2019年贵州省贵阳市中考数学试卷以及逐题解析版
2019年贵州省贵阳市中考数学模拟试卷(解析版)

2019年贵州省贵阳市中考数学模拟试卷(4月份)一、选择题(共10小题,每小题3分,共30分)1.在﹣2,﹣1,0)A B.0C.﹣1D.﹣22.如图,数轴上关于x的不等式的解集是()A.x>1B.x<1C.x≥1D.x≤13.如图是一个正三棱柱的三视图,则这个三棱柱摆放方式正确的是()A BC D4.一个不透明的袋子中装有除颜色外其余均相同的2个白球,n个黑球.随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.大量重复试验后,发现摸出白球的频率稳定在0.2附近,则n的值为()A.2B.4C.8D.105.如图所示,AD、BF、CE分别是△ABC的三条高线,则下列△ABC的面积表述正确的是()A AB•BFB AB•CEC BFD AC•CE6.若关于x,y a+4b的值为()A B C.1D.37.某空气检测部门收集了贵阳市2018年1月至6月的空气质量数据,并绘制成了折线统计图,如图所示,下列叙述正确的是()A.空气质量为“优”的天数最多的是5月B.空气质量为“良”的天数最少的是3月C.空气质量为“良”的天数1月至3月呈下降趋势,3月至4月呈上升趋势D.空气质量为“轻度污染”的天数波动最大8.如图,在▱ABCD中,以点A为圆心,以适当长度为半径作弧分别交AB、AD于点E、F,再分别以点E、F为圆心,大于EF一半的长度为半径作弧,两弧交于一点H,连接AH并延长交DC于点G,若AB=5,AD=4,则CG的长为()A.1B.2C.3D.49.已知二次函数y=x2﹣2bx(b为常数),图象上有A、B两点,横坐标分别是﹣1,4,且点A到对称轴的距离大于点B到对称轴的距离,则b的值可能是()A.﹣2B.1C D10.如图,点D是△ABC边AC上的中点,连接BD,将△BCD沿BD折叠,使得点C落在点E处,且BE交AC于点F,若S△ABF =S△BDF,∠BDC=130°,则∠A的度数为()A.50°B.80°C.96°D.100°二、填空题(每题4分,共20分)11.(4的结果是.12.(4分)如图,欢欢从A点出发前进5m,向左转30°,再前进5m,又向左转30°,…,这样一直走下去,他第一次回到出发点A时,共走了m.13.(4分)欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”.如图所示,可见卖油翁的技艺之高超,若铜钱直径为4cm,中间有边长为1cm的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入口中的概率是.14.(4分)在边长为a的正方形ABCD中,分别以A、B为圆心,以a为半径作弧交对角线于F、E与对角线所围成的阴影部分的周长为15.(4分)如图,点A、B是正比例函数y=k1x(k1<0)与反比例函数y段AB为边长作等边三角形ABC,此时点C正好落在反比例函数yx>0)图象上,则k2的值为三、解答题(本大题10小题,共100分)16.(8分)现有一块宽为a(a>2),长是宽的2倍的矩形空地,想采取下列两种方案进行改造.方案一:如图①,在矩形内预留一块宽为1,长为2的小矩形空地,剩下部分(阴影部分)进行绿化,记绿化面积为S1;方案二:如图②,在矩形内部四周预留宽均为1的小路,剩下部分(阴影部分)进行绿化,记绿化面积为S2;(1)请用含a的代数式表示S1和S2;(2)当a=4时,比较哪一种方案的绿化面积大?17.(10分)为了实现伟大的强国复兴梦,全社会都在开展“扫黑除恶”专项斗争,某区为了解各学校老师对“扫黑除恶”应知应会知识的掌握情况,对甲、乙两个学校各180名老师进行了测试,从中各随机抽取30名教师的成绩(百分制),并对成绩(单位:分)进行整理、描述和分析,给出了部分成绩信息.甲校参与测试的老师成绩在96≤x<98这一组的数据是:96,96.5,97,97.5,97,96.5,97.5,96,96.5,96.5甲、乙两校参与测试的老师成绩的平均数平均数、中位数、众数如下表:根据以上信息,回答下列问题: (1)m= ;(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则在各自学校参与测试老师中成绩的名次相比较更靠前的是(填“王”或“李”)老师,请写出理由; (3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.18.(8分)如图,将边长为6cm 的正方形纸片ABCD ,剪去图中阴影部分的四个全等的直角三角形,再沿图中的虚线折起,可以得到一个长方体盒子,(A 、B 、C 、D 正好重合于上底面一点,且AE =BF ),若所得到的长方体盒子的表面积为11cm 2,求线段AE 的长.19.(10分)在学习了反比例函数后,小颖根据学习经验,对函数y 了探究,下面是小颖的探究过程,请补充完整: (1)函数y x 的取值范围是 ;(2)下表是函数中y 与x 的几组对应值:在所给的平面直角坐标系中,已经描出了上表中部分以各组对应值为坐标的点.请描出上表中其余以各组对应值为坐标的点,根据描出的点画出该函数的图象;(3)结合函数图象,写出一条关于这个函数的性质:.20.(10分)2018年12月1日,贵阳地铁一号线正式开通,标志着贵阳中心城区正式步入地铁时代,为市民的出行带来了便捷.如图是贵阳地铁一号线路图(部分),菁菁与琪琪随机从这几站购票出发.(1)菁菁正好选择沙冲路站出发的概率为;(2)用列表或画树状图的方法,求菁菁与琪琪出发的站恰好相邻的概率.21.(10分)如图,在菱形ABCD中,∠ADE、∠CDF分别交BC、AB于点E、F,DF交对角线AC于点M,且∠ADE=∠CDF.(1)求证:CE=AF;(2)连接ME AF=2,求ME的长.22.(10分)古代为了保护家园,在城池的四周修护护城河,为了方便交通,在护城河上安装了吊桥如图①所示,图②是图①的平面图,其中BD为城墙,AB为桥,AD为吊绳,当收紧吊绳时,桥AB运动到CB处,若DB⊥AB,AB=8m,∠DCB=37°,∠DBC=30°,求此时CD的长度.(结果保留小数点后一位)(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin23°≈0.39,cos23°≈0.92,tan23°≈0.42,1.73)23.(10分)如图①,将一块含30°角的三角板和一个量角器拼在一起,如图②是拼接示意图,三角板斜边AB与量角器所在圆的直径MN重合且∠CAB=30°,其量角器最外缘的读数是从N 点开始(即N点的读数为0),现有射线CP绕点C从CA的位置开始按顺时针方向以每秒2度的速度旋转到CB位置,在旋转过程中,射线CP与量角器的半圆弧交于点E.(1)当旋转7.5秒时,连结BE,E点处量角器上的读数为度;(2)在(1)的条件下求证BE=CE;(3)设旋转x秒后,E点处量角器上的读数为y度,写出y与x的函数表达式.24.(12分)已知在平面直角坐标系中,二次函数y=x2+bx+c经过点A(2,﹣2),C(0,﹣2),顶点为B.(1)求二次函数的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点B下方,设它的纵坐标为m,连接AM,用含m的代数式表示∠AMB的正切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点D落在x轴上,原抛物线上一点P平移后的对应点为Q,如果∠OQP=∠OPQ,试求点Q的坐标.25.(12分)如图①,已知AC=BC,AC⊥BC,直线MN经过点B,过点A作AD⊥MN,垂足为D,连接CD.(1)动手操作:根据题意,请利用尺规将图①补充完整;(保留作图痕迹,不写作法)(2)探索证明:在补充完成的图①中,猜想CD、BD与AD之间的数量关系,并说明理由;(3)探索拓广:一天小明一家在某公园游玩时走散了,电话联系后得知,三人的位置如图②,爸爸在A处,妈妈在C处,小明在D处,B为公园大门口,若B、D在直线MN上,且AC⊥BC,AD⊥MN,AC=BC,AD=100m,CD=40m,求出小明到公园门口的距离BD的长度.2019年贵州省贵阳市中考数学模拟试卷(4月份)参考答案与试题解析一、1.【分析】根据正数的定义即可判断.【解答】解:在﹣2,﹣1,0故选:A.【点评】本题考查正数和负数,解题的关键是熟练掌握基本概念,属于中考基础题.2.【分析】根据一元一次不等式解集在数轴上的表示方法可知,不等式的解集是1的左边部分(含端点).【解答】解:由数轴可得:关于x的不等式组的解集是:x≤1.故选:D.【点评】本题考查了在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.3.【分析】各个选项的图从正、上和左面看得到的三视图形,然后与已知三视图比较即可.【解答】解:B选项从正面看有1个长方形,中间有1条虚棱;从上面看有一个三角形;从左面看有1个长方形.故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.4.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:依题意有:=0.2,解得:n=8.故选:C.【点评】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A5.【分析】根据三角形面积公式以及三角形的高的定义即可求解.【解答】解:∵AD、BF、CE分别是△ABC的三条高线,∴求△ABC的面积正确的公式是S•AD•BF•CE.△ABC故选:B.【点评】考查了三角形的高的定义,三角形的面积公式,关键是熟练掌握三角形面积公式.6.【分析】方程组利用代入消元法求出解,然后把a、b的值代入即可求解.【解答】由①得,y=1﹣2x③,把③代入②得,﹣x+3(1﹣2x)=2③∴a+4b.故选:D.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.【分析】利用折线统计图进行分析,即可判断.【解答】解:空气质量为“优”的天数最多的是6月;空气质量为“良”的天数最少的是6月;空气质量为“良”的天数1月至3月呈下降趋势,3月至4月呈上升趋势,4月至6月呈下降趋势;空气质量为“轻度污染”的天数波动最小.故选:C.【点评】本题主要考查折线统计图,解题的关键是从折线统计图找到解题所需数据和变化情况.8.【分析】根据作图过程可得得AG平分∠DAB,再根据角平分线的性质和平行四边形的性质可证明∠DAG=∠DGA,进而得到AD=DG,即可求出CG.【解答】解:根据作图的方法可得AG平分∠DAB,∵AG平分∠DAB,∴∠DAG=∠BAG,∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB=5,∴∠DGA=∠BAG,∴∠DAG=∠DGA,∴AD=DG,∵AD=4,∴DG=4,∴CG=CD﹣DG=5﹣4=1,故选:A.【点评】此题主要考查了平行四边形的性质、角平分线的作法、平行线的性质;熟记平行四边形的性质是解决问题的关键关键.9.【分析】解法一:特殊值法,将ABCD四个选项依次代入,计算A到对称轴的距离与点B到对称轴的距离,排除即可;解法二:x=﹣1时,y=1+2b,x=4时,y=16﹣8b,因为点A到对称轴的距离大于点B到对称轴的距离,所以1+2b>16﹣8b,解得b【解答】解:解法一:二次函数y=x2﹣2bx对称轴为直线x b,A.若b=﹣2时,二次函数对称轴为直线x=﹣2,点A到对称轴距离|﹣1﹣(﹣2)|=1,点B 到对称轴距离|4﹣(﹣2)|=6,A错误;B.若b=1时,二次函数对称轴为直线x=1,点A到对称轴距离|﹣1﹣1|=2,点B到对称轴距离|4﹣1|=3,B错误;C.若b时,二次函数对称轴为直线x A到对称轴距离|﹣1B到对称轴距离|4C错误;D.若b x点A到对称轴距离|﹣1B到对称轴距离|4D正确;故选D.解法二:x=﹣1时,y=1+2b,x=4时,y=16﹣8b,∵点A 到对称轴的距离大于点B 到对称轴的距离,∴1+2b >16﹣8b ,∴b故选:D .【点评】本题考查了二次函数的性质,熟练掌握二次函数图象的性质是解题的关键.10.【分析】延长ED 交BC 于G ,点D 是△ABC 边AC 上的中点,得出S △ABD =S △CBD ,进而得出S △ABF =S △EDF △ABD △BDC ,易证得△CDG ≌△EDF (AAS ),得出S △CDG =S △EDF ,DG=DF ,从而证得DG 是三角形的中位线,即可证得 AB =AD ,根据三角形内角和定理和三角形外角的性质求得结果.【解答】解:延长ED 交BC 于G ,∵点D 是△ABC 边AC 上的中点,∴S △ABD =S △CBD∵将△BCD 沿BD 折叠,使得点C 落在点E 处,∴CD =ED ,∠C =∠E ,S △BDC =S △BDE ,∴S △ABD =S △BDE ,∵S △ABF =S △BDF ,∴S △ABF =S △EDF △ABD △BDC ,在△CDG 和△EDF 中∴△CDG ≌△EDF (AAS ),∴S △CDG =S △EDF ,DG =DF ,∴S △ABF =S △CDG △BDC ,∴BG =GC ,∵AD =CD ,∴DG ∥AB ,DG , ∴AB =AD ,∴∠ABD=∠ADB,∵∠BDC=130°,∴∠ADB=180°﹣130°=50°,∴∠A=180°﹣2×50°=80°,故选:B.【点评】本题考查了三角形的面积,三角形全等的判定和性质,三角形中位线的判定和性质,等腰三角形的判定和性质,证得AB=AD是解题的关键.二、填空题(每题4分,共20分)11.【分析】将分子、分母因式分解并进行约分.【解答】【点评】解答此类题一定要熟练掌握分式的基本性质:分式的分子和分母都乘以或都除以同一个不为0的数或整式,分式的值不变.12.【分析】根据题意可得他走过的图形是正多边形,利用多边形的外角和除以外角度数可得边数,然后再计算正多边形的周长即可.【解答】解:∵小明每次都是沿直线前进5米后向左转30度,∴他走过的图形是正多边形,∴边数n=360÷30=12,∴他第一次回到出发点A时,一共走了12×5=60(米).故答案为:60【点评】此题主要考查了多边形的外角,关键是掌握正多边形的外角和除以外角度数可得边数.13.【分析】分别求出铜钱的面积和正方形小孔的面积,由几何概率公式即可得出结果.【解答】解:∵直径为4cm的铜钱的面积=π×22=4π,边长为1cm的正方形小孔的面积=1×1=1,【点评】本题考查了几何概率公式、圆的面积公式、正方形面积公式,熟记概率公式,求出圆面积和正方形面积是解题关键.14.【分析】由题意得:BE=AF=AB=a,由正方形的性质得出∠ABO=∠BAO=45°,代入弧长公式计算即可得出结果.【解答】解:由题意得:BE=AF=AB=a,∵四边形ABCD是正方形,∴∠ABO=∠BAO=45°,AF+BE a+a+22a,故答案为:2a.【点评】本题考查了正方形的性质以及弧长公式;熟练掌握正方形的性质和弧长公式,弄清阴影部分的组成是解题的关键.15.【分析】连接OC,过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出△AOE∽△COF,根据相似三角形的性质得出再由tan∠CAB可得出CF•OF=6,由此即可得出结论.【解答】解:连接OC,过点A作AE⊥y轴于点E,过点C作CF⊥x轴于点F,如图所示.由点A、B是正比例函数y=k1x(k1<0)与反比例函数y∴AO=BO.又∵△ABC是等边三角形,∴CO⊥AB,∠CAB=60°,∵∠AOE+∠EOC=90°,∠EOC+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∵tan∠CAB∴tan60∴CF,OF.又∵AE•OE=|﹣2|=2,CF•OF=|k2|,∴k2=±6.∵点C在第一象限,∴k2=6.故答案为6.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,解题的关键是求出CF•OF=6.三、解答题(本大题10小题,共100分)16.【分析】(1)S1=大矩形的面积减去小矩形的面积,S2=小矩形的面积=长×宽,即可得出结果;(2)求出当a=4时两种方案的面积,即可得出结论.【解答】解:(1)S1=a×2a﹣1×2=2a2﹣2,S2=(2a﹣1﹣1)(a﹣1﹣1)=2a2﹣6a+4;(2)当a=4时,S1=2×42﹣2=30,S2=2×42﹣6×4+4=12,∵30>12,∴方案一的绿化面积大.【点评】本题考查了矩形的面积公式、代数式以及代数式求值问题;用含a的代数式表示S1和S2是解题的关键.17.【分析】(1)根据中位数的定义即可解决问题.(2)利用中位数的性质即可判断.(3)首先确定甲校的96分以上人数为20×6=120人,再求出所以乙校的96分以上的人数即可.【解答】解:(196.5,故答案为96.5.(2)根据中位数即可判断,乙校的李老师成绩在各自学校参与测试老师中成绩的名次相比较更靠前.故答案为李.(3)甲校的96分以上人数为20×6=120人,所以乙校的96分以上的人数为2×120﹣100=140人.【点评】本题考查用样本估计总体,中位数,平均数,众数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.18.【分析】设AE=BF=xcm,长方,根据长方体盒子的表面积为11cm2列出方程,即可得出线段AE的长.【解答】解:设AE=BF=xcm,,∵得到的长方体盒子的表面积为11cm2∴2[2x2+x(6﹣2x)+x(6﹣2x)]=11,整理得:4x2﹣24x+11=0,解得x=0.5或x=5.5(舍去),∴线段AE的长0.5cm.【点评】本题考查了一元二次方程的应用.解题的关键是用AE的代数式表示出长方体的长、宽、高.19.【分析】(1)根据分母不能为0即可解决问题.(2)利用描点法即可解决问题.【解答】解:(1)函数y x的取值范围是x≠1.故答案为x≠1.(2)函数图象如图所示:性质:当x<1时,y随x的增大而增大,当x>1时,y随x的增大而减小.故答案为:当x<1时,y随x的增大而增大,当x>1时,y随x的增大而减小.【点评】本题考查一次函数的性质,解题的关键是熟练掌握基本知识,学会利用描点法画函数图象.20.【分析】(1)结合贵阳地铁一号线路图可知:一共有四站:火车站,沙冲站,望城坡,新村,可得结果;(2)画树状图展示所有16种等可能的结果数,再找出菁菁与琪琪出发的站恰好相邻的结果数,然后根据概率公式求解.【解答】解:(1(2)设火车站,沙冲站,望城坡,新村分别用A、B、C、D表示,画树状图为:共有16种等可能的结果数,其中菁菁与琪琪出发的站恰好相邻的结果数为6,【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比,解题的关键是根据树状图得出对应情况下所有等可能结果数.21.【分析】(1)通过已知条件,易证△ADF≌△CDE,即可求得;(2)易求得BE和BF,证明△AMF∽△CMD,ME.