数法进行转化.λ≥f(x)恒成立⇔λ≥max;λ≤f(x)恒成立⇔λ≤min.对于不能分离参数的恒成立问题,直接求含参函数的最值即可.(2)此类问题特别要小心“最值能否取得到”和“不等式中是否含等号”的情况,以此来确定参数的范围能否取得“=”.跟踪演练3设函数f(x)=2x3-9x2+12x+8c,(1)若对任意的x∈,都有f(x)<c2成立,求c的取值范围.(2)若对任意的x∈(0,3),都有f(x)<c2成立,求c的取值范围.解(1)∵f′(x)=6x2-18x+12=6(x-1)(x-2).∴当x∈(0,1)∪(2,3)时,f′(x)>0;当x∈(1,2)时,f′(x)<0.∴当x=1时,f(x)取极大值f(1)=5+8c.又f(3)=9+8c>f(1),∴x∈时,f(x)的最大值为f(3)=9+8c.∵对任意的x∈,有f(x)<c2恒成立,∴9+8c<c2,即c<-1或c>9.∴c的取值范围为(-∞,-1)∪(9,+∞).(2)由(1)知f(x)<f(3)=9+8c,∴9+8c≤c2即c≤-1或c≥9,∴c 的取值范围为(-∞,-19,+∞).1.函数f (x )=-x 2+4x +7,在x ∈上的最大值和最小值分别是( ) A .f (2),f (3) B .f (3),f (5) C .f (2),f (5) D .f (5),f (3)答案 B解析 ∵f ′(x )=-2x +4, ∴当x ∈时,f ′(x )<0, 故f (x )在上单调递减,故f (x )的最大值和最小值分别是f (3),f (5). 2.函数f (x )=x 3-3x (|x |<1)( ) A .有最大值,但无最小值 B .有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值答案 D解析 f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x )在(-1,1)上是单调递减函数,无最大值和最小值,故选D.3.函数y =x -sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π的最大值是( )A .π-1B .π2-1 C .π D .π+1答案 C解析 因为y ′=1-cos x ,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,y ′>0,则函数在区间⎣⎢⎡⎦⎥⎤π2,π上为增函数,所以y 的最大值为y max =π-sin π=π,故选C.4.函数f (x )=x 3-3x 2-9x +k 在区间上的最大值为10,则其最小值为________.答案 -71解析 f ′(x )=3x 2-6x -9=3(x -3)(x +1). 由f ′(x )=0得x =3或x =-1. 又f (-4)=k -76,f (3)=k -27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.1.求函数的最值时,应注意以下几点(1)函数的极值是在局部范围内讨论问题,是一个局部概念,而函数的最值是对整个定义域而言,是在整体范围内讨论问题,是一个整体性的概念.(2)闭区间上的连续函数一定有最值.开区间(a,b)内的可导函数不一定有最值,但若有唯一的极值,则此极值必是函数的最值.(3)函数在其定义域上的最大值与最小值至多各有一个,而函数的极值则可能不止一个,也可能没有极值,并且极大值(极小值)不一定就是最大值(最小值).2.求含参数的函数最值,可分类讨论求解.3.“恒成立”问题可转化为函数最值问题.。

高一数学复习知识讲解课件25 单调性与最大(小)值(第1课时) 函数单调性

高一数学复习知识讲解课件25 单调性与最大(小)值(第1课时)  函数单调性

3.2函数的基高一数学复习知3.2.1单调性与最大函数单调数的基本性质复习知识讲解课件最大(小)值(第1课时)数单调性在区间D上单调递增在区间D上单调递减要点2 函数的单调区间如果函数y =f (x )在区间D 上__________这一区间具有_________________,区间注意:(1)函数单调性关注的是整个区间单调递增或(严格的)单调性问题,所以单调区间的端点若属于定义域点不属于定义域则只能开.(2)单调区间D ⊆定义域I .(3)遵循最简原则,单调区间应尽可能大_______________,那么就说函数y =f (x )在区间D 叫做y =f (x )的单调区间.个区间上的性质,单独一点不存在单调性递增或单调递减义域,则该点处区间可开可闭,若区间端可能大.3.通过上面两道题,你对函数的单调 答:函数单调性定义中的,必须是x 1x 2时,要注意保持其任意性.的单调性定义有什么新的理解? 必须是任意的,应用单调性定义解决问题课时学案探究1 (1)证明函数的单调性的常用方是:①取值,在给定区间上任取两个自变量进行代数恒等变形,一般要出现乘积形式根据条件判断f (x 1)-f (x 2)变形后的正负;(2)讨论函数的单调性常见有两种:一种数在定义域的子区间上具有不同的单调性常用方法是利用函数单调性的定义,其步骤自变量x 1,x 2;②作差变形,将f (x 1)-f (x 2)形式,且含有x 1-x 2的因式;③判断符号,;④得出结论.一种是参数对单调性的影响,一种是函调性.思考题2 (1)如图所示为函数f (x )的图________________________,单调递减区间[-1,0],[1,2],[3,4] 的图象,其单调递增区间是_________减区间是________________________.[0,1],[2,3](2)【多选题】设f (x ),g (x )都是单调函数A .若f (x )单调递增,g (x )单调递增,B .若f (x )单调递增,g (x )单调递减,C .若f (x )单调递减,g (x )单调递增,D .若f (x )单调递减,g (x )单调递减,调函数,则下列命题中正确的是(),则f (x )-g (x )单调递增,则f (x )-g (x )单调递增BC ,则f (x )-g (x )单调递减,则f (x )-g (x )单调递减探究3求函数的单调区间常用方法方法:①图象法;②利用已知函数的单调性;③定义法.课 后 巩 固1.函数y=x2-6x+10在区间(2,A.减函数C.先减后增函数4)上是()B.增函数CD.先增后减函数2.设(a ,b ),(c ,d )都是函数f (x )的单调d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是(A .f (x 1)=f (x 2) C .f (x 1)>f (x 2) 的单调递增区间,且x 1∈(a ,b ),x 2∈(c ,)D B .f (x 1)<f (x 2) D .不能确定3.函数y =|x |-1的单调递减区间为A .(0,+∞) C .(-∞,-1)解析解析 y =|x |-1=x -1,x ≥0,-x -1,x <0,易知( )B .(-∞,0)B D .(-1,+∞)易知其单调递减区间为(-∞,0).故选B.4.【多选题】已知四个函数的图象如的函数是()BC图象如图所示,其中在定义域内具有单调性自助 餐一、证明单调性的探究1 单调性的证明证明某个函数在给定区间上的单调性明.它的步骤如下:第一步:取值.设x 1,x 2是给定区间上第二步:作差变形.写出差式f (x 1)方等手段,向有利于判断差的符号的方向变形式.第三步:判断符号.根据已知条件,第四步:下结论.根据定义,作出结论调性的方法与技巧调性,最常用的方法就是用定义去证区间上的任意两个自变量的值,且x 1<x 2. -f (x 2),并且通过提取公因式、通分、配方向变形,一般写成几个最简因式相乘的,确定f (x 1)-f (x 2)的符号. 出结论.(5)图象变换对单调性的影响.①上下平移不影响单调区间,即y ②左右平移影响单调区间.如=2的减y x 间为(-∞,-1].③y =kf (x ),当k >0时单调区间与f (x=f (x )和y =f (x )+b 的单调区间相同. 的减区间为-∞,,=+2的减区(0]y (x 1))相同,当k <0时与f (x )相反.例2 已知f (x )>0在R 上恒成立,并且满f (x )>1,求证:f (x )在R 上是增函数.【证明证明】】 设x 1,x 2∈R 且x 1<x 2,则∵x >0时,f (x )>1,∴f (x 2-x 1)>1,又f (x )>0在R 上恒成立∴f (x 2)=f ((x 2-x 1)+x 1)=f (x 2-x 1)·f (∴f (x )在R 上是增函数. 并且满足f (x +y )=f (x )·f (y ),当x >0时,则x 2-x 1>0,成立,x 1)>f (x 1).。

函数的极值与导数经典教案

函数的极值与导数经典教案

3.3.2函数的极值与导数[教材分析]:《函数的极值与导数》是在学生学习了《函数的单调性与导数》,初步具备了运用导数研究函数的能力后学习的,并为《函数的最大(小)值与导数》奠定了知识与方法的基础,起着承上启下的作用。

本节课在本单元乃至整个数学学习中都具有十分重要的地位。

[学情分析]:学生已经初步学习了运用导数研究函数,但还不够深入,因此在学习上还有一定困难。

本节课能够进一步提高学生运用导数研究函数的能力,体会导数的工具作用。

[教学目标]:知识与技能:•了解函数极值的定义,会从几何图形直观理解函数的极值与其导数的关系,增强学生的数形结合意识,提升思维水平;•掌握利用导数求不超过三次的多项式函数极值的一般方法;•了解函数在某点取得极值的必要条件和充分条件。

过程与方法:•培养学生观察、分析、探究、归纳得出数学概念和规律的学习能力。

情感态度与价值观:•体会导数方法在研究函数性质中的一般性和有效性;•培养学生大胆创新、勇于探索、互相合作的精神;•激发学生的民族自豪感,培养学生的爱国主义精神。

[教学重点和教学难点]:教学重点:掌握利用导数求不超过三次的多项式函数极值的一般方法。

教学难点:函数在某点取得极值的必要条件和充分条件。

[教法学法分析]:教法分析和教学用具:本节课我将采用自主学习—成果展示—合作探究—教师点拨—巩固提高的教学环节。

并利用信息技术创设实际问题的情境。

发挥学生学习的主动性,使学生的学习过程成为在我引导下的“再创造”过程。

学法分析通过用导数研究函数的极值,提高了学生的导数应用能力。

通过用导数求不超过三次的多项式函数的极大值和极小值,得到求极值的一般方法。

教学过程教学内容设计意图一、自主学习:课前将学案发给学生,让学生明确学习目标,带着问题对课本进行预习,并解答这些问题,落实基础知识。

通过检查学案,了解学生自主学习的情况,设计导学思路与措施。

培养学生的自主学习能力,为学生的终身学习奠定基础。

二、成果展示:对自主学习的情况先在组内进行交流,对自主学习的问题组内达成共识。

学案5:7.3.4 正切函数的图像与性质

学案5:7.3.4 正切函数的图像与性质

7.3.4 正切函数的性质与图像教学目标1.了解正切函数图像的画法,理解掌握正切函数的性质.2.能利用正切函数的图像及性质解决有关问题. 教学知识梳理 知识点一 正切函数对于任意一个角x ,只要x ≠π2+k π,k ∈Z .就有 确定的正切值tan x 与之对应,因此y =tan x是一个函数,称为正切函数. 知识点二 正切函数的图像与性质解析式y =tan x图像定义域 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π2+k π,k ∈Z 值域 R 最小正周期 π 奇偶性单调性在每一个开区间⎝⎛⎭⎫-π2+k π,π2+k π(k ∈Z )上都是单调递增的对称性 对称中心⎝⎛⎭⎫k π2,0(k ∈Z )零点k π,k ∈Z探究一 正切函数的定义域、值域问题例1.求函数y =2tan (2x -π4)的定义域.反思感悟 求正切函数定义域的方法(1)求与正切函数有关的函数的定义域时,除了求函数定义域的一般要求外,还要保证正切函数y =tan x 有意义,即x ≠π2+k π,k ∈Z .(2)求正切型函数y =A tan(ωx +φ)(A ≠0,ω>0)的定义域时,要将“ωx +φ”视为一个“整体”,令ωx +φ≠k π+π2,k ∈Z ,解得x .跟踪训练1.求函数y =x tan +lg (1-tan x )的定义域.探究二 正切函数的单调性及其应用例2.(1)函数y =sin x +tan x ,x ∈⎣⎡⎦⎤-π4,π4的值域是__________. (2)比较大小:tan ⎝⎛⎭⎫-7π4__________tan ⎝⎛⎭⎫-95π. 反思感悟 (1)运用正切函数单调性比较大小的方法 ①运用函数的周期性或诱导公式将角化到同一单调区间内. ②运用单调性比较大小关系.(2)求函数y =tan(ωx +φ)的单调区间的方法y =tan(ωx +φ)(ω>0)的单调区间的求法是把ωx +φ看成一个整体,解-π2+k π<ωx +φ<π2+k π,k ∈Z 即可.当ω<0时,先用诱导公式把ω化为正值再求单调区间. 跟踪训练2.求函数y =tan ⎝⎛⎭⎫π6-x 4的单调递减区间.探究三 正切函数图像与性质的综合应用 例3.设函数f (x )=tan ⎝⎛⎭⎫x 2-π3, (1)求函数f (x )的周期,对称中心. (2)作出函数f (x )在一个周期内的简图.反思感悟 解答正切函数图像与性质问题应注意的两点(1)对称性:正切函数图像的对称中心是⎝⎛⎭⎫k π2,0(k ∈Z ),不存在对称轴.(2)单调性:正切函数在每一个开区间⎝⎛⎭⎫-π2+k π,π2+k π(k ∈Z )上都是单调递增的,但不能说其在定义域上是递增的.跟踪训练3.画出函数y =|tan x |的图象,并根据图象判断其单调区间、奇偶性、周期性. 课堂小结 1.知识清单:(1)正切函数图像的画法. (2)正切函数的性质.2.方法归纳:三点两线法,整体代换法,换元法.3.常见误区:最小正周期T =π|ω|,在定义域内不单调,对称中心为⎝⎛⎭⎫k π2,0(k ∈Z ). 课后作业1.观察正切函数的图象,满足|tan x |≤1的x 取值范围是( ) A .[2k π-π4,2k π+π4],k ∈Z B .[k π,k π+π4],k ∈Z C .[k π-π4,k π+π4],k ∈Z D .[k π+π4,k π+3π4],k ∈Z 2.函数y =sin x +tan x -|sin x -tan x |在区间(π2,3π2)内的取值范围是( )A .(-∞,0]B .[0,+∞)C .[-2,0]D .[0,2] 3.已知y =tan 2x -2tan x +3,则它的最小值为________. 4.给出下列命题:①正切函数的图象的对称中心是唯一的;②y =|sin x |、y =|tan x |的周期分别为π、2π; ③若x 1>x 2,则sin x 1>sin x 2;④若f (x )是R 上的奇函数,它的最小正周期为T ,则f (-2T)=0; 其中正确命题的序号是____________. 5.若x ∈[-π3,π4],求函数y =tan 2x +2tan x +3的值域.6.求函数y=tan2x的定义域、值域和周期,并作出它在区间[-π,π]内的图象.