【解答】解:(1)∵四边形ABCD是菱形,∴AD=CD,∠DAF=∠DCE,又∵∠ADE=∠CDF,∴∠ADE﹣∠EDF=∠CDF﹣∠EDF,∴∠ADF=∠CDE,在△ADF和△CDE中,∴△ADF≌△CDE,∴CE=AF.(2)∵四边形ABCD是菱形,∴AB=BC,由(1)得:CE=AF=2,∴BE=BF,设BE=BF=x,AF=2,x∴BE=BFCE=AF,∵∠CMD=∠AMF,∠DCM=∠AMF,∴△AMF∽△CMD,在△ABC和△MBC中,MCE=∠ACB,∴△ABC~△MBC【点评】本题主要考查了三角形全等,三角形相似和菱形的判定和性质,熟练它们的判定和性质是解答此题的关键.22.【分析】作DE⊥BC于E,由直角三角形的性质得出DE BD,BE,由题意得:BC=AB=8,设DE=x,则BE,CE=8,由三角函数求出x≈2.61,即DE≈2.609,再由三角函数求出CD的长即可.【解答】解:作DE⊥BC于E,如图所示:∵∠DBC=30°,∴DE,BE,由题意得:BC=AB=8,设DE=x,则BE,CE=8,∵tan∠DCB=tan37解得:x≈2.61,即DE≈2.609,又∵sin∠DCB=sin37∴CD 4.3(m);答:此时CD的长度约为4.3m.【点评】本题考查了直角三角形的性质、解直角三角形的应用;熟练掌握三角函数的定义是解题的关键.23.【分析】(1)根据直角三角形的特性可得此量角器所在圆是以AB中点O为圆心,AB为直径的圆,根据圆周角定理转化旋转角∠ACE=∠ABE,则可得∠AOE度数即为E点处量角器上的读数;(2)证明∠ECB=∠EBC即可;(3)与(1)类似,∠ACE=∠ABE=2x°,y=∠AOE=2∠ABE=4x.【解答】解:由于∠ACB=90°,AB为斜边,所以此量角器所在圆是以AB中点O为圆心,AB 为直径的圆.连接OE、BE,∠ACE=7.5×2=15°,∵∠ACE和∠ABE都是弧AE所对的圆周角,∴∠ABE=∠ACE=15°.∵OE=OB,∴∠AOE=2∠ABE=30°,即E点处量角器上的度数为30度.故答案为30;(2)∠ECB=90°﹣15°=75°,∠EBC=90°﹣30°+15°=75°,∴∠ECB=∠EBC.∴BE=CE;(3)当旋转x秒后,∠ACE=2x°,根据圆周角性质可知∠ABE=∠ACE=2x°,∵OB=OE,∴∠AOE=2∠ABE=4x°.即y=4x.【点评】本题主要考查了圆周角定理、等腰三角形的判定,直角三角形外接圆的画法,解题的关键是依据题意补充完整圆,利用圆周角定理求解.24.【分析】(1)由题意求出抛物线的对称轴,可得b=﹣2,再把C(0,﹣2)代入抛物线的解析式得到c=﹣2,即可解决问题.(2)如图2中,连接AC交对称轴于D.在Rt△ADM中,根据tan∠AMB(3)如图3中,设P(m,m2﹣2m﹣2).由题意抛物线y=x2﹣2x﹣2向上平移3个单位得到新抛物线y=x2﹣2x+1,可得Q(m,m2﹣2m+1),由∠OPQ=∠OQP,可知P,Q关于x轴对称,由此构建方程即可解决问题.【解答】解:(1)如图1中,∵抛物线经过A(2,﹣2),C(0,﹣2),∴抛物线的对称轴x1,1,∴b=﹣2,∵y=x2+bx+c经过C(0,﹣2),∴c=﹣2,∴抛物线的解析式为y=x2﹣2x﹣2,∴y=(x﹣1)2﹣3,∴顶点B(1,﹣3).(2)如图2中,连接AC交对称轴于D.由题意M(1,m),D(1,﹣2),AD=CD=1,∴tan∠AMB(3)如图3中,设P(m,m2﹣2m﹣2).由题意抛物线y=x2﹣2x﹣2向上平移3个单位得到新抛物线y=x2﹣2x+1,∴Q(m,m2﹣2m+1),∵∠OPQ=∠OQP,∴P,Q关于x轴对称,∴m2﹣2m﹣2+m2﹣2m+1=0,∴2m2﹣4m﹣1=0,解得m∴Q)或(【点评】本题属于二次函数综合题,考查了待定系数法,锐角三角函数,平移变换,轴对称等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,属于中考压轴题.25.【分析】(1)利用尺规作图将图①补充完整;(2)作CE⊥AD交DA的延长线于E,作CF⊥BD于F,证明△BCF≌△ACE,根据全等三角形的性质得到CF=CE,BF=AE,根据正方形的性质、勾股定理计算,得到答案;(3)作CE⊥AD于E,作CF⊥BD交BD的延长线于F,仿照(2)的解答过程计算即可.【解答】解:(1)将图①补充完整如图所示:(2)DA+DB,理由如下:作CE⊥AD交DA的延长线于E,作CF⊥BD于F,则四边形CFDE为矩形,∴∠FCE=90°,又∠BCA=90°,∴∠BCF=∠ACE,在△BCF和△ACE中,∴△BCF≌△ACE(AAS)∴CF=CE,BF=AE,∴四边形CFDE是正方形,∴DF=DE,DF,∴DA+DB=DF+BF+DE﹣AE=2DF;(3)作CE⊥AD于E,作CF⊥BD交BD的延长线于F,由(2)可知,四边形CFDE为正方形,△BCF≌△ACE,∴BD=BF﹣DF=AD﹣DE﹣DF=AD=100﹣答:小明到公园门口的距离BD的长度为(100﹣m.【点评】本题考查的是全等三角形的判定和性质、正方形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
贵州省贵阳市2019-2020学年中考数学第二次调研试卷含解析

贵州省贵阳市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.sin60°的值为()A.3B.32C.22D.122.如果向北走6km记作+6km,那么向南走8km记作()A.+8km B.﹣8km C.+14km D.﹣2km3.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.2332π-B.233π-C.32π-D.3π-4.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是()A.40°B.43°C.46°D.54°5.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )A.q<16 B.q>16C.q≤4D.q≥46.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°7.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x的值是().A .3-B .3C .2D .88.如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .∠1=∠3B .∠2+∠4=180°C .∠1=∠4D .∠3=∠4 9.若a+|a|=0,则()222a a -+等于( ) A .2﹣2a B .2a ﹣2C .﹣2D .2 10.﹣0.2的相反数是( )A .0.2B .±0.2C .﹣0.2D .211.如图,AB 为⊙O 的直径,C 为⊙O 上的一动点(不与A 、B 重合),CD ⊥AB 于D ,∠OCD 的平分线交⊙O 于P ,则当C 在⊙O 上运动时,点P 的位置( )A .随点C 的运动而变化B .不变C .在使PA=OA 的劣弧上D .无法确定12.在平面直角坐标系中,二次函数y=a (x –h )2+k (a<0)的图象可能是A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为_____.14.如图,矩形ABCD 面积为40,点P 在边CD 上,PE ⊥AC ,PF ⊥BD ,足分别为E ,F .若AC =10,则PE+PF =_____.15.如图,边长为的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为16.函数1x y -=自变量x 的取值范围是 _____. 17. 如图,已知AB BC =,要使ABD CBD ∆≅∆,还需添加一个条件,则可以添加的条件是 .(只写一个即可,不需要添加辅助线)18.已知a 1=32,a 2=55,a 3=710,a 4=917,a 5=1126,…,则a n =_____.(n 为正整数). 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?20.(6分)如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60°,沿山坡向上走到P 处再测得点C 的仰角为45°,已知OA =100米,山坡坡度(竖直高度与水平宽度的比)i =1:2,且O 、A 、B 在同一条直线上.求电视塔OC 的高度以及此人所在位置点P 的铅直高度.(测倾器高度忽略不计,结果保留根号形式)21.(6分)综合与探究如图1,平面直角坐标系中,抛物线y=ax 2+bx+3与x 轴分别交于点A (﹣2,0),B (4,0),与y 轴交于点C ,点D 是y 轴负半轴上一点,直线BD 与抛物线y=ax 2+bx+3在第三象限交于点E (﹣4,y )点F 是抛物线y=ax 2+bx+3上的一点,且点F 在直线BE 上方,将点F 沿平行于x 轴的直线向右平移m 个单位长度后恰好落在直线BE 上的点G 处.(1)求抛物线y=ax 2+bx+3的表达式,并求点E 的坐标;(2)设点F 的横坐标为x (﹣4<x <4),解决下列问题:①当点G 与点D 重合时,求平移距离m 的值;②用含x 的式子表示平移距离m ,并求m 的最大值;(3)如图2,过点F 作x 轴的垂线FP ,交直线BE 于点P ,垂足为F ,连接FD .是否存在点F ,使△FDP 与△FDG 的面积比为1:2?若存在,直接写出点F 的坐标;若不存在,说明理由.22.(8分)如图,在四边形ABCD 中,BD 为一条对角线,AD BC ∥,2AD BC =,90ABD ∠=︒.E 为AD 的中点,连结BE .(1)求证:四边形BCDE 为菱形;(2)连结AC ,若AC 平分BAD ∠,1BC =,求AC 的长.23.(8分)某中学九年级数学兴趣小组想测量建筑物AB 的高度.他们在C 处仰望建筑物顶端A 处,测得仰角为45o ,再往建筑物的方向前进6米到达D 处,测得仰角为60o ,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米,3 1.732≈,2 1.414)≈24.(10分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP =AD . 求证:PD =AB .如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E ,当BE CE的值是多少时,△PDE 的周长最小?如图(3),点 Q 是边 AB 上的定点,且 BQ =BC .已知 AD =1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F ,连接 CF ,G 为 CF 的中点,M 、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM =CN ,MN 与 DF 相交于点 H ,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.25.(10分)如图,抛物线与x 轴相交于A 、B 两点,与y 轴的交于点C ,其中A 点的坐标为(﹣3,0),点C 的坐标为(0,﹣3),对称轴为直线x =﹣1.(1)求抛物线的解析式;(2)若点P 在抛物线上,且S △POC =4S △BOC ,求点P 的坐标;(3)设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.26.(12分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.27.(12分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】解:sin60°3B.2.B【解析】【分析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量.若向北走6km 记作+6km ,那么向南走8km 记作﹣8km .故选:B .【点睛】本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.3.B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =2602123602π⨯-⨯=23π- 故选B .4.C【解析】【分析】根据DE ∥AB 可求得∠CDE =∠B 解答即可.【详解】解:∵DE ∥AB ,∴∠CDE =∠B =46°,故选:C .【点睛】本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质. 5.A【解析】∵关于x 的一元二次方程x 2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选 A.6.D【解析】【分析】根据两直线平行,内错角相等计算即可.【详解】因为m ∥n ,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.【点睛】本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.7.D【解析】【分析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x 的值.【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D.【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.8.D【解析】试题分析:A.∵∠1=∠3,∴a∥b,故A正确;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.故选D.考点:平行线的判定.9.A【解析】【分析】直接利用二次根式的性质化简得出答案.【详解】∵a+|a|=0,∴|a|=-a,则a≤0,故原式=2-a-a=2-2a.故选A.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.10.A【解析】【分析】根据相反数的定义进行解答即可.【详解】负数的相反数是它的绝对值,所以﹣0.2的相反数是0.2.故选A.【点睛】本题主要考查相反数的定义,熟练掌握这个知识点是解题关键.11.B【解析】【分析】因为CP是∠OCD的平分线,所以∠DCP=∠OCP,所以∠DCP=∠OPC,则CD∥OP,所以弧AP等于弧BP,所以PA=PB.从而可得出答案.【详解】解:连接OP,∵CP是∠OCD的平分线,∴∠DCP=∠OCP,又∵OC=OP,∴∠OCP=∠OPC,∴∠DCP=∠OPC,∴CD∥OP,又∵CD⊥AB,∴OP⊥AB,∴¼¼AP BP=,∴PA=PB.∴点P是线段AB垂直平分线和圆的交点,∴当C在⊙O上运动时,点P不动.故选:B.【点睛】本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦.12.B【解析】【分析】根据题目给出的二次函数的表达式,可知二次函数的开口向下,即可得出答案.【详解】Q二次函数y=a(x﹣h)2+k(a<0)∴二次函数开口向下.即B成立.故答案选:B.【点睛】本题考查的是简单运用二次函数性质,解题的关键是熟练掌握二次函数性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【详解】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=12CD=12×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=1,∴⊙O的半径为1,故答案为1.【点睛】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.14.4【解析】【分析】由矩形的性质可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.【详解】解:如图,设AC与BD的交点为O,连接PO,∵四边形ABCD是矩形∴AO=CO=5=BO=DO,∴S △DCO =14S 矩形ABCD =10, ∵S △DCO =S △DPO +S △PCO ,∴10=12×DO×PF+12×OC×PE ∴20=5PF+5PE∴PE+PF=4故答案为4【点睛】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键.15.24m +【解析】【详解】因为大正方形边长为4m +,小正方形边长为m ,所以剩余的两个直角梯形的上底为m ,下底为4m +,所以矩形的另一边为梯形上、下底的和:4m ++m=24m +.16.x≥1且x≠1【解析】【分析】根据分式成立的条件,二次根式成立的条件列不等式组,从而求解.【详解】解:根据题意得:10{30x x -≥-≠,解得x≥1,且x≠1,即:自变量x 取值范围是x≥1且x≠1.故答案为x≥1且x≠1.【点睛】本题考查函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.17.可添∠ABD=∠CBD 或AD=CD .【解析】【分析】由AB=BC 结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS 证明全等,也可以添加一对夹角相等,利用SAS 证明全等,据此即可得答案.【详解】.可添∠ABD=∠CBD 或AD=CD ,①∠ABD=∠CBD ,在△ABD 和△CBD 中,∵AB BC ABD CBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CBD (SAS );②AD=CD ,在△ABD 和△CBD 中,∵AB BC AD CD BD BD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CBD (SSS ),故答案为∠ABD=∠CBD 或AD=CD .【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS ,SAS ,ASA ,AAS .18.2211n n ++. 【解析】【分析】观察分母的变化为n 的1次幂加1、2次幂加1、3次幂加1…,n 次幂加1;分子的变化为:3、5、7、9…2n+1. 【详解】解:∵a 1=32,a 2=55,a 3=710,a 4=917,a 5=1126,…, ∴a n =2211n n ++, 故答案为:2211n n ++. 【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.羊圈的边长AB ,BC 分别是20米、20米.【解析】试题分析:设AB 的长度为x 米,则BC 的长度为(100﹣4x )米;然后根据矩形的面积公式列出方程. 试题解析:设AB 的长度为x 米,则BC 的长度为(100﹣4x )米. 