参考答案教学知识梳理 知识点一 正切函数 唯一知识点二 正切函数的图像与性质探究一 正切函数的定义域、值域问题例1.解:要使函数y =2tan (2x -π4)有意义,则有2x -π4≠k π+π2,k ∈Z , 即x ≠21k π+3π8,k ∈Z ,所以函数y =2tan (2x -π4)的定义域为{x |x ≠21k π+3π8,k ∈Z }. 跟踪训练1.解:函数y =x tan +lg (1-tan x )有意义,则⎩⎨⎧>-≥0tan 10tan x x ,解得0≤tan x <1,结合正切函数的图象可得k π≤x <k π+π4,k ∈Z , 所以原函数的定义域为{x |k π≤x <k π+π4,k ∈Z }. 探究二 正切函数的单调性及其应用 例2.【答案】(1)⎣⎡⎦⎤-22-1,22+1 (2)>【解析】(1)函数y =sin x ,y =tan x 在x ∈⎣⎡⎦⎤-π4,π4内均是单调递增函数,∴y =sin x +tan x 在⎣⎡⎦⎤-π4,π4上是单调递增函数,∴函数y =sin x +tan x 的值域为⎣⎡⎦⎤-22-1,22+1.(2)∵tan ⎝⎛⎭⎫-74π=-tan ⎝⎛⎭⎫2π-π4=tan π4, tan ⎝⎛⎭⎫-95π=-tan ⎝⎛⎭⎫2π-π5=tan π5, 又0<π5<π4<π2,y =tan x 在⎝⎛⎭⎫0,π2内单调递增,∴tan π5<tan π4, ∴tan ⎝⎛⎭⎫-74π>tan ⎝⎛⎭⎫-95π. 跟踪训练2.解:y =tan ⎝⎛⎭⎫π6-x 4=-tan ⎝⎛⎭⎫x 4-π6. 由k π-π2<x 4-π6<k π+π2(k ∈Z ),得4k π-4π3<x <4k π+8π3(k ∈Z ).∵y =tan ⎝⎛⎭⎫x 4-π6在⎝⎛⎭⎫4k π-4π3,4k π+8π3(k ∈Z )内递增, ∴y =-tan ⎝⎛⎭⎫x 4-π6在⎝⎛⎭⎫4k π-4π3,4k π+8π3(k ∈Z )内递减,此即为原函数的单调递减区间. 探究三 正切函数图像与性质的综合应用 例3.解:(1)∵ω=12,∴周期T =πω=π12=2π.令x 2-π3=k π2(k ∈Z)得x =k π+2π3(k ∈Z ),∴f (x )的对称中心是⎝⎛⎭⎫k π+2π3,0(k ∈Z ). (2)令x 2-π3=0,则x =2π3.令x 2-π3=π2,则x =5π3.令x 2-π3=-π2,则x =-π3.∴函数y =tan ⎝⎛⎭⎫x 2-π3的图象与x 轴的一个交点坐标是⎝⎛⎭⎫2π3,0,在这个交点左、右两侧相邻的两条渐近线方程分别是x =-π3,x =5π3,从而得函数y =f (x )在一个周期⎝⎛⎭⎫-π3,5π3内的简图(如图).跟踪训练3.解:由y =|tan x |得,y =⎩⎨⎧tan x ,k π≤x <k π+π2(k ∈Z ),-tan x ,-π2+k π<x <k π(k ∈Z ),其图象如图所示.由图象可知,函数y =|tan x |是偶函数,单调递增区间为⎣⎡⎭⎫k π,k π+π2(k ∈Z ), 单调递减区间为⎝⎛⎦⎤-π2+k π,k π(k ∈Z ),周期为π. 课后作业 1.【答案】C【解析】结合正切函数的图象可以判断出来. 2.【答案】A【解析】由于y =⎩⎨⎧2tan x ,π2<x ≤π,2sin x ,π<x <3π2,当π2<x ≤π时,y ≤0;当π<x <3π2时,-2<y <0;综上,y ≤0. 3.【答案】2【解析】由于y =tan 2x -2tan x +3=(tan x -1)2+2,当tan x =1时,函数y =tan 2x -2tan x +3的最小值为2. 4.【答案】④【解析】结合正切函数的图象与性质知①是错误的,同时y =|tan x |的周期为π,即②也是错误的;结合正弦函数的图象与性质知是③错误的;由于f (x )是R 上的奇函数,则有f (0)=0,且有f (-2T )=-f (2T ),而由其最小正周期为T 知f (-2T )= f (2T ),则有f (-2T)=0.5.解:函数y =tan x 在(-π2,π2)这个周期内是单调递增的, 因而当x ∈[-π3,π4]时,y =tan x 的最小值在x =-π3取到,且最小值为tan (-π3)=-3, y =tan x 的最大值在x =π4取到,且最大值为tan π4=1, 又y =tan 2x +2tan x +3=(tan x +1)2+2,当tan x =-1时,函数y =tan 2x +2tan x +3取到最小值2;当tan x=1,函数y=tan2x+2tan x+3取到最大值6;故函数y=tan2x+2tan x+3的值域为[2,6].6.解:(1)要使函数y=tan2x有意义,必须且只须2x≠π2+kπ,k∈Z,即x≠π4+π2k,k∈Z,∴函数y=tan2x的定义域为{x∈R|x≠ππ42k+,k∈Z};(2)设t=2x,由x≠ππ42k+,k∈Z知t≠π2+kπ,k∈Z,∴y=tan t的值域为(-∞,+∞),即y=tan2x的值域为(-∞,+∞);(3)由tan2(x+π2)=tan(2x+π)=tan2x,∴y=tan2x的周期为π2;(4)函数y=tan2x在区间[-π,π]的图象如图:。

人教版高三数学教案5篇

人教版高三数学教案5篇

人教版高三数学教案5篇通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。

使学生善于从现实生活中数学的发现问题,解决问题,数学是每个学生的必修课,好的教师应当做好对应的数学教案。

通过本节学习,学生应当达到对数学理解有所提高,人教版高三数学教案1一、教材分析1、本节内容在全书及章节的地位:《函数的单调性》是必修1第一章第 3 节,高中数学《函数的单调性》说课稿教案模板是高考的重点考查内容之一,是函数的一个重要性质,在比较几个数的大小、求函数值域、对函数的定性分析以及与其他知识的综合上都有广泛的应用。

通过对这一节课的学习,可以让学生加深对函数的本质认识。

也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

2、教学目标:根据上述教材结构与内容分析,考虑到学生已有的认知水平我制定如下教学目标:基础知识目标:了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;能力训练目标:培养学生严密的.逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

重点:形成增(减)函数的形式化定义。

难点。

形成增减函数概念的过程中,如何从图像升降的直观认识过渡到函数增减数学符号语言表述;用定义证明函数的单调性。

为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、教法在教学中我使用启发式教学,在教师的引导下,创设情景,通过开放性问题的设置来启发学生思考,在思考中体会数学概念形成过程中所蕴涵的数学方法,三、学法倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力”。

数学作为基础教育的核心课程之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。

高考调研高中数学(人教A版必修一)备课资源:第1章+第3节+函数的基本性质(打包12份)1313 单


=(x1-x2)(
1 x1+
x2+1)<0.
∴f(x1)-f(x2)<0,f(x1)<f(x2).
∴f(x)= x+x在[2,+∞)上单调递增.
∴f(x)min=f(2)= 2+2.
课后巩固
1.已知函数f(x)=3x,x∈[1,2],则f(x)的最大值为( )
A.2
B.4
C.6
D.8
答案 C
2.已知函数f(x)=|x|,x∈[-1,3],则f(x)的最小值为( )
A.0
B.1
C.2
D.3
答案 A
3.函数y=x2-2x+2在[-2,2]上的最大值、最小值为( )
A.10,2
B.10,1
C.2,1
D.以上都不对
答案 B
4.函数y=2x2+2,x∈N*的最小值是________. 答案 4
解析 ∵x∈N*,∴x2≥1,∴y=2x2+2≥4, 即y=2x2+2在x∈N*上的最小值为4,此时x=1.
题型三 利用单调性求函数的最值 例4 求函数f(x)=x+4x在x∈[1,3]上的最大值与最小值.
【解析】 设1≤x1<x2≤3,
则f(x1)-f(x2)=x1-x2+
4(1-
4 x1x2
).又∵
x1<x2,∴x1-x2<0.
①当1≤x1<x2≤2时,1-x14x2<0.
A.f(-2),0 C.f(-2),2
B.0,2 D.f(2),2
【解析】 由函数最值的几何意义知,当x=-2时,有最小 值f(-2);当x=1时,有最大值2.
【答案】 C
题型二 二次函数的最值 例3 已知函数f(x)=x2-4x-4. (1)若函数定义域为[3,4],求函数的最值; (2)若函数定义域为[-3,4],求函数的最值. 【思路分析】 ①确定对称轴与抛物线的开口方向、作 图. ②在图像上标出定义域的位置. ③观察单调性写出最值.