根据题意得 (100﹣4x )x=400, 解得 x 1=20,x 2=1. 则100﹣4x=20或100﹣4x=2. ∵2>21, ∴x 2=1舍去. 即AB=20,BC=20 考点:一元二次方程的应用.20.电视塔OC高为1003米,点P的铅直高度为()100313-(米).【解析】【分析】过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=1003,根据山坡坡度=1:2表示出PB=x,AB=2x, 在Rt△PCF中利用三角函数即可求解.【详解】过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=1003(米),过点P作PB⊥OA,垂足为B.由i=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=1003﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=1003﹣x,∴x=1003100-,即PB=1003100-米.【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.21.(3)(﹣4,﹣6);(317-3;②4;(2)F的坐标为(﹣3,01733179-).【解析】【分析】(3)先将A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E 点坐标代入表达式求出y的值即可;(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GF∥x轴,故可得F的纵坐标,再将y=﹣2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;②设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据△FDP与△FDG的面积比为3:3,故PD:DG=3:3.已知FP∥HD,则FH:HG=3:3.再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.【详解】解:(3)将A(﹣3,0),B(4,0),代入y=ax3+bx+2得:4230 16430 a ba b-+=⎧⎨++=⎩,解得:3834ab⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为y=﹣38x3+34x+2,把E(﹣4,y)代入得:y=﹣6,∴点E的坐标为(﹣4,﹣6).(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入得:4046 k bk b+=⎧⎨-+=-⎩,解得:3k4b3⎧=⎪⎨⎪=-⎩,∴直线BD的表达式为y=34x﹣2.把x=0代入y=34x﹣2得:y=﹣2,∴D(0,﹣2).当点G与点D重合时,G的坐标为(0,﹣2).∵GF∥x轴,∴F的纵坐标为﹣2.将y=﹣2代入抛物线的解析式得:﹣38x3+34x+2=﹣2,解得:+3或x=+3.∵﹣4<x<4,∴点F的坐标为(﹣17+3,﹣2).∴m=FG=17﹣3.②设点F的坐标为(x,﹣38x3+34x+2),则点G的坐标为(x+m,34(x+m)﹣2),∴﹣38x3+34x+2=34(x+m)﹣2,化简得,m=﹣12x3+4,∵﹣12<0,∴m有最大值,当x=0时,m的最大值为4.(2)当点F在x轴的左侧时,如下图所示:∵△FDP与△FDG的面积比为3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.设F的坐标为(x,﹣38x3+34x+2),则点G的坐标为(﹣3x,﹣32x﹣2),∴﹣38x3+34x+2=﹣32x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴点F的坐标为(﹣3,0).当点F在x轴的右侧时,如下图所示:∵△FDP与△FDG的面积比为3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.设F的坐标为(x,﹣38x3+34x+2),则点G的坐标为(3x,32x﹣2),∴﹣38x3+34x+2=32x﹣2,整理得:x3+3x﹣36=0,解得:x=17﹣3或x=﹣17﹣3(舍去),∴点F的坐标为(17﹣3,3179-).综上所述,点F的坐标为(﹣3,0)或(17﹣3,3179-).【点睛】本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.22.(1)证明见解析;(2)AC=3;【解析】【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)只要证明△ACD是直角三角形,∠ADC=60°,AD=2即可解决问题;【详解】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形.(2)连接AC,如图所示:∵∠ADB=30°,∠ABD=90°,∴AD=2AB ,∵AD=2BC ,∴AB=BC ,∴∠BAC=∠BCA ,∵AD ∥BC ,∴∠DAC=∠BCA ,∴∠CAB=∠CAD=30°∴AB=BC=DC=1,AD=2BC=2,∵∠DAC=30°,∠ADC=60°,在Rt △ACD 中,=【点睛】考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法.23.14.2米;【解析】【分析】Rt △ADB 中用AB 表示出BD 、Rt △ACB 中用AB 表示出BC ,根据CD=BC-BD 可得关于AB 的方程,解方程可得.【详解】设AB x =米∵∠C=45° ∴在Rt ABC V 中,BC AB x ==米,60ADB ∠=o Q ,又6CD =Q 米,∴在Rt ADB V 中Tan ∠ADB=AB BD , Tan60°=6x x -解得)114.2x =≈米 答,建筑物的高度为14.2米.【点睛】本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.24.(1)证明见解析(2)222-(3)2【解析】【分析】(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=2,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.【详解】(1)在图1中,设AD=BC=a,则有AB=CD=2a,∵四边形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD=22AD PA+=2a,∵AB=2a,∴PD=AB;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,则有2a,∵BP=AB-PA,∴2a-a,∵BP′∥CD,∴2222BE BP a aCE CD a--===;(3)由(2)可知BF=BP=AB-AP ,∵AP=AD ,∴BF=AB-AD ,∵BQ=BC ,∴AQ=AB-BQ=AB-BC ,∵BC=AD ,∴AQ=AB-AD ,∴BF=AQ ,∴QF=BQ+BF=BQ+AQ=AB ,∵AB=CD ,∴QF=CD ,∵QM=CN ,∴QF-QM=CD-CN ,即MF=DN ,∵MF ∥DN ,∴∠NFH=∠NDH ,在△MFH 和△NDH 中,{MFH NDHMHF NHD MF DN∠∠∠∠=== ,∴△MFH ≌△NDH (AAS ),∴FH=DH ,∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=12CD=12×【点睛】此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.25.(1)y =x 2+2x ﹣3;(2)点P 的坐标为(2,21)或(﹣2,5);(3)94. 【解析】【分析】(1)先根据点A 坐标及对称轴得出点B 坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P 的坐标为(a ,a 2+2a ﹣3),则点P 到OC 的距离为|a|.然后依据S△POC=2S△BOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可.【详解】解:(1)∵抛物线与x轴的交点A(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的交点B的坐标为(1,0),设抛物线解析式为y=a(x+3)(x﹣1),将点C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,则抛物线解析式为y=(x+3)(x﹣1)=x2+2x﹣3;(2)设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴12•OC•|a|=2×12OC•OB,即12×3×|a|=2×12×3×1,解得a=±2.当a=2时,点P的坐标为(2,21);当a=﹣2时,点P的坐标为(﹣2,5).∴点P的坐标为(2,21)或(﹣2,5).(3)如图所示:设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,∴直线AC的解析式为y=﹣x﹣3.设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).∴QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+94﹣94)=﹣(x+32)2+94,∴当x=﹣32时,QD有最大值,QD的最大值为94.【点睛】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.26.1.【解析】试题分析:根据相似三角形的判定与性质,可得答案.试题解析:∵DE ⊥AB ,∴∠BED=90°,又∠C=90°,∴∠BED=∠C .又∠B=∠B ,∴△BED ∽△BCA ,∴,∴DE===1.考点:相似三角形的判定与性质.27.(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程.【解析】【分析】(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x 天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)设乙队施工y 天完成该项工程,根据题意列不等式解不等式即可.【详解】(1)由题意知,甲队单独施工完成该项工程所需时间为1÷13=90(天).设乙队单独施工需要x 天完成该项工程,则 301515190x++=, 去分母,得x+1=2x .解得x=1.经检验x=1是原方程的解.答:乙队单独施工需要1天完成.(2)设乙队施工y 天完成该项工程,则 1-363090y ≤ 解得y≥2.答:乙队至少施工l8天才能完成该项工程.。
贵州省贵阳市2019-2020学年中考数学一模考试卷含解析

贵州省贵阳市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设α,β是一元二次方程x 2+2x -1=0的两个根,则αβ的值是( ) A .2 B .1 C .-2 D .-12.已知实数a <0,则下列事件中是必然事件的是( ) A .a+3<0B .a ﹣3<0C .3a >0D .a 3>03.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,下列结论①a <b ;②|b|=|d|;③a+c=a ;④ad >0中,正确的有( )A .4个B .3个C .2个D .1个4.函数的自变量x 的取值范围是( ) A .x>1B .x<1C .x≤1D .x≥15.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变6.下列各式中,互为相反数的是( ) A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32-7.如图,直立于地面上的电线杆 AB ,在阳光下落在水平地面和坡面上的影子分别是BC 、CD ,测得 BC=6 米,CD=4 米,∠BCD=150°,在 D 处测得电线杆顶端 A 的仰 角为 30°,则电线杆 AB 的高度为( )A .2+23B .4+23C .2+32D .4+328.下面的几何体中,主视图为圆的是( )A .B .C .D .9.在平面直角坐标系中,点(,)P m n 是线段AB 上一点,以原点O 为位似中心把AOB ∆放大到原来的两倍,则点P 的对应点的坐标为( ) A .(2,2)m n B .(2,2)m n 或(2,2)m n -- C .11(,)22m nD .11(,)22m n 或11(,)22m n --10.如图:A 、B 、C 、D 四点在一条直线上,若AB =CD ,下列各式表示线段AC 错误的是( )A .AC =AD ﹣CDB .AC =AB+BC C .AC =BD ﹣ABD .AC =AD ﹣AB11.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,BD 平分∠ABC ,∠A =130°,则∠BDC 的度数为( )A .100°B .105°C .110°D .115°12.下列几何体中,三视图有两个相同而另一个不同的是( )A .(1)(2)B .(2)(3)C .(2)(4)D .(3)(4)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB 是圆O 的直径,AC 是圆O 的弦,AB=2,∠BAC=30°.在图中画出弦AD ,使AD=1,则∠CAD 的度数为_____°.14.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.15.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_______________.16.-3的倒数是___________17.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.18.若式子x1x有意义,则x的取值范围是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)截至2018年5月4日,中欧班列(郑州)去回程开行共计1191班,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在河南采购一批特色商品,经调查,用1600元采购A型商品的件数是用1000元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价少20元,已知A型商品的售价为160元,B型商品的售价为240元,已知该客商购进甲乙两种商品共200件,设其中甲种商品购进x件,该客商售完这200件商品的总利润为y元(1)求A、B型商品的进价;(2)该客商计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若客商保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该客商获得最大利润的进货方案.20.(6分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.(1)求证:△ACM∽△ABE.(2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.(3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积.21.(6分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.22.(8分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k 的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k 的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.23.(8分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.24.(10分)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=33,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.25.(10分)如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=32交x轴于点D.(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.26.(12分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放8240aa辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.27.(12分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:∵α、β是一元二次方程的两个根,∴αβ==-1,故选D.考点:根与系数的关系.2.B【解析】A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;故选B.点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.B【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正确;②|b|=|d|,故②正确;③a+c=a,故③正确;④ad<0,故④错误;故选B.【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键.4.C【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.试题解析:根据题意得:1-x≥0,解得:x≤1.故选C.考点:函数自变量的取值范围.5.D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|. 6.A 【解析】 【分析】根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案. 