(新教材学案)第3章3.23.2.1第1课时函数的单调性含答案

3.2函数的基本性质3.2.1单调性与最大(小)值第1课时函数的单调性学习任务核心素养1.理解函数的单调性及其几何意义,能运用函数图象理解和研究函数的单调性.(重点、难点)2.会用函数单调性的定义判断(或证明)一些函数的单调性.(难点)3.会求一些具体函数的单调区间.(重点)1.借助单调性的证明,培养逻辑推理素养.2.利用求单调区间及应用单调性解题,培养直观想象和数学运算素养.德国心理学家艾宾浩斯曾经对记忆保持量进行了系统的实验研究,并给出了类似下图所示的记忆规律.如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则不难看出,图中,y是x的函数,记这个函数为y=f(x).这个函数反映出记忆具有什么规律?我们用数学语言如何描述该规律?知识点1增函数与减函数的定义函数增函数减函数图示条件设函数f(x)的定义域为I,区间D⊆I:如果∀x1,x2∈D,当x1<x2时,都有f(x1)<f(x2)都有f(x1)>f(x2) 结论f(x)在区间D上单调递增f(x)在区间D上单调递减在增函数和减函数定义中,能否把“任意x1,x2∈I”改为“存在x1,x2∈I”?举例说明.[提示]不能.如对于函数y=-x2,存在-4<2,且-(-4)2<-22,但y=-x2不是增函数.增减函数定义中x1,x2的三个特征(1)任意性,即“任意取x1,x2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x1<x2;(3)属于同一个单调区间.1.思考辨析(正确的画“√”,错误的画“×”)(1)所有的函数在定义域上都具有单调性.()(2)若函数y=f(x)在定义域上有f(1)<f(2),则该函数是单调递增函数.()(3)若f(x)为R上的减函数,则f(0)>f(1).()[答案](1)×(2)×(3)√知识点2函数的单调性与单调区间如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.对函数单调性的理解(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开.(2)单调区间D⊆定义域I.(3)遵循最优原则,单调区间应尽可能大.2.函数y=f(x)的图象如图所示,其单调递增区间是()A.[-4,4]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4]C [由图可知,函数y =f (x )的单调递增区间为[-3,1],选C.]3.函数y =1x 的单调递减区间是________.(-∞,0)和(0,+∞) [结合y =1x 的图象可知,y =1x 的递减区间是(-∞,0)和(0,+∞).]类型1 函数单调性的判定与证明【例1】 (对接教材P 79例题)证明函数f (x )=x +1x 在区间(0,1)上是单调递减. [证明] 设x 1,x 2是区间(0,1)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭⎪⎫x 2+1x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-1x 1x 2=(x 1-x 2)(-1+x 1x 2)x 1x 2∵0<x 1<x 2<1,∴x 1-x 2<0,0<x 1x 2<1,则-1+x 1x 2<0, ∴(x 1-x 2)(-1+x 1x 2)x 1x 2>0,即f (x 1)>f (x 2),∴f (x )=x +1x 在区间(0,1)上是单调递减.利用定义证明函数单调性的步骤(1)取值:设x 1,x 2是该区间内的任意两个值,且x 1<x 2.(2)作差变形:作差f (x 1)-f (x 2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.(3)定号:确定f(x1)-f(x2)的符号.(4)结论:根据f(x1)-f(x2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.[跟进训练]1.试用函数单调性的定义证明:f(x)=2xx-1在区间(1,+∞)上单调递减.[证明]f(x)=2+2x-1,设x1>x2>1,则f(x1)-f(x2)=2x1-1-2x2-1=2(x2-x1)(x1-1)(x2-1),因为x1>x2>1,所以x2-x1<0,x1-1>0,x2-1>0,所以f(x1)<f(x2),所以f(x)在区间(1,+∞)上单调递减.类型2求函数的单调区间【例2】求下列函数的单调区间,并指出该函数的单调性.(1)f(x)=-1x;(2)f(x)=⎩⎨⎧2x+1,x≥1,5-x,x<1;(3)f(x)=-x2+2|x|+3.[解](1)函数f(x)=-1x的单调区间为(-∞,0),(0,+∞),其在(-∞,0),(0,+∞)上都是单调递增的.(2)当x≥1时,f(x)是增函数,当x<1时,f(x)是减函数,所以f(x)的单调区间为(-∞,1),[1,+∞),并且函数f(x)在区间(-∞,1)上是单调递减,在[1,+∞)上单调递增.(3)因为f (x )=-x 2+2|x |+3=⎩⎨⎧-x 2+2x +3,x ≥0,-x 2-2x +3,x <0.根据解析式可作出函数的图象如图所示,由图象可知, 函数f (x )的单调区间为(-∞,-1],(-1,0),[0,1),[1,+∞).f (x )在区间(-∞,-1],[0,1)上单调递增,在区间(-1,0),[1,+∞)上单调递减.求函数单调区间的方法(1)利用基本初等函数的单调性,如本例(1)和(2),其中分段函数的单调区间要根据函数的自变量的取值范围分段求解.(2)利用函数的图象,如本例(3).提醒:若所求出函数的单调增区间或单调减区间不唯一,函数的单调区间之间要用“,”隔开,如本例(3).[跟进训练]2.(1)根据如图所示,写出函数在每一单调区间上函数的单调性;(2)写出y =|x 2-2x -3|的单调区间.[解] (1)函数在[-1,0],[2,4]上单调递减,在[0,2],[4,5]上单调递增. (2)先画出f (x )=⎩⎨⎧x 2-2x -3,x <-1或x >3,-(x 2-2x -3),-1≤x ≤3的图象,如图.所以y=|x2-2x-3|的减区间为(-∞,-1],[1,3];增区间为[-1,1],[3,+∞).类型3函数单调性的应用【例3】(1)若函数f(x)=-x2-2(a+1)x+3在区间(-∞,3]上单调递增,则实数a的取值范围是________.(2)已知函数y=f(x)是(-∞,+∞)上的增函数,且f(2x-3)>f(5x-6),则实数x的取值范围为________.(1)决定二次函数单调性的因素有哪些?由此思考该因素与区间(-∞,3]存在怎样的数量关系?(2)若f(x)是定义域上的单调函数,且f(a)>f(b),由此我们能得出变量a,b 的大小关系吗,同样思考如何得出该例(2)中变量2x-3与5x-6的大小关系?(1)(-∞,-4](2)(-∞,1)[(1)∵f(x)=-x2-2(a+1)x+3的开口向下,要使f(x)在区间(-∞,3]上单调递增,只需-(a+1)≥3,即a≤-4.∴实数a的取值范围为(-∞,-4].(2)∵f(x)在(-∞,+∞)上是增函数,且f(2x-3)>f(5x-6),∴2x-3>5x-6,即x<1.∴实数x的取值范围为(-∞,1).]若本例(2)的函数f(x)在区间(0,+∞)上单调递减,求x的取值范围.[解]由题意可知,⎩⎨⎧2x -3>0,5x -6>0,2x -3<5x -6,解得x >32.∴x 的取值范围为⎝ ⎛⎭⎪⎫32,+∞.函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.[跟进训练]3.(1)若f (x )在R 上是减函数,则f (-1)与f (a 2+1)之间有( ) A .f (-1)≥f (a 2+1) B .f (-1)>f (a 2+1) C .f (-1)≤f (a 2+1)D .f (-1)<f (a 2+1)(2)若f (x )是在区间[0,+∞)上单调递增,则不等式f (x )<f (-2x +8)的解集是________.(1)B (2)⎣⎢⎡⎭⎪⎫0,83 [(1)∵a 2+1>-1,且f (x )为R 上的减函数,∴f (a 2+1)<f (-1).故选B.(2)∵f (x )是定义在区间[0,+∞)上单调递增,且f (x )<f (-2x +8),∴⎩⎨⎧x ≥0,-2x +8≥0,x <-2x +8,解得⎩⎪⎨⎪⎧x ≥0,x ≤4,x <83,即0≤x <83,所以不等式的解集为⎣⎢⎡⎭⎪⎫0,83.]1.(多选)如图是定义在区间[-5,5]上的函数y =f (x ),则下列关于函数f (x )的说法正确的是( )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上没有单调性ABD [由题图可知,f (x )在区间[-3,1],[4,5]上单调递减,单调区间不可以用并集“∪”连接,故C 错误,其余选项均正确.]2.下列函数中,在区间(0,+∞)上单调递减的是( ) A .y =-1x B .y =x C .y =x 2D .y =1-xD [函数y =1-x 在区间(0,+∞)上单调递减,其余函数在(0,+∞)上单调递增,故选D.]3.如果函数f (x )=x 2-2bx +2在区间[3,+∞)上单调递增,则b 的取值范围为( )A .b =3B .b ≥3C .b ≤3D .b ≠3C [函数f (x )=x 2-2bx +2的图象是开口向上,且以直线x =b 为对称轴的抛物线,若函数f (x )=x 2-2bx +2在区间[3,+∞)上单调递增,则b ≤3,故选C.] 4.若y =(2k -1)x +b 是R 上的减函数,则实数k 的取值范围为________. ⎝⎛⎭⎪⎫-∞,12 [由2k -1<0得k <12.] 5.已知f (x )是定义在R 上的增函数,且f (x 2-2)<f (-x ),则x 的取值范围是________.(-2,1) [∵f (x )是定义在R 上的增函数,且f (x 2-2)<f (-x ), ∴x 2-2<-x ,即x2+x-2<0,解得-2<x<1.∴x的取值范围是(-2,1).]回顾本节知识,自我完成以下问题:1.若x1,x2是区间D上任意实数,且(x1-x2)(f(x1)-f(x2))>0,能否判定f(x)在D上的单调性?[提示]能,增函数.2.到目前为止,判定函数单调性的方式有哪些?[提示]定义法、图象法和基本初等函数法.3.证明一个函数的单调性常有哪些步骤?[提示]一般遵循:设元、作差、变形、判号和下结论.4.在应用函数单调性解题时应注意什么?[提示]已知函数单调性求参数的范围时,要树立两种意识:一是等价转化意识,如f(x)在D上递增,则f(x1)<f(x2)⇔x1<x2.二是数形结合意识,如处理一(二)次函数及反比例函数中的含参数的范围问题.。

人教A版必修一第一章1.3.1 第1课时单调性与最大(小)值


k≠0)与一次函数(y= kx+b,k≠0)
k<0

R
反比例函数 (y=kx,k≠0)
k>0

k<0 (-∞,0)和 (0,+∞)
(-∞,0)和 (0,+∞)

二次函数 (y=ax2+bx+c,
a≠0)
a>0 a<0
[-2ba,+∞) (-∞,-2ba]
(-∞,-2ba] [-2ba,+∞)
• 1.函数y=f(x)在区间(a,b)上是减函数,x1,x2∈(a,b),
• 『规律方法』 利用函数的单调性解函数值的不等式就是 利用函数在某个区间内的单调性,去掉对应关系“f”,转
化为自变量的不等式,此时一定要注意自变量的限制条件, 以防出错.
• 〔跟踪练习3〕 • 已知函数g(x)是定义在R上为增函数,且g(t)>g(1-2t),求
实数t的取值范围.
[解析] ∵g(x)在R上为增函数,且g(t)>g(1-2t), ∴t>1-2t,∴t>13,即所求t的取值范围为(13,+∞).
• 『规律方法』 1.函数单调性的证明方法——定义法 • 利用定义法证明或判断函数单调性的步骤是:
• 2.用定义证明函数单调性时,作差f(x1)-f(x2)后,若f(x)为 多项式函数,则“合并同类项”,再因式分解;若f(x)是 分式函数,则“先通分”,再因式分解;若f(x)解析式是 根式,则先“分子有理化”再分解因式.
(2)设x1>x2>-1, 则x1-x2>0,x1+1>0, x2+1>0, y1-y2=x12+x11-x22+x21 =x12+x11-xx2+2 1>0, ∴y1>y2, ∴函数y=x+2x1在(-1,+∞)上为增函数.

人教版数学高一A版必修一学案 1.函数的最大(小)值

第2课时函数的最大(小)值学习目标 1.理解函数的最大(小)值的概念及其几何意义.2.会借助单调性求最值.3.掌握求二次函数在闭区间上的最值.知识点一函数的最大(小)值思考在下图表示的函数中,最大的函数值和最小的函数值分别是多少?1为什么不是最小值?答案最大的函数值为4,最小的函数值为2.1没有A中的元素与之对应,不是函数值.梳理一般地,设函数y=f(x)的定义域为I.如果存在实数M满足:(1)对于任意x∈I,都有f(x)≤M.(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最大值.如果存在实数M满足:(1)对于任意x∈I,都有f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最小值.知识点二函数的最大(小)值的几何意义思考函数y=x2,x∈[-1,1]的图象如下:试指出函数的最大值、最小值和相应的x的值.答案当x=±1时,y有最大值1,对应的点是图象中的最高点,当x=0时,y有最小值0,对应的点为图象中的最低点.梳理一般地,函数最大值对应图象中的最高点,最小值对应图象中的最低点,它们不一定只有一个.1.因为f(x)=x2+1≥0恒成立,所以f(x)的最小值为0.(×)2.f (x )=1x(x >0)的最小值为0.(×)3.函数f (x )取最大值时,对应的x 可能有无限多个.(√)4.如果f (x )的最大值、最小值分别为M ,m ,则f (x )的值域为[m ,M ].(×)类型一 借助单调性求最值 例1 已知函数f (x )=xx 2+1(x >0).(1)求证:f (x )在(0,1]上为增函数; (2)求函数f (x )的最大值和最小值. 考点 函数的最值及其几何意义 题点 由函数单调性求最值(1)证明 设x 1,x 2是区间(0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1(x 22+1)-x 2(x 21+1)(x 21+1)(x 22+1)=(x 2-x 1)(x 2x 1-1)(x 21+1)(x 22+1).当0<x 1<x 2≤1时,x 2-x 1>0,x 1x 2-1<0, ∴f (x 1)-f (x 2)<0,f (x 1)<f (x 2), ∴f (x )在(0,1]上单调递增.(2)解 当1≤x 1<x 2时,x 2-x 1>0,x 1x 2-1>0, f (x 1)-f (x 2)>0,f (x 1)>f (x 2), ∴f (x )在[1,+∞)上单调递减.∴结合(1)(2)可知,f (x )max =f (1)=12,无最小值.反思与感悟 (1)若函数y =f (x )在区间[a ,b ]上单调递增,则f (x )的最大值为f (b ),最小值为f (a ).(2)若函数y =f (x )在区间[a ,b ]上单调递减,则f (x )的最大值为f (a ),最小值为f (b ). (3)若函数y =f (x )有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.(4)如果函数定义域为开区间,则不但要考虑函数在该区间上的单调性,还要考虑端点处的函数值或者发展趋势. 跟踪训练1 已知函数f (x )=2x -1(x ∈[2,6]),求函数的最大值和最小值. 考点 函数的最值及其几何意义 题点 由函数单调性求最值解 设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2, 则f (x 1)-f (x 2)=2x 1-1-2x 2-1 =2[(x 2-1)-(x 1-1)](x 1-1)(x 2-1)=2(x 2-x 1)(x 1-1)(x 2-1).由2≤x 1<x 2≤6,得x 2-x 1>0,(x 1-1)(x 2-1)>0, 于是f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2).所以,函数f (x )=2x -1在区间[2,6]上是减函数.因此,函数f (x )=2x -1在区间[2,6]的两个端点处分别取得最大值与最小值,即在x =2时取得最大值,最大值是2, 在x =6时取得最小值,最小值是25.类型二 求二次函数的最值例2 (1)已知函数f (x )=x 2-2x -3,若x ∈[0,2],求函数f (x )的最值; (2)已知函数f (x )=x 2-2x -3,若x ∈[t ,t +2],求函数f (x )的最值; (3)已知函数f (x )=x -2x -3,求函数f (x )的最值. 考点 函数的最值及其几何意义 题点 二次函数最值解 (1)∵函数f (x )=x 2-2x -3开口向上,对称轴x =1,∴f (x )在[0,1]上单调递减,在[1,2]上单调递增,且f (0)=f (2). ∴f (x )max =f (0)=f (2)=-3,f (x )min =f (1)=-4. (2)∵对称轴x =1, ①当1≥t +2即t ≤-1时, f (x )max =f (t )=t 2-2t -3,f (x )min =f (t +2)=(t +2)2-2(t +2)-3=t 2+2t -3. ②当t +t +22≤1<t +2,即-1<t ≤0时,f (x )max =f (t )=t 2-2t -3, f (x )min =f (1)=-4.③当t ≤1<t +t +22,即0<t ≤1时,f (x )max =f (t +2)=t 2+2t -3, f (x )min =f (1)=-4.④当1<t ,即t >1时,f (x )max =f (t +2)=t 2+2t -3, f (x )min =f (t )=t 2-2t -3.设函数f (x )的最大值为g (t ),最小值为φ(t ),则有g (t )=⎩⎪⎨⎪⎧t 2-2t -3,t ≤0,t 2+2t -3,t >0,φ(t )=⎩⎪⎨⎪⎧t 2+2t -3,t ≤-1,-4,-1<t ≤1,t 2-2t -3,t >1.(3)设x =t (t ≥0),则x -2x -3=t 2-2t -3.由(1)知y =t 2-2t -3(t ≥0)在[0,1]上单调递减,在[1,+∞)上单调递增. ∴当t =1即x =1时,f (x )min =-4,无最大值.反思与感悟 (1)二次函数在指定区间上的最值与二次函数的开口、对称轴有关,求解时要注意这两个因素.(2)图象直观,便于分析、理解;配方法说理更严谨,一般用于解答题. 跟踪训练2 (1)已知函数f (x )=x 4-2x 2-3,求函数f (x )的最值; (2)求二次函数f (x )=x 2-2ax +2在[2,4]上的最小值;(3)求函数f (x )=x 2-4x -4在闭区间[t ,t +1](t ∈R )上的最小值. 考点 函数的最值及其几何意义 题点 二次函数最值解 (1)设x 2=t (t ≥0),则x 4-2x 2-3=t 2-2t -3.y =t 2-2t -3(t ≥0)在[0,1]上单调递减,在[1,+∞)上单调递增. ∴当t =1即x =±1时,f (x )min =-4,无最大值. (2)∵函数图象的对称轴是x =a , ∴当a <2时,f (x )在[2,4]上是增函数, ∴f (x )min =f (2)=6-4a .当a >4时,f (x )在[2,4]上是减函数, ∴f (x )min =f (4)=18-8a .当2≤a ≤4时,f (x )min =f (a )=2-a 2.∴f (x )min=⎩⎪⎨⎪⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.(3)f (x )=x 2-4x -4=(x -2)2-8. 设f (x )在[t ,t +1]上的最小值为g (t ). 当t >2时,f (x )在[t ,t +1]上是增函数, ∴g (t )=f (t )=t 2-4t -4;当t ≤2≤t +1,即1≤t ≤2时,g (t )=f (2)=-8; 当t +1<2即t <1时,f (x )在[t ,t +1]上是减函数, ∴g (t )=f (t +1)=t 2-2t -7.综上,g(t)=⎩⎪⎨⎪⎧t2-2t-7,t<1,-8,1≤t≤2,t2-4t-4,t>2.类型三借助图象求最值例3(2017·昌平区检测)若x∈R,f(x)是y=2-x2,y=x这两个函数中的较小者,则f(x)的最大值为()A.2 B.1C.-1 D.无最大值考点函数的最值及其几何意义题点由函数图象求最值答案 B解析在同一坐标系中画出函数y=2-x2,y=x的图象,如图:根据题意,图中实线部分即为函数f(x)的图象.所以当x=1时,f(x)max=1.反思与感悟借助图象求最值注意两点(1)作图要准确;(2)最值的几何意义要理解.跟踪训练3已知函数f(x)=⎩⎪⎨⎪⎧-x,-1≤x≤0,x2,0<x≤1,x,1<x≤2,则f(x)的最大值为________.考点函数的最值及其几何意义题点由函数图象求最值答案 2解析f(x)的图象如图:则f(x)的最大值为f(2)=2.类型四 函数最值的应用例4 已知x 2-x +a >0对任意x ∈(0,+∞)恒成立,求实数a 的取值范围. 考点 函数的最值及其几何意义 题点 含参二次函数最值 解 方法一 令y =x 2-x +a ,要使x 2-x +a >0对任意x ∈(0,+∞)恒成立, 只需y min =4a -14>0,解得a >14. ∴实数a 的取值范围是⎝⎛⎭⎫14,+∞. 方法二 x 2-x +a >0可化为a >-x 2+x . 要使a >-x 2+x 对任意x ∈(0,+∞)恒成立, 只需a >(-x 2+x )max , 又(-x 2+x )max =14,∴a >14.∴实数a 的取值范围是⎝⎛⎭⎫14, +∞. 引申探究把本例中“x ∈(0,+∞)”改为“x ∈⎝⎛⎭⎫12,+∞”,再求a 的取值范围. 解 f (x )=-x 2+x 在⎝⎛⎭⎫12,+∞上为减函数, ∴f (x )的值域为⎝⎛⎭⎫-∞,14, 要使a >-x 2+x 对任意x ∈⎝⎛⎭⎫12,+∞恒成立, 只需a ≥14,∴a 的取值范围是⎣⎡⎭⎫14,+∞. 反思与感悟 恒成立的不等式问题,任意x ∈D ,f (x )>a 恒成立,一般转化为最值问题:f (x )min >a 来解决.任意x ∈D ,f (x )<a 恒成立一般可转化为f (x )max <a .跟踪训练4 已知ax 2+x ≤1对任意x ∈(0,1]恒成立,求实数a 的取值范围. 考点 函数的最值及其几何意义 题点 含参二次函数最值解 ∵x >0,∴ax 2+x ≤1可化为a ≤1x 2-1x.要使a ≤1x 2-1x 对任意x ∈(0,1]恒成立,只需a ≤⎝⎛⎭⎫1x 2-1x min .设t =1x ,∵x ∈(0,1],∴t ≥1.1x 2-1x=t 2-t =⎝⎛⎭⎫t -122-14. 当t =1时,(t 2-t )min =0,即当x =1时,⎝⎛⎭⎫1x 2-1x min =0, ∴a ≤0.∴实数a 的取值范围是(-∞,0].1.函数y =-x +1在区间⎣⎡⎦⎤12,2上的最大值是( ) A .-12 B .-1 C.12 D .3考点 函数的最值及其几何意义题点 利用一次函数、分式函数单调性求最值 答案 C2.函数f (x )=1x 在[1,+∞)上( )A .有最大值无最小值B .有最小值无最大值C .有最大值也有最小值D .无最大值也无最小值 考点 函数的最值及其几何意义题点 利用一次函数、分式函数单调性求最值 答案 A3.函数f (x )=x 2,x ∈[-2,1]的最大值、最小值分别为( ) A .4,1 B .4,0 C .1,0D .以上都不对考点 函数的最值及其几何意义 题点 二次函数最值 答案 B4.已知函数f (x )=⎩⎪⎨⎪⎧x +7,-1≤x <1,2x +6,1≤x ≤2,则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对考点 函数的最值及其几何意义 题点 分段函数最值 答案 A5.若不等式-x +a +1≥0对一切x ∈⎝⎛⎦⎤0,12成立,则a 的最小值为( ) A .0 B .-2 C .-52D .-12考点 函数的最值及其几何意义题点 利用一次函数、分式函数单调性求最值 答案 D1.函数的最值与值域、单调性之间的联系(1)对一个函数来说,其值域是确定的,但它不一定有最值,如函数y =1x .如果有最值,则最值一定是值域中的一个元素.(2)若函数f (x )在闭区间[a ,b ]上单调,则f (x )的最值必在区间端点处取得.即最大值是f (a )或f (b ),最小值是f (b )或f (a ). 2.二次函数在闭区间上的最值探求二次函数在给定区间上的最值问题,一般要先作出y =f (x )的草图,然后根据图象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处取得.3.许多数学问题如不等式证明,恒成立的不等式,图象与y =a (a 为常数)的交点问题等,都与函数最值有关,所以会求函数最值是一种基础技能.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案5 函数的单调性与最值 导学目标: 1.理解函数的单调性、最大值、最小值及其几何意义.2.会用定义判断函数的单调性,会求函数的单调区间及会用单调性求函数的最值.