【详解】解:A. 2(3)-=9,23-=-9,故2(3)-和23-互为相反数,故正确;B. 2(3)-=9,23=9,故2(3)-和23不是互为相反数,故错误;C. 3(2)-=-8,32-=-8,故3(2)-和32-不是互为相反数,故错误;D. 3|2|-=8,32-=8故3|2|-和32-不是互为相反数,故错误. 故选A. 【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则. 7.B 【解析】 【分析】 【详解】延长AD 交BC 的延长线于E ,作DF ⊥BE 于F ,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,22CD DF -3 由题意得∠E=30°, ∴EF=23tan DFE= , ∴3∴AB=BE×tanE=((+4)米,即电线杆的高度为(+4)米.点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.8.C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.9.B【解析】分析:根据位似变换的性质计算即可.详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故选B.点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.10.C【解析】【分析】根据线段上的等量关系逐一判断即可.【详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.11.B【解析】【分析】根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.【详解】∵四边形ABCD内接于⊙O,∠A=130°,∴∠C=180°-130°=50°,∵AD∥BC,∴∠ABC=180°-∠A=50°,∵BD平分∠ABC,∴∠DBC=25°,∴∠BDC=180°-25°-50°=105°,故选:B.【点睛】本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.12.B【解析】【分析】根据三视图的定义即可解答.【详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B.【点睛】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.30或1.【解析】【分析】根据题意作图,由AB是圆O的直径,可得∠ADB=∠AD′B=1°,继而可求得∠DAB的度数,则可求得答案.【详解】解:如图,∵AB是圆O的直径,∴∠ADB=∠AD′B=1°,∵AD=AD′=1,AB=2,∴cos∠DAB=cosD′AB=12,∴∠DAB=∠D′AB=60°,∵∠CAB=30°,∴∠CAD=30°,∠CAD′=1°.∴∠CAD的度数为:30°或1°.故答案为30或1.【点睛】本题考查圆周角定理;含30度角的直角三角形.14.54【解析】试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×4×4=64个小正方体,∴至少还需要64-10=54个小正方体.【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.15.6n+1.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第1个图形有14=6×1+8根火柴棒,第3个图形有10=6×1+8根火柴棒,……,第n个图形有6n+1根火柴棒.16.1 3 -【解析】【分析】乘积为1的两数互为相反数,即a的倒数即为1a,符号一致【详解】∵-3的倒数是1 3 -∴答案是1 3 -17.1【解析】【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体.故答案为1.18.x 1≥-且x 0≠ 【解析】 【详解】在实数范围内有意义, ∴x+1≥0,且x≠0, 解得:x≥-1且x≠0. 故答案为x≥-1且x≠0.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)80,100;(2)100件,22000元;(3)答案见解析. 【解析】 【分析】(1)先设A 型商品的进价为a 元/件,求得B 型商品的进价为(a+20)元/件,由题意得等式16001000220a a =⨯+ ,解得a =80,再检验a 是否符合条件,得到答案.(2)先设购机A 型商品x 件,则由题意可得到等式80x+100(200﹣x )≤18000,解得,x≥100;再设获得的利润为w 元,由题意可得w =(160﹣80)x+(240﹣100)(200﹣x )=﹣60x+28000,当x=100时代入w =﹣60x+28000,从而得答案.(3)设获得的利润为w 元,由题意可得w (a ﹣60)x+28000,分类讨论:当50<a <60时,当a =60时,当60<a <70时,各个阶段的利润,得出最大值. 【详解】解:(1)设A 型商品的进价为a 元/件,则B 型商品的进价为(a+20)元/件, 16001000220a a =⨯+ , 解得,a =80,经检验,a =80是原分式方程的解, ∴a+20=100,答:A 、B 型商品的进价分别为80元/件、100元/件; (2)设购机A 型商品x 件, 80x+100(200﹣x )≤18000, 解得,x≥100, 设获得的利润为w 元,w =(160﹣80)x+(240﹣100)(200﹣x )=﹣60x+28000, ∴当x =100时,w 取得最大值,此时w =22000,答:该客商计划最多投入18000元用于购买这两种商品,则至少要购进100件甲商品,若售完这些商品,则商场可获得的最大利润是22000元;(3)w =(160﹣80+a )x+(240﹣100)(200﹣x )=(a ﹣60)x+28000, ∵50<a <70,∴当50<a <60时,a ﹣60<0,y 随x 的增大而减小,则甲100件,乙100件时利润最大; 当a =60时,w =28000,此时甲乙只要是满足条件的整数即可;当60<a <70时,a ﹣60>0,y 随x 的增大而增大,则甲120件,乙80件时利润最大. 【点睛】本题考察一次函数的应用及一次不等式的应用,属于中档题,难度不大. 20.(1)证明见解析;(2)证明见解析;(3)74. 【解析】 【分析】(1)根据四边形ABCD 和四边形AEMN 都是正方形得2AB AC AC AM ==,∠CAB=∠MAC=45°,∠BAE=∠CAM ,可证△ACM ∽△ABE ;(2)连结AC ,由△ACM ∽△ABE 得∠ACM=∠B=90°,易证∠MCD=∠BDC=45°,得BD ∥CM,由MC=2BE ,FC=2CE ,得MF=BD ,从而可以证明四边形BFMD 是平行四边形; (3)根据S 五边形ABFMN =S 正方形AEMN +S 梯形ABFE +S 三角形EFM 求解即可. 【详解】(1)证明:∵四边形ABCD 和四边形AEMN 都是正方形, ∴2AB AC AC AM ==,∠CAB=∠MAC=45°, ∴∠CAB-∠CAE=∠MAC-∠CAE , ∴∠BAE=∠CAM , ∴△ACM ∽△ABE.(2)证明:连结AC因为△ACM ∽△ABE ,则∠ACM=∠B=90°, 因为∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以点M,C,F在同一直线上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因为MC=2BE,FC=2CE,所以MF=2BC=BD,所以四边形BFMD是平行四边形(3)S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+12(2+6)⨯4+12⨯2⨯6=74.【点睛】本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度.21.(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】【分析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数;中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点睛】本题主要考查数据的收集、处理以及统计图表.22.(1)32(2)1(3)①②③【解析】【分析】(1)由抛物线与x轴只有一个交点,可知△=0;(2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;(3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断.【详解】(1)∵二次函数y=kx2﹣4kx+3与x轴只有一个公共点,∴关于x的方程kx2﹣4kx+3=0有两个相等的实数根,∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,解得:k1=0,k2=32,k≠0,∴k=32;(2)∵AB=2,抛物线对称轴为x=2,∴A、B点坐标为(1,0),(3,0),将(1,0)代入解析式,可得k=1,(3)①∵当x=0时,y=3,∴二次函数图象与y轴的交点为(0,3),①正确;②∵抛物线的对称轴为x=2,∴抛物线的对称轴不变,②正确;③二次函数y=kx2﹣4kx+3=k(x2﹣4x)+3,将其看成y关于k的一次函数,令k的系数为0,即x2﹣4x=0,解得:x1=0,x2=4,∴抛物线一定经过两个定点(0,3)和(4,3),③正确.综上可知:正确的结论有①②③.【点睛】本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.23.(1) 14;(2)112.【解析】【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.24.(1)75;3(2)13【解析】【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出3(2)过点B作BE∥AD交AC于点E,同(1)可得出3Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴13 OD OBOA OC==.又∵3∴OD=133∴AD=AO+OD=43.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=43.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴BO EO BE DO AO DA==.∵BO:OD=1:3,∴13 EO BEAO DA==.∵3,∴3∴3∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(32+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,解得:13【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.25.(1)213222y x x =-++ ;(1)132,E (1,1);(3)存在,P 点坐标可以为(1+7,5)或(3,5). 【解析】 【分析】(1)设B (x 1,5),由已知条件得21322x -+= ,进而得到B (2,5).又由对称轴2ba-⨯求得b .最终得到抛物线解析式.(1)先求出直线BC 的解析式,再设E (m ,=﹣12m+1.),F (m ,﹣12m 1+32m+1.)求得FE 的值,得到S △CBF ﹣m 1+2m .又由S 四边形CDBF =S △CBF +S △CDB ,得S 四边形CDBF 最大值, 最终得到E 点坐标.(3)设N 点为(n ,﹣12n 1+32n+1),1<n <2.过N 作NO ⊥x 轴于点P ,得PG =n ﹣1.又由直角三角形的判定,得△ABC 为直角三角形,由△ABC ∽△GNP , 得n =1+7或n =1﹣7(舍去),求得P 点坐标.又由△ABC ∽△GNP ,且OC PGOB NP=时, 得n =3或n =﹣2(舍去).求得P 点坐标. 【详解】解:(1)设B (x 1,5).由A (﹣1,5),对称轴直线x =32. ∴21322x -+= 解得,x 1=2. ∴B (2,5). 又∵3122()2b -=⨯-∴b =32. ∴抛物线解析式为y =213222x x -++ , (1)如图1,∵B(2,5),C(5,1).∴直线BC的解析式为y=﹣12x+1.由E在直线BC上,则设E(m,=﹣12m+1.),F(m,﹣12m1+32m+1.)∴FE=﹣12m1+32m+1﹣(﹣12n+1)=﹣12m1+1m.由S△CBF=12 EF•OB,∴S△CBF=12(﹣12m1+1m)×2=﹣m1+2m.又∵S△CDB=12BD•OC=12×(2﹣32)×1=52∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+52.化为顶点式得,S四边形CDBF=﹣(m﹣1)1+132.当m=1时,S四边形CDBF最大,为132.此时,E点坐标为(1,1).(3)存在.如图1,由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣12n1+32n+1),1<n<2.过N作NO⊥x轴于点P(n,5).∴NP=﹣12n1+32n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC为直角三角形.当△ABC∽△GNP,且OC NPOB PG时,即,213222242n n n -++=- 整理得,n 1﹣1n ﹣6=5.解得,n =1+7 或n =1﹣7(舍去).此时P 点坐标为(1+7,5).当△ABC ∽△GNP ,且OC PG OB NP=时, 即,222134222n n n -=-++ 整理得,n 1+n ﹣11=5.解得,n =3或n =﹣2(舍去).此时P 点坐标为(3,5).综上所述,满足题意的P 点坐标可以为,(1+7,5),(3,5).【点睛】本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.26.问题1:A 、B 两型自行车的单价分别是70元和80元;问题2:a 的值为1【解析】【详解】问题1:设A 型车的成本单价为x 元,则B 型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A 、B 两型自行车的单价分别是70元和80元;问题2:由题可得,1500a ×1000+12008240a a+×1000=10000, 解得a=1,经检验:a=1是分式方程的解,故a 的值为1.27.【解析】【分析】过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD=tanCDCAD∠=3x,根据AD+BD=AB列方程求解可得.【详解】解:过点C作CD⊥AB于点D,设CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵tanCD CADAD ∠=,∴AD=tan CDCAD∠=tan30x︒333,由AD+BD=AB3=10,解得:x=3﹣5,答:飞机飞行的高度为(35)km.。
2019年贵州省黔西南州中考数学试题及参考答案(word解析版)

2019年贵州省黔西南州中考数学试题及参考答案与解析(满分150分,考试时间120分钟)一、选择题(本大题10小题,每题4分,共40分)1.下列四个数中,2019的相反数是()A.﹣2019 B.C.﹣D.201902.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×1043.某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦4.观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个5.下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3﹣3=﹣3;②﹣=;③(2a2)3=8a5;④﹣a8÷a4=﹣a4A.①B.②C.③D.④6.如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2 B.1 C.﹣1 D.07.在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,6cm,76cm C.2cm,2cm,6cm D.5cm,6cm,7cm 8.平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC ⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.19.若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y210.如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2二、填空题(本大题10小题,每题3分,共30分)11.一组数据:2,1,2,5,3,2的众数是.12.分解因式:9x2﹣y2=.13.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为.14.已知是方程组的解,则a+b的值为.15.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.16.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为.17.下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第个箭头方向相同(填序号).18.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有个白球.19.如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b <1的解集为.20.三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B 在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是.三、解答题(本大题6小题,共80分)21.(12分)(1)计算:|﹣|+(﹣1)2019+2﹣1﹣(π﹣3)0;(2)解方程:1﹣=22.