自主梳理 1.单调性 (1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2,当x1f(x2)),那么就说f(x)在区间D上是______________.

(2)单调性的定义的等价形式:设x1,x2∈[a,b],那么(x1-x2)(f(x1)-f(x2))>0⇔fx1-fx2x1-x2>0

⇔f(x)在[a,b]上是________;(x1-x2)(f(x1)-f(x2))<0⇔fx1-fx2x1-x2<0⇔f(x)在[a,b]上是________. (3)单调区间:如果函数y=f(x)在某个区间上是增函数或减函数,那么说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的__________.

(4)函数y=x+ax(a>0)在 (-∞,-a),(a,+∞)上是单调________;在(-a,0),

(0,a)上是单调______________;函数y=x+ax(a<0)在______________上单调递增. 2.最值 一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≤M(f(x)≥M);②存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的____________. 自我检测

1.(2017·杭州模拟)若函数y=ax与y=-bx在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是 ( ) A.增函数 B.减函数 C.先增后减 D.先减后增 2.设f(x)是(-∞,+∞)上的增函数,a为实数,则有 ( ) A.f(a)C.f(a2+a)f(a) 3.下列函数在(0,1)上是增函数的是 ( )

A.y=1-2x B.y=x-1 C.y=-x2+2x D.y=5 4.(2017·合肥月考)设(a,b),(c,d)都是函数f(x)的单调增区间,且x1∈(a,b),x2∈(c,d),x1A.f(x1)f(x2) C.f(x1)=f(x2) D.不能确定 5.当x∈[0,5]时,函数f(x)=3x2-4x+c的值域为 ( )

A.[c,55+c] B.[-43+c,c]

C.[-43+c,55+c] D.[c,20+c] 探究点一 函数单调性的判定及证明 例1 设函数f(x)=x+ax+b(a>b>0),求f(x)的单调区间,并说明f(x)在其单调区间上的单调性.