(12分)如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证:PA=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°﹣∠P)成立.请你写出推理过程.23.(14分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了名学生,条形统计图中m=,n=;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?24.(14分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元)15 20 30 …y(袋)25 20 10 …若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?25.(12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}==4,min{1,2,﹣3}=﹣3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;(2)若min(3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为;(3)若M{﹣2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.26.(16分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P 为第二象限内抛物线上的动点.(1)抛物线的解析式为,抛物线的顶点坐标为;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案与解析一、选择题(本大题10小题,每题4分,共40分)1.下列四个数中,2019的相反数是()A.﹣2019 B.C.﹣D.20190【知识考点】相反数;零指数幂.【思路分析】根据相反数的概念解答即可.【解答过程】解:2019的相反数是﹣2019,故选:A.【总结归纳】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×104【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答过程】解:55000这个数用科学记数法可表示为5.5×104,故选:D.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦【知识考点】正方体相对两个面上的文字.【思路分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答过程】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知,原正方体“中”字所在面的对面的汉字是的.故选:B.【总结归纳】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解答过程】解:①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确.故选:B.【总结归纳】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3﹣3=﹣3;②﹣=;③(2a2)3=8a5;④﹣a8÷a4=﹣a4A.①B.②C.③D.④【知识考点】幂的乘方与积的乘方;同底数幂的除法;零指数幂;负整数指数幂;二次根式的加减法.【思路分析】直接利用负指数幂的性质以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答过程】解:①30+3﹣3=1+=1,故此选项错误;②﹣无法计算,故此选项错误;③(2a2)3=8a6,故此选项错误;④﹣a8÷a4=﹣a4,正确.故选:D.【总结归纳】此题主要考查了负指数幂的性质以及二次根式的加减运算、积的乘方运算法则、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2 B.1 C.﹣1 D.0【知识考点】同类项.【思路分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解答过程】解:根据题意,得:2m﹣1=m+1,解得:m=2.故选:A.【总结归纳】本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键.7.在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,6cm,76cm C.2cm,2cm,6cm D.5cm,6cm,7cm 【知识考点】三角形三边关系.【思路分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答过程】解:A、2+3>4,能组成三角形;B、3+6>7,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.【总结归纳】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.8.平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC ⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.1【知识考点】平行四边形的判定与性质;菱形的判定;概率公式.【思路分析】菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).【解答过程】解:根据平行四边形的判定定理,可推出平行四边形ABCD是菱形的有①或③,概率为.故选:B.【总结归纳】本题考查了菱形及概率,熟练掌握菱形的判定定理是解题的关键.9.若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2【知识考点】反比例函数图象上点的坐标特征.【思路分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答过程】解:∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,∴y1=﹣=,y2=﹣=,y3=﹣,又∵﹣<<,∴y3<y1<y2.故选:C.【总结归纳】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.10.如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2【知识考点】正方形的性质;相似三角形的应用.【思路分析】设AF=x,则AC=3x,利用正方形的性质得EF=CF=2x,EF∥BC,再证明△AEF ∽△ABC,利用相似比得到BC=6x,所以AB=3x,则3x=30,解得x=2,然后用△ABC的面积减去正方形的面积得到剩余部分的面积.【解答过程】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∵EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12﹣(4)2=100(cm2).故选:D.【总结归纳】本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用对应边成比例求相应线段的长.也考查了正方形的性质.二、填空题(本大题10小题,每题3分,共30分)11.一组数据:2,1,2,5,3,2的众数是.【知识考点】众数.【思路分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答过程】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2.【总结归纳】此题考查了众数,众数是一组数据中出现次数最多的数.12.分解因式:9x2﹣y2=.【知识考点】因式分解﹣运用公式法.【思路分析】利用平方差公式进行分解即可.【解答过程】解:原式=(3x+y)(3x﹣y),故答案为:(3x+y)(3x﹣y).【总结归纳】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).13.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为.【知识考点】等腰三角形的性质.【思路分析】根据三角形的内角和得出∠BAC=180°﹣∠B﹣∠C=104°,根据等腰三角形两底角相等得出∠BAD=∠ADB=(180°﹣∠B)÷2=70°,进而根据角的和差得出∠DAC=∠BAC ﹣∠BAD=34°.【解答过程】解:∵∠B=40°,∠C=36°,∴∠BAC=180°﹣∠B﹣∠C=104°∵AB=BD∴∠BAD=∠ADB=(180°﹣∠B)÷2=70°,∴∠DAC=∠BAC﹣∠BAD=34°故答案为:34°.【总结归纳】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.14.已知是方程组的解,则a+b的值为.【知识考点】二元一次方程组的解.【思路分析】把代入方程组得:,相加可得出答案.【解答过程】解:把代入方程组得:,①+②得:3a+3b=3,a+b=1,故答案为:1.【总结归纳】本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为a和b后相加即可.15.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.【知识考点】一元一次方程的应用.【思路分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【解答过程】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000【总结归纳】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.16.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为.【知识考点】勾股定理.【思路分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【解答过程】解:由勾股定理得,BC==,∴正方形ABCD的面积=BC2=3,故答案为:3.【总结归纳】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第个箭头方向相同(填序号).【知识考点】规律型:图形的变化类;生活中的旋转现象.【思路分析】根据图形可以看出4个图形一循环,然后再2019÷4=504…3,从而确定是第3个图形.【解答过程】解:2019÷4=504…3,故第2019个图案中的指针指向与第3个图案相同,故答案为:3【总结归纳】主要考查了图形的变化类,学生通过特例分析从而归纳总结出规律是解决问题的关键.18.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有个白球.【知识考点】用样本估计总体.【思路分析】先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.【解答过程】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,设口袋中大约有x个白球,则=,解得x=20.故答案为:20.【总结归纳】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b <1的解集为.【知识考点】一次函数与一元一次不等式.【思路分析】由于一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),再根据图象得出函数的增减性,即可求出不等式ax+b<1的解集.【解答过程】解:函数y=ax+b的图象如图所示,图象经过点A(4,1),且函数值y随x的增大而增大,故不等式ax+b<1的解集是x<4.故答案为:x<4.【总结归纳】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.20.三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B 在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是.【知识考点】含30度角的直角三角形;勾股定理.【思路分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.【解答过程】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10 ,∵AB∥CF,∴BM=BC×sin30°==5,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5 ,∴CD=CM﹣MD=15﹣5 .故答案是:15﹣5.【总结归纳】本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.三、解答题(本大题6小题,共80分)21.(12分)(1)计算:|﹣|+(﹣1)2019+2﹣1﹣(π﹣3)0;(2)解方程:1﹣=【知识考点】实数的运算;零指数幂;负整数指数幂;解分式方程.【思路分析】(1)原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答过程】解:(1)原式=﹣1+﹣1=﹣1;(2)去分母得:2x+2﹣x+3=6x,解得:x=1,经检验x=1是分式方程的解.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(12分)如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证:PA=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°﹣∠P)成立.请你写出推理过程.【知识考点】切线的性质.【思路分析】(1)由PC为圆O的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A,由∠A的度数求出∠BCP的度数,进而确定出∠P的度数,再由PB=BC,AB=2BC,等量代换确定出PB与PA的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.【解答过程】解:(1)∵AB是直径∴∠ACP=90°,∵∠A=30°,∴AB=2BC∵PC是⊙O切线∴∠BCP=∠A=30°,∴∠P=30°,∴PB=BC,BC=AB,∴PA=3PB(2)∵点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B,∴∠BCP=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=180°﹣∠P,∴∠BCP=(90°﹣∠P)【总结归纳】本题考查了切线的性质,内角和定理,圆周角定理,以及含30度直角三角形的性质,熟练掌握性质及定理是解本题的关键.23.(14分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了名学生,条形统计图中m=,n=;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?【知识考点】全面调查与抽样调查;用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)由B选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m、n的值;(2)先求出C选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.【解答过程】解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1﹣45%)=60500(名).【总结归纳】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(14分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元)15 20 30 …y(袋)25 20 10 …若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?【知识考点】二次函数的应用.【思路分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【解答过程】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400整理得w=﹣(x﹣25)2+225∵﹣1<0∴当x=2时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【总结归纳】本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.(12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}==4,min{1,2,﹣3}=﹣3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;(2)若min(3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为;(3)若M{﹣2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.【知识考点】解一元一次不等式组;特殊角的三角函数值;算术平均数.【思路分析】(1)①根据平均数的定义计算即可.②求出三个数中的最小的数即可.(2)根据不等式解决问题即可.(3)构建方程即可解决问题.(4)把问题转化为不等式组解决即可.【解答过程】解:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;故答案为:,.(2)∵min(3﹣2x,1+3x,﹣5}=﹣5,∴,解得﹣2≤x≤4,故答案为﹣2≤x≤4.(3)∵M{﹣2x,x2,3}=2,∴=2,解得x=﹣1或3.(4)∵M{2,1+x,2x}=min{2,1+x,2x},又∵=x+1,∴,解得1≤x≤1,∴x=1.【总结归纳】本题考查不等式组,平均数,最小值等知识,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.26.(16分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P 为第二象限内抛物线上的动点.(1)抛物线的解析式为,抛物线的顶点坐标为;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即可求解;(2)S△CPD:S△BPD=1:2,则BD=BC=×=2,即可求解;(3)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;(4)利用S四边形BOCP=S△OBC+S△PBC=8,即可求解.【解答过程】解:(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即:﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①,顶点坐标为(﹣1,4);(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×=2,y D=BDsin∠CBO=2,则点D(﹣1,2);(3)如图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=﹣x﹣1…②,联立①②并解得:x=(舍去正值),故点P(,);(4)不存在,理由:连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,﹣x2﹣2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC=×3×3+(﹣x2﹣2x+3﹣x﹣3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P.【总结归纳】本题考查的是二次函数综合运用,涉及到一次函数、一元二次方程应用、图象的面积计算等,难度不大.。