变式迁移1 已知f(x)是定义在R上的增函数,对x∈R有f(x)>0,且f(5)=1,设F(x)=f(x)+1fx,讨论F(x)的单调性,并证明你的结论.

探究点二 函数的单调性与最值 例2 (2017·烟台模拟)已知函数f(x)=x2+2x+ax,x∈[1,+∞). (1)当a=12时,求函数f(x)的最小值; (2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.

变式迁移2 已知函数f(x)=x-ax+a2在(1,+∞)上是增函数,求实数a的取值范围. 探究点三 抽象函数的单调性 例3 (2017·厦门模拟)已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当

x>0时,f(x)<0,f(1)=-23. (1)求证:f(x)在R上是减函数; (2)求f(x)在[-3,3]上的最大值和最小值.

变式迁移3 已知定义在区间(0,+∞)上的函数f(x)满足f(x1x2)=f(x1)-f(x2),且当x>1时,f(x)<0. (1)求f(1)的值; (2)判断f(x)的单调性; (3)若f(3)=-1,解不等式f(|x|)<-2. 分类讨论及数形结合思想 例 (12分)求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值. 【答题模板】

解 f(x)=(x-a)2-1-a2,对称轴为x=a.

(1) 当a<0时,由图①可知,f(x)min=f(0)=-1,f(x)max

=f(2)=3-4a.[3分]

(2)当0≤a<1时,由图②可知,f(x)min=f(a)=-1-a2,f(x)max

=f(2)=3-4a.[6分]

(3)当1min=f(a)=-1-a2,f(x)max

=f(0)=-1.[9分]

(4)当a>2时,由图④可知,f(x)min=f(2)=3-4a,f(x)max

=f(0)=-1.

综上,(1)当a<0时,f(x)min=-1,f(x)max=3-4a; (2)当0≤a<1时,f(x)min=-1-a2,f(x)max

=3-4a;

(3)当1min=-1-a2,f(x)max

=-1;

(4)当a>2时,f(x)min=3-4a,f(x)max

=-1.[12分]

【突破思维障碍】 (1)二次函数的单调区间是由图象的对称轴确定的.故只需确定对称轴与区间的关系.由于对称轴是x=a,而a的取值不定,从而导致了分类讨论. (2)不是应该分a<0,0≤a≤2,a>2三种情况讨论吗?为什么成了四种情况?这是由于抛物线的对称轴在区间[0,2]所对应的区域时,最小值是在顶点处取得,但最大值却有可能是f(0),也有可能是f(2).

1.函数的单调性的判定与单调区间的确定常用方法有: (1)定义法;(2)导数法;(3)图象法;(4)单调性的运算性质. 2.若函数f(x),g(x)在区间D上具有单调性,则在区间D上具有以下性质: (1)f(x)与f(x)+C具有相同的单调性. (2)f(x)与af(x),当a>0时,具有相同的单调性,当a<0时,具有相反的单调性. (3)当f(x)恒不等于零时,f(x)与1fx具有相反的单调性.

(4)当f(x),g(x)都是增(减)函数时,则f(x)+g(x)是增(减)函数. (5)当f(x),g(x)都是增(减)函数时,则f(x)·g(x)当两者都恒大于零时,是增(减)函数;当两者都恒小于零时,是减(增)函数. (满分:75分) 一、选择题(每小题5分,共25分) 1.(2017·泉州模拟)“a=1”是“函数f(x)=x2-2ax+3在区间[1,+∞)上为增函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件

2.(2017·天津)已知函数f(x)= x2+4x, x≥0,4x-x2, x<0,若f(2-a2)>f(a),则实数a的取值范围是 ( ) A.(-∞,-1)∪(2,+∞) B.(-1,2) C.(-2,1) D.(-∞,-2)∪(1,+∞) 3.(2017·宁夏,海南)用min{a,b,c}表示a,b,c三个数中的最小值.设f(x)=min{2x,x+2,10-x}(x≥0),则f(x)的最大值为 ( ) A.4 B.5 C.6 D.7

4.(2017·丹东月考)若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则a的取值范围是 ( ) A.(-1,0)∪(0,1) B.(-1,0)∪(0,1] C.(0,1) D.(0,1] 5.(2017·葫芦岛模拟)已知定义在R上的增函数f(x),满足f(-x)+f(x)=0,x1,x2,x3

∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值 ( )

A.一定大于0 B.一定小于0 C.等于0 D.正负都有可能 题号 1 2 3 4 5 答案 二、填空题(每小题4分,共12分) 6.函数y=-(x-3)|x|的递增区间是________. 7.设f(x)是增函数,则下列结论一定正确的是________(填序号). ①y=[f(x)]2是增函数;

②y=1fx是减函数; ③y=-f(x)是减函数; ④y=|f(x)|是增函数.

8.设0三、解答题(共38分) 9.(12分)(2017·湖州模拟)已知函数f(x)=a-1|x|. (1)求证:函数y=f(x)在(0,+∞)上是增函数; (2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围. 10.(12分)已知f(x)=x2+ax+3-a,若x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围. 11.(14分)(2017·鞍山模拟)已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈

[-1,1],a+b≠0时,有fa+fba+b>0成立.

(1)判断f(x)在[-1,1]上的单调性,并证明它; (2)解不等式:f(x+12)(3)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.

答案 自主梳理 1.(1)增函数(减函数) (2)增函数 减函数 (3)单调区间 (4)递增 递减 (-∞,0),(0,+∞) 2.最大(小)值 自我检测

1.B [由已知得a<0,b<0.所以二次函数对称轴为直线x=-b2a<0,且图象开口向下.] 2.D [∵a2+1>a,f(x)在R上单调递增, ∴f(a2+1)>f(a).] 3.C [常数函数不具有单调性.] 4.D [在本题中,x1,x2不在同一单调区间内,故无法比较f(x1)与f(x2

)的大小.]

5.C [∵f(x)=3(x-23)2-43+c,x∈[0,5],∴当x=23时,f(x)min=-43+c;当x=5时,f(x)max

=55+c.] 课堂活动区 例1 解题导引 对于给出具体解析式的函数,判断或证明其在某区间上的单调性问题,可以结合定义(基本步骤为:取点,作差或作商,变形,判断)来求解.可导函数则可以利用导数求解.有些函数可以转化为两个或多个基本初等函数,利用其单调性可以方便求解. 解 在定义域内任取x1,x2,且使x12

则Δx=x2-x1>0,

Δy=f(x2)-f(x1)=x2+ax2+b-x1+ax1+b

=x2+ax1+b-x2+bx1

+a

x1+bx2

+b

=b-ax2-x1x1+bx2

+b

.

相关文档
最新文档