贵州省贵阳市2019-2020学年第三次中考模拟考试数学试卷含解析

贵州省贵阳市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图所示的四边形,与选项中的一个四边形相似,这个四边形是( )A .B .C .D .2.在半径等于5 cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为 A .60°B .120°C .60°或120°D .30°或120°3.实数4的倒数是( ) A .4B .14C .﹣4D .﹣144.将一副三角尺(在Rt ABC ∆中,090ACB ∠=,060B ∠=,在Rt EDF ∆中,090EDF ∠=,045E ∠=)如图摆放,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C ,将EDF ∆绕点D 顺时针方向旋转α(00060α<<),DE '交AC 于点M ,DF '交BC 于点N ,则PMCN的值为( )A .3B .3 C .3 D .125.如图,已知▱ABCD 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么S △AFE :S 四边形FCDE 为( )A .1:3B .1:4C .1:5D .1:66191的值为( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间7.如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE=FD ,连接BE 、CF 、BD ,CF 与BD 交于点H ,连接DH ,下列结论正确的是( )①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE ④S △HDG :S △HBG =tan ∠DAG ⑤线段DH 的最小值是25﹣2A .①②⑤B .①③④⑤C .①②④⑤D .①②③④8.点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)在反比例函数y= 1x的图象上,若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 39.2cos 30°的值等于( ) A .1B .2C .3D .210.分式方程()22111x x x -++=1的解为( ) A .x=1 B .x=0C .x=﹣23D .x=﹣111.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过912.如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A =60°)按如图所示放置.若∠1=55°,则∠2的度数为( )A .105°B .110°C .115°D .120°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一组数据10,10,9,8,x 的平均数是9,则这列数据的极差是_____. 14.对于函数n m y x x =+,我们定义11n m y nx mx --'=+(m 、n 为常数). 例如42y x x =+,则342y x x '=+. 已知:()322113y x m x m x =+-+.若方程0y '=有两个相等实数根,则m 的值为__________. 15.已知函数y=|x 2﹣x ﹣2|,直线y=kx+4恰好与y=|x 2﹣x ﹣2|的图象只有三个交点,则k 的值为_____. 16.已知一个正六边形的边心距为3,则它的半径为______ . 17.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由 个组成的,依此,第n 个图案是由 个组成的.18.如图,在平面直角坐标系中,⊙P 的圆心在x 轴上,且经过点A (m ,﹣3)和点B (﹣1,n ),点C 是第一象限圆上的任意一点,且∠ACB=45°,则⊙P 的圆心的坐标是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)已知:如图,∠ABC=∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线. 求证:AB=DC .20.(6分)已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x 轴、y 轴交于点B ,A ,与反比例函数的图象分别交于点C,D,CE⊥x轴于点E,tan∠ABO=12,OB=4,OE=1.(1)求该反比例函数的解析式;(1)求三角形CDE的面积.21.(6分)计算:(﹣3)0﹣|﹣3|+(﹣1)2015+(12)﹣1.22.(8分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.23.(8分)如图,已知△ABC中,AB=AC=5,cosA=35.求底边BC的长.24.(10分)如图,在平面直角坐标系中,圆M经过原点O,直线364y x=--与x轴、y轴分别相交于A,B两点.(1)求出A,B两点的坐标;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得S △PDE=110S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.25.(10分)如图,方格纸中每个小正方形的边长都是1个单位长度,ABC ∆在平面直角坐标系中的位置如图所示.(1)直接写出ABC ∆关于原点O 的中心对称图形111A B C ∆各顶点坐标:1A ________1B ________1C ________;(2)将ABC ∆绕B 点逆时针旋转90︒,画出旋转后图形22A BC ∆.求ABC ∆在旋转过程中所扫过的图形的面积和点C 经过的路径长.26.(12分)4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:(1)初三•二班跑得最快的是第 接力棒的运动员; (2)发令后经过多长时间两班运动员第一次并列?27.(12分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x 的函数解析式为()76(120)2030mx m x x n x x -≤<⎧⎪⎨≤≤⎪⎩,为整数,为整数 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W 元(利润=销售收入﹣成本).m= ,n= ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.【详解】解:作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,22+=5,AE BE∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选D.【点睛】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.2.C【解析】【分析】根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD 的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD 的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.【详解】如图所示,∵OD⊥AB,∴D为AB的中点,即53 2在Rt△AOD中,OA=5,53 2∴sin∠AOD=5332=52,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=12∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.3.B【解析】【分析】根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.【详解】解:实数4的倒数是:1÷4=14.故选:B.【点睛】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1. 4.C 【解析】 【分析】先根据直角三角形斜边上的中线性质得CD=AD=DB ,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM ∽△CDN ,得到PM CN =PD CD,然后在Rt △PCD 中利用正切的定义得到tan ∠PCD=tan30°=PDCD ,于是可得PM CN 【详解】∵点D 为斜边AB 的中点, ∴CD=AD=DB ,∴∠ACD=∠A=30°,∠BCD=∠B=60°, ∵∠EDF=90°, ∴∠CPD=60°, ∴∠MPD=∠NCD ,∵△EDF 绕点D 顺时针方向旋转α(0°<α<60°), ∴∠PDM=∠CDN=α, ∴△PDM ∽△CDN , ∴PM CN =PD CD, 在Rt △PCD 中,∵tan ∠PCD=tan30°=PDCD,∴PM CN =tan30° 故选:C . 【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质. 5.C 【解析】 【分析】根据AE ∥BC ,E 为AD 中点,找到AF 与FC 的比,则可知△AEF 面积与△FCE 面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.【详解】解:连接CE,∵AE∥BC,E为AD中点,∴12 AE AFBC FC==.∴△FEC面积是△AEF面积的2倍.设△AEF面积为x,则△AEC面积为3x,∵E为AD中点,∴△DEC面积=△AEC面积=3x.∴四边形FCDE面积为1x,所以S△AFE:S四边形FCDE为1:1.故选:C.【点睛】本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.6.C【解析】分析:根据被开方数越大算术平方根越大,可得答案.161925,∴119<5,∴319﹣1<1.故选C.点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出119<5是解题的关键,又利用了不等式的性质.7.B【解析】【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【详解】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同理可证:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.取AB的中点O,连接OD、OH.∵正方形的边长为4,∴AO=OH=12×4=1,由勾股定理得,224225+=由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小5.无法证明DH平分∠EHG,故②错误,故①③④⑤正确.故选B.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.8.D【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.【详解】∵反比例函数y=1x中,k=1>0,∴此函数图象的两个分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,点C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y随x的增大而减小,∴y1>y2,∴y2<y1<y1.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.9.C【解析】分析:根据30°角的三角函数值代入计算即可.详解:2cos30°故选C.点睛:此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键. 10.C【解析】【分析】首先找出分式的最简公分母,进而去分母,再解分式方程即可.【详解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-23,检验:当x=-23时,(x+1)2≠0,故x=-23是原方程的根.故选C.【点睛】此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.11.D【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为35,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为12,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为14,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为13,符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.12.C【解析】【分析】如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO即可解决问题.【详解】如图,对图形进行点标注.∵直线a ∥b ,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】先根据平均数求出x ,再根据极差定义可得答案.【详解】 由题意知101098x 5++++=9, 解得:x=8,∴这列数据的极差是10-8=1,故答案为1.【点睛】本题主要考查平均数和极差,熟练掌握平均数的计算得出x 的值是解题的关键.14.12【解析】分析:根据题目中所给定义先求y ',再利用根与系数关系求m 值.详解:由所给定义知,2221y x m x m '=+-+,若22210x m x m +-+=,22414m m =--⨯n ()=0,解得m=12. 点睛:一元二次方程的根的判别式是()200ax bx c a ++=≠,△=b 2-4ac,a,b,c 分别是一元二次方程中二次项系数、一次项系数和常数项.△>0说明方程有两个不同实数解,△=0说明方程有两个相等实数解,△<0说明方程无实数解.实际应用中,有两种题型(1)证明方程实数根问题,需要对△的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.15.1﹣或﹣1【解析】【分析】直线y=kx+4与抛物线y=-x 1+x+1(-1≤x≤1)相切时,直线y=kx+4与y=|x 1-x-1|的图象恰好有三个公共点,即-x 1+x+1=kx+4有相等的实数解,利用根的判别式的意义可求出此时k 的值,另外当y=kx+4过(1,0)时,也满足条件.【详解】解:当y=0时,x 1-x-1=0,解得x 1=-1,x 1=1,则抛物线y=x 1-x-1与x 轴的交点为(-1,0),(1,0),把抛物线y=x 1-x-1图象x 轴下方的部分沿x 轴翻折到x 轴上方,则翻折部分的抛物线解析式为y=-x 1+x+1(-1≤x≤1),当直线y=kx+4与抛物线y=-x 1+x+1(-1≤x≤1)相切时,直线y=kx+4与函数y=|x 1-x-1|的图象恰好有三个公共点,即-x 1+x+1=kx+4有相等的实数解,整理得x 1+(k-1)x+1=0,△=(k-1)1-8=0,解得k=1± ,所以k 的值为.当<-1不符合题意,舍去.当y=kx+4过(1,0)时,k=-1,也满足条件,故答案为或-1.【点睛】本题考查了二次函数与几何变换:翻折变化不改变图形的大小,故|a|不变,利用顶点式即可求得翻折后的二次函数解析式;也可利用绝对值的意义,直接写出自变量在-1≤x≤1上时的解析式。
【附5套中考模拟试卷】贵州省贵阳市2019-2020学年中考数学模拟试题(4)含解析

A.35°B.45°C.55°பைடு நூலகம்.65°
9.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是( )
A.抛物线开口向下
B.抛物线与x 轴的交点为(﹣1,0),(3,0)
C.当x=1时,y有最大值为0
A.1B. C. D.
3.计算: 得( )
A.- B.- C.- D.
4.已知 是二元一次方程组 的解,则m+3n的值是()
A.4B.6C.7D.8
5.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为( )
A.0.4×108B.4×108C.4×10﹣8D.﹣4×108
电动车
私家车
公共交通
自行车
步行
其他
某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图
根据以上信息,回答下列问题:参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.
21.(6分)先化简,再求值:( )÷ ,其中a= +1.
22.(8分)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类
A
B
C
D
E
F
贵州省贵阳市中考适应性数学试卷
贵州省贵阳市2019年中考适应性数学试卷参考答案与试题解析一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共30分)1.(3分)(2019•贵阳模拟)在﹣3,0,5,2这四个数中,最大的数为()A. 0 B. 5 C. 2 D.﹣3分析:根据正数大于零,零大于负数,可得答案.解答:解:﹣3<0<2<5,故选:B.点评:本题考查了有理数比较大小,正数大于零,零大于负数.2.(3分)如图,AB∥CD,AD平分∠BAC,且∠C=80°,则∠D的度数为()A. 50°B. 60°C. 70°D. 100°考点:平行线的性质;角平分线的定义.分析:根据角平分线的定义可得∠BAD=∠CAD,再根据两直线平行,内错角相等可得∠BAD=∠D,从而得到∠CAD=∠D,再利用三角形的内角和定理列式计算即可得解.解答:解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵AB∥CD,∴∠BAD=∠D,∴∠CAD=∠D,在△ACD中,∠C+∠D+∠CAD=180°,∴80°+∠D+∠D=180°,解得∠D=50°.故选A.点评:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并准确识图是解题的关键.3.(3分)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组的解集,再在数轴上表示出来即可.解答:解:有①得:x>﹣1;有②得:x≤1;所以不等式组的解集为:﹣1<x≤1,在数轴上表示为:故选C.点评:本题考查的是数轴上表示不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别,这是此题的易错点.4.(3分)下列几何体中,正视图、左视图、俯视图完全相同的是()A.圆柱B.圆锥C.棱锥D.球考点:简单几何体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形.解答:解:A、圆柱的三视图分别为长方形,长方形,圆,不符合题意;B、圆锥的三视图分别为三角形,三角形,圆及圆心,不符合题意;C、棱锥的三视图分别为三角形,三角形,三角形及中心与顶点的连线,不符合题意;D、球的三视图均为圆,符合题意;故选D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.(3分)(2019•贵阳模拟)在今年贵阳市中考体育考试中,某小组7名考生“一分钟跳绳”的成绩分别为(单位:个/分):179,183,182,181,183,183,182.这组数据的众数和中位数分别为()A. 182,182 B. 183,182 C. 183,182.5 D. 182,182.5考点:众数;中位数.分析:根据众数及中位数的定义求解.解答:解:将数据从小到大排列为:179,181,182,182,183,183,183,众数为183,中位数为182.故选B.点评:本题考查了众数及中位数的知识,属于基础题,关键是掌握众数及中位数的定义.6.(3分)(2019•贵阳模拟)已知反比例函数的图象位于第一、第三象限,则k的值可以是()A. 0 B. 1 C. 2 D. 3考点:反比例函数的性质.专题:探究型.分析:先根据反比例函数的图象位于第一、第三象限得出关于k的不等式,求出k的取值范围,在此取值范围内找出符合条件的k的值即可.解答:解:∵反比例函数的图象位于第一、第三象限,∴k﹣2>0,解得k>2.∴k的值可以是3.故选D.点评:本题考查的是反比例函数的性质,即反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限.7.(3分)(2019•贵阳模拟)如图,小颖从山脚下的点A走了100米后到达山顶的点B,已知点B到山脚的垂直距离为60米,则sin∠ABC的值为()A.B.C.D.考点:解直角三角形的应用-坡度坡角问题.分析:首先利用勾股定理求得AC的长,然后利用正弦函数的定义求解即可.解答:解:由题意得:AB=100米,BC=60米,根据勾股定理得:AC===80米,故sin∠ABC===,故选B.点评:本题考查了解直角三角形的应用,解决本题的关键是从实际问题中整理出直角三角形.8.(3分)盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是()A.B.C.D.考点:概率公式.分析:先确定盒子里全部笔芯的总数及黑色笔芯的支数,再根据概率公式求解即可.解答:解:因为全部是5支笔,2支黑色笔芯,所以从中任意拿出一支笔芯,拿出黑色笔芯的概率是.故选C.点评:明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.9.(3分)(2019•贵阳模拟)如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D 向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题;动点型.分析:要找出准确反映s与x之间对应关系的图象,需分析在不同阶段中s随x变化的情况.解答:解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选C.点评:本题以动态的形式考查了分类讨论的思想,函数的知识和等腰直角三角形,具有很强的综合性.10.(3分)(2019•贵阳模拟)我们规定:连接一个几何图形上任意两点的线段中,最长的线段称为这个几何图形的直径.根据此规定,如图(正方形、菱形、红十字图形、扇形)中“直径”最小的是()A. B.C. D.考点:正方形的性质;勾股定理;菱形的性质.分析:根据正方形的对角线等于边长的倍,菱形的性质,勾股定理求出各选项中最长的两点间的距离,然后比较即可得解.解答:解:A、“直径”=2,B、“直径”=2×2×=2,C、“直径”==,D、“直径”=2×2×=2,∵2<<2,∴“直径”最小的是正方形.故选A.点评:本题考查了正方形的性质,解直角三角形,勾股定理,读懂题目信息并求出各图形的“直径”是解题的关键,要注意D选项图形的“直径”是过弧两端点的弦.二、填空题(每小题4分,共20分)11.(4分)(2019•贵阳模拟)2019年春节长假期间,孔学堂举办的春节文化庙会迎来游览高峰,据统计,庙会期间共计接待游客近103000人次.103000用科学记数法表示为1.03×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将103000用科学记数法表示为:1.03×105.故答案为:1.03×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4分)(2019•贵阳模拟)在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有3个黑球,从袋中随机摸出一球,记下其颜色,把它放回袋中,搅匀后,再摸出一球,…通过多次试验后,发现摸到黑球的频率稳定于0.3,则n的值大约是10.考点:利用频率估计概率.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解答:解:由题意可得,=0.3,解得,n=10.故估计n大约有10个.故答案为:10.点评:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黑球的频率得到相应的等量关系.13.(4分)(2019•贵阳模拟)如图,AB是⊙O的直径,点C在⊙O上,.动点P 在弦BC上,则∠PAB可能为30度(写出一个符合条件的度数即可).考点:圆周角定理;圆心角、弧、弦的关系.专题:开放型.分析:首先连接OC,AC,由AB是⊙O的直径,点C在⊙O上,,即可求得∠BOC的度数,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BAC的度数,继而可求得答案.解答:解:连接OC,AC,∵AB是⊙O的直径,点C在⊙O上,,∴∠BOC=90°,∴∠BAC=∠BOC=45°,∵∠PAB<∠BAC,∴∠PAB<45°.∴∠PAB可能为30°.此题答案不唯一,如30°.故答案为:30.点评:此题考查了圆周角定理与圆心角、弧的关系.此题难度不大,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用,注意掌握辅助线的作法.14.(4分)(2019•贵阳模拟)已知=1,则+x﹣1的值为2.考点:分式的值.分析:由求得x的值,代入后面的代数式即可得到答案.解答:解:由=1,得:x=2,经检验x=2是原方程的解.将x=2代入+x﹣1得:原式=1+2﹣1=2.故答案为2.点评:本题考查了分式方程的解法,在解方程中要注意对根进行检验.15.(4分)(2019•贵阳模拟)如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯,若把甲杯中的液体全部倒入乙杯,则图中点P与液面的距离是6cm.考点:解直角三角形的应用.专题:应用题.分析:首先根据液体的体积相等可求得液体在乙中的高度,在Rt△ABP中,求出CP,继而可求出乙杯中的液面与图中点P的距离.解答:解:甲液体的体积等于液体在乙中的体积,设乙杯中水深为xcm,则AP=AB=4cm,则π×(2)2×16=π×(4)2×x,解得:x=4.在Rt△ABP中,已知AP=4 cm,AB=8 cm,∴BP=12cm,∴CP=6cm,∴乙杯中的液面与图中点P的距离是16﹣6﹣4=6(cm).故答案为:6cm.点评:此题主要考查了解直角三角形的应用,是一道圆柱与解直角三角形的综合题,要求乙杯中的液面与图中点P的距离,就要求直角三角形中的高和乙杯中的液体的高度.三、解答题16.(8分)(2019•贵阳模拟)先化简,再求值:÷,其中a是﹣2<a<3之间的整数.考点:分式的化简求值.专题:计算题.分析:先把分子分母分解因式和除法运算化为乘法运算,再约分得到原式=,由于a 是﹣2<a<3之间的整数,而a不能为0、±1,所以把a=2代入计算.解答:解:原式=•=,当a=2时,原式==2.点评:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.17.(10分)图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.考点:条形统计图;折线统计图.分析:(1)根据图①可得,1235月份的销售总额,再用总的销售总额减去这四个月的即可;(2)由图可知用第5月的销售总额乘以16%即可;(3)分别计算出4月和5月的销售额,比较一下即可得出答案.解答:解:(1)410﹣(100+90+65+80)=410﹣335=75;如图:(2)商场服装部5月份的销售额是80万元×16%=12.8万元;(3)4月和5月的销售额分别是75万元和80万元,服装销售额各占当月的17%和16%,则为75×17%=12.75万元,80×16%=12.8万元,故小刚的说法是错误的.点评:本题是统计题,考查了条形统计图和折线统计图,是基础知识要熟练掌握.18.(10分)(2019•贵阳模拟)如图,在△ABC中,点O在AB边上,过点O作BC的平行线交∠ABC的平分线于点D,过点B作NE⊥BD交直线OD于点E.(1)求证:OE=OD;(2)当点O在AB的什么位置时,四边形BDAE是矩形?说明理由.考点:矩形的判定;等腰三角形的判定与性质.专题:常规题型.分析:(1)根据角平分线和等腰三角形腰长相等性质证明OB=OD,再根据直角三角形中线的性质即可判定O点为DE的中点,即OE=OD;(2)设定四边形BDAE为矩形,可求出Rt△AEB中,O点为斜边AB的中点.解答:解:(1)∵BD是∠ABC的角平分线,∴∠ABD=∠DBC;∵ED∥BC,∴∠ODB=∠DBC=∠ABD,∴△OBD为等腰三角形,∴OB=OD,在Rt△EBD中,OB=OD,那么O就是斜边ED的中点.∴OE=OD;(2)∵四边形BDAE为矩形,∴∠AEB为直角,△AEB为直角三角形;∵四边形BDAE为矩形,∴OA=OB=OE=OD,∵Rt△AEB中,OE=OA=OB,∴O为斜边AB的中点,答:O为AB的中点时,四边形BDAE为矩形.点评:考查了矩形的判定和等腰三角形的判定与性质,用等腰三角形腰长相等和直角三角形斜边中线是斜边的一半可解本题,熟练掌握直角三角形和等腰三角形的性质就可解题.19.(8分)(2019•贵阳模拟)在一次海面搜救行动中,我国的海巡搜救船在某海域的A,B 两处探测到C处有疑似飞机黑匣子的脉冲信号,已知A,B两处相距2700米,探测线EC,FC与海平面所在直线GH的夹角分别是32°和45°,试确定疑似脉冲信号所在点C与GH的距离,(精确到0.1米)考点:解直角三角形的应用.分析:过C作CD垂直AB于D点,设CD=x,由∠CAB=30°,∠CBD=45°,则BD=x,AC=2x,在Rt△ACD中,由勾股定理得:(2700+x)2+x2=(2x)2,解得x的值即可.解答:解:过C作CD垂直AB于D点,设CD为x,在Rt△ACD与Rt△BCD中,∠CAD=30°,∠CBD=45°,AC=2CD=2x,AD=AB+CD=2700+x,∴在Rt△ACD中有:(2700+x)2+x2=(2x)2,解得x1≈4687.2,x2≈﹣988.2(舍去).答:确定疑似脉冲信号所在点C与GH的距离为4687.2米.点评:本题考查解直角三角形的应用,要求学生能构造直角三角形并解直角三角形.20.(10分)(2019•贵阳模拟)如图,均匀的正四面体的各面依次标有1,2,3,4四个数.(1)同时抛掷两个这样的四面体,它们着地一面的数字相同的概率是多少?(2)现在有一张周杰伦演唱会的门票,小敏和小亮用抛掷这两个四面体的方式来决定谁获得门票,规则是:同时抛掷这两个四面体,如果着地一面的数字之积为奇数小敏胜;如果着地一面的数字之积为偶数小亮胜(胜方获得门票),如果是你,你愿意充当小敏还是小亮,说明理由.考点:列表法与树状图法;概率公式.专题:计算题.分析:(1)先画树状图展示所有16种等可能的结果数,再找着地一面的数字相同的结果数,然后根据概率公式计算;(2)分别计算小敏胜的概率和小亮胜的概率,然后根据他们的概率大小进行判断.解答:解:(1)画树状图为:共有16种等可能的结果数,其中着地一面的数字相同的占4种,所以着地一面的数字相同的概率==;(2)充当小敏或小亮到可以.理由如下:共有16种等可能的结果数,着地一面的数字之积为奇数有8种,着地一面的数字之积为偶数有8种,所以小敏胜的概率==;小亮胜的概率==,所以他们获得门票的机会相等.点评:本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.21.(10分)供电局的电力维修工甲、乙两人要到45千米远的A地进行电力抢修.甲骑摩托车先行,t(t≥0)小时后乙开抢修车载着所需材料出发.(1)若t=(小时),抢修车的速度是摩托车的1.5倍,且甲、乙两人同时到达,求摩托车的速度;(2)若摩托车的速度是45千米/小时,抢修车的速度是60千米/小时,且乙不能比甲晚到则t的最大值是多少?考点:分式方程的应用.专题:应用题.分析:(1)求的速度,路程明显,一定是根据时间来列等量关系,本题的关键描述语是:甲、乙两人同时到达.等量关系为:摩托车所用的时间﹣抢修车所用的时间=;(2)关系式为:抢修车所用的时间+t≤摩托车所用的时间.解答:解:(1)设摩托车的速度是x千米/时,则抢修车的速度是1.5x千米/时,由题意得﹣=,(2分)解之得x=40.(3分)经检验,x=40千米/时是原方程的解且符合题意.答:摩托车的速度为40千米/时.(4分)(2)由题意得t+≤,(6分)解之得t≤.∴0≤t≤.(7分)∴t最大值是(时)答:乙最多只能比甲迟小时出发.(8分)点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.本题用到的等量关系是:路程=速度×时间.22.(10分)(2019•贵阳模拟)平行四边形ABCD在平面直角坐标系中的位置如图所示,其中点A(﹣4,0),B(2,0),C(3,3).反比例函数y=的图象经过点C.(1)求反比例函数的表达式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请判断点D′是否在反比例函数y=的图象上,并说明理由.考点:反比例函数综合题.分析:(1)直接利用C点坐标,结合待定系数法求反比例函数解析式得出即可;(2)利用平行四边形的性质得出D′点坐标,进而代入函数解析式得出答案.解答:解:(1)∵C(3,3),反比例函数y=的图象经过点C,∴3=,解得:k=9,∴反比例函数的表达式为:y=;(2)点D′在反比例函数y=的图象上;理由:∵平行四边形ABCD,点A(﹣4,0),B(2,0),C(3,3),∴D(﹣3,3),∵将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,∴D′(﹣3,﹣3),代入y=得:﹣3=,符合题意,∴点D′在反比例函数y=的图象上.点评:此题主要考查了反比例函数综合以及平行四边形的性质,根据题意得出D′点坐标是解题关键.23.(10分)(2019•贵阳模拟)如图,AC是⊙O的直径,点B,D在⊙O上,点E在⊙O 外,∠EAB=∠D=30°.(1)∠C的度数为30°;(2)求证:AE是⊙O的切线;(3)当AB=3时,求图中阴影部分的面积(结果保留根号和π).考点:切线的判定;扇形面积的计算.专题:计算题.分析:(1)直接根据圆周角定理得到∠C=∠D=30°;(2)先根据圆周角定理由AC是⊙O的直径得∠ABC=90°,则∠BAC=60°,所以∠EAC=∠EAB+∠BAC=90°,于是可根据切线的判定定理得到AE是⊙O的切线;(3)连结OB,先判断△OAB为等边三角形,则OA=3,∠AOB=60°,所以∠BOC=120°,然后利用图中阴影部分的面积=S△AOB+S扇形BOC和扇形的面积公式、等边三角形的面积公式计算即可.解答:(1)解:∠C=∠D=30°;故答案为30°;(2)证明:∵AC是⊙O的直径,∴∠ABC=90°,∴∠BAC=60°,而∠EAB=30°,∴∠EAC=∠EAB+∠BAC=90°,∴CA⊥AE,∴AE是⊙O的切线;(3)解:连结OB,如图,∵∠BAC=60°,AB=3,∴△OAB为等边三角形,∴OA=3,∠AOB=60°,∴∠BOC=120°,∴图中阴影部分的面积=S△AOB+S扇形BOC=×32+=+3π.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和扇形面积的计算.24.(12分)(2019•贵阳模拟)将一副直角三角板按图1的方式放置,三角板ACB的直角顶点A在三角板EDF的直角边DE上,点C、D、B、F在同一直线上,点D、B是CF的三等分点,CF=6.(1)三角板ACB固定不动,将三角板EDF绕点D逆时针旋转,使DE与AC交于点M,DF与AB交于点N,当EF∥CB时(如图2),DF旋转的度数为30°;(2)求图2中的四边形AMDN的周长;(3)将图2中的三角板EDF绕点D继续逆时针旋转15°得图3,猜想图3中的四边形AMDN 是什么四边形,并证明你的猜想.考点:几何变换综合题.分析:(1)DF转过的角度是∠FDB,根据EF∥CB,就可以得到∠FDB=∠F,判断A是否在EF上,只要求出直角△DEF的斜边EF上的高就可以;(2)根据三角形全等得出CM=DN,AM=BN,四边形的周长就是AB和AC的和.(3)首先求出旋转的角度,然后可以进行判断.解答:解:(1)∵EF∥CB,∴∠FDB=∠F=30°.即DF旋转的度数是30°,(2)如图2,∵∠CDM+∠ADE=90°,∠ADN+∠ADE=90°,∴∠CDM=∠ADN,在△CDM与△ADN中,,∴△CDM≌△ADN(ASA),∴CM=DN,同理可证:AM=BN,∴AM+MD+DN+AN=AM+MC+AN+NB=AC+AB=2+2=4,∴四边形AMDN的周长为4.(3)在图2的位置,将三角板EDF绕点D继续逆时针旋转15°,如图3,∴∠FDB=45°,∴∠FDB=∠C,∴AC∥DF,∵∠EDF=∠BAC=90°,∴∠AMD=∠EDF=90°,∠AND=∠CAB=90°,∵∠DAB=45°,∴AN=DN,∴四边形AMDN是正方形.点评:本题是一道需要把旋转角的概念和直角三角形的性质结合求解的综合题,考查学生综合运用数学知识的能力.正确确定旋转角是解答本题的关键.25.(12分)(2019•贵阳模拟)如图,在平面直角坐标系中,四边形ABCD是菱形,顶点A,C,D均在坐标系轴上,且点A的坐标为(﹣2,0),点D的坐标为(3,0).过点A,C,D的抛物线为y1=ax2+bx+c,(1)求抛物线y1=ax2+bx+c的函数表达式;(2)直线AB的表达式为y2=mx+n,且AB与y1的另一个交点为E,求当y1<y2时,自变量x的取值范围;(3)抛物线y1=ax2+bx+c的顶点为Q,在直线AE的下方,点P为抛物线上的一个动点,当S△AQE=S△APE时,求点P的坐标.考点:二次函数综合题.分析:(1)由y1=ax2+bx+c得出C点坐标为(0,c),根据DC=AD=5列出方程求出c的值,得到C点坐标,将A、C、D三点坐标代入y1=ax2+bx+c,通过待定系数法可求出抛物线的解析式;(2)首先由A、B的坐标确定直线AB的解析式,再求出直线AB与抛物线解析式的两个交点,然后通过观察图象找出抛物线y1在直线y2图象下方时对应的自变量x的取值范围;(3)当S△AQE=S△APE时,根据三角形的面积公式可知点P为经过点Q且与直线AB平行的直线上与抛物线的交点.解答:解:(1)∵抛物线y1=ax2+bx+c过y轴上的点C,∴C点坐标为(0,c).∵四边形ABCD是菱形,点A(﹣2,0),点D(3,0),∴DC=AD=5,∴32+c2=52,∴c=±4(负值舍去),∴C(0,﹣4).∵抛物线y1=ax2+bx+c过点A,C,D,∴,解得.∴抛物线的函数表达式为y1=x2﹣x﹣4;(2)∵四边形ABCD是菱形,∴BC=AD=5,BC∥AD,∵C(0,﹣4),∴B(﹣5,﹣4).将A(﹣2,0)、B(﹣5,﹣4)代入y2=mx+n,得,解得.∴直线AB的解析式为y2=x+.由(1)得:y1=x2﹣x﹣4.则,解得:,,由图可知:当y1<y2时,﹣2<x<5;(3)设经过点Q且与直线AB平行的直线为y=x+t.∵y1=x2﹣x﹣4=(x2﹣x+)﹣﹣4=(x﹣)2﹣,∴顶点Q的坐标为(,﹣).将Q(,﹣)代入y=x+t,得×+t=﹣,解得t=﹣,∴y=x﹣.由,解得,,∴点P的坐标为(,﹣).点评:本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,菱形的性质,三角形的面积,两函数交点坐标的求法.综合性较强,难度适中.利用数形结合、方程思想是解题的关键.。
贵州省贵阳市2019-2020学年中考数学第五次调研试卷含解析
贵州省贵阳市2019-2020学年中考数学第五次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列基本几何体中,三视图都是相同图形的是( )A .B .C .D .2.如图,在Y ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=( )A .2:5B .2:3C .3:5D .3:23.tan60°的值是( )A .3B .32C .33D .124.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,﹣4),顶点C 在x 轴的负半轴上,函数y=k x(x <0)的图象经过菱形OABC 中心E 点,则k 的值为( )A .6B .8C .10D .125.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,下列结论①a <b ;②|b|=|d|;③a+c=a ;④ad >0中,正确的有( )A .4个B .3个C .2个D .1个6.某市2017年国内生产总值(GDP )比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( )A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+7.如图,在△ABC 中,BC=8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,则△ADE 的周长等于( )A .8B .4C .12D .168.如图,在△ABC 中,∠C=90°,∠B=10°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:1.A .1B .2C .1D .49.已知x 1,x 2是关于x 的方程x 2+bx ﹣3=0的两根,且满足x 1+x 2﹣3x 1x 2=5,那么b 的值为( ) A .4 B .﹣4 C .3 D .﹣310.下列分式中,最简分式是( )A .2211x x -+B .211x x +-C .2222x xy y x xy -+-D .236212x x -+ 11.在数轴上到原点距离等于3的数是( )A .3B .﹣3C .3或﹣3D .不知道12.点P (1,﹣2)关于y 轴对称的点的坐标是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在正方形ABCD 中,AD=5,点E ,F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为__________.14.把多项式3x2-12因式分解的结果是_____________.15.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元.16.两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于__.17.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为_____.18.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②3 3FP DFPH CD==;③PD2=PH•CD;④ABCD31=BPDSS∆-正方形,其中正确的是______(写出所有正确结论的序号).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的14时,求线段EF的长.20.(6分)如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:(1)求该区抽样调查人数;(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的圆心角度数;(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?21.(6分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.22.(8分)如图1,已知扇形MON的半径为2,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.23.(8分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.如图1,求证:OE=AD;如图2,连接CE,求证:∠OCE=∠ABD;如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=539,OD=3,求线段CE的长.24.(10分)2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了25%.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.25.(10分)现有A、B两种手机上网计费方式,收费标准如下表所示:计费方式月使用费/元包月上网时间/分超时费/(元/分)A 30 120 0.20B 60 320 0.25设上网时间为x分钟,(1)若按方式A和方式B的收费金额相等,求x的值;(2)若上网时间x超过320分钟,选择哪一种方式更省钱?26.(12分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E 在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.27.(12分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据主视图、左视图、俯视图的定义,可得答案.【详解】球的三视图都是圆,故选C.【点睛】本题考查了简单几何体的三视图,熟记特殊几何体的三视图是解题关键.2.B【解析】【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD∴∠EAB=∠DEF ,∠AFB=∠DFE∴△DEF ∽△BAF∴()2DEF ABF S S DE AB ∆∆=:: ∵DEF ABF S S 425∆∆=::, ∴DE :AB=2:5∵AB=CD ,∴DE :EC=2:3故选B3.A【解析】【分析】根据特殊角三角函数值,可得答案.【详解】tan60°故选:A .【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4.B【解析】【分析】根据勾股定理得到,根据菱形的性质得到AB=OA=5,AB ∥x 轴,求得B (-8,-4),得到E (-4,-2),于是得到结论.【详解】∵点A 的坐标为(﹣3,﹣4),∴,∵四边形AOCB 是菱形,∴AB=OA=5,AB ∥x 轴,∴B (﹣8,﹣4),∵点E 是菱形AOCB 的中心,∴E (﹣4,﹣2),∴k=﹣4×(﹣2)=8,故选B .【点睛】本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键. 5.B【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,①a <b ,故①正确;②|b|=|d|,故②正确;③a+c=a ,故③正确;④ad <0,故④错误;故选B .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键.6.D【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程.详解:设2016年的国内生产总值为1,∵2017年国内生产总值(GDP )比2016年增长了12%,∴2017年的国内生产总值为1+12%; ∵2018年比2017年增长7%, ∴2018年的国内生产总值为(1+12%)(1+7%),∵这两年GDP 年平均增长率为x%, ∴2018年的国内生产总值也可表示为:()21%x +,∴可列方程为:(1+12%)(1+7%)=()21%x +.故选D .点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值.7.A【解析】【详解】∵AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,∴DA=DB ,EA=EC ,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A.8.D【解析】【分析】【详解】①根据作图的过程可知,AD是∠BAC的平分线.故①正确.②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.④∵如图,在直角△ACD中,∠2=10°,∴CD=12 AD.∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC•CD=14AC•AD.∴S△ABC=12AC•BC=12AC•A32D=34AC•AD.∴S△DAC:S△ABC13AC AD?AC AD1344::⎛⎫⎛⎫=⋅⋅=⎪ ⎪⎝⎭⎝⎭.故④正确.综上所述,正确的结论是:①②③④,,共有4个.故选D. 9.A【解析】【分析】根据一元二次方程根与系数的关系和整体代入思想即可得解. 【详解】∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故选A.【点睛】本题主要考查一元二次方程的根与系数的关系(韦达定理),韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.10.A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.11.C【解析】【分析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.12.C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.二、填空题:(本大题共6个小题,每小题4分,共24分.)132【解析】分析:延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF的长.详解:延长AE交DF于G,如图,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC 是直角三角形,可得△AGD 是直角三角形, ∴∠ABE+∠BAE=∠DAE+∠BAE ,∴∠GAD=∠EBA , 同理可得:∠ADG=∠BAE .在△AGD 和△BAE 中,∵EAB GDA AD AB ABE DAG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AGD ≌△BAE (ASA ),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1, 同理可得:GF=1,∴EF=22112+=.故答案为2.点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.14.3(x+2)(x-2) 【解析】 【分析】因式分解时首先考虑提公因式,再考虑运用公式法;多项式3x 2-12因式分解先提公因式3,再利用平方差公式因式分解. 【详解】3x 2-12=3(24x -)=3(2)(2)x x +-. 15.300 【解析】 【分析】设成本为x 元,标价为y 元,根据已知条件可列二元一次方程组即可解出定价. 【详解】设成本为x 元,标价为y 元,依题意得0.75250.920y x y x +=⎧⎨-=⎩,解得250300x y =⎧⎨=⎩故定价为300元. 【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解.16.4或1【解析】∵两圆内切,一个圆的半径是6,圆心距是2,∴另一个圆的半径=6-2=4;或另一个圆的半径=6+2=1,故答案为4或1.【点睛】本题考查了根据两圆位置关系来求圆的半径的方法.注意圆的半径是6,要分大圆和小圆两种情况讨论.17.1【解析】【分析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在△CEM中根据三边关系即可求解.【详解】作AB的中点E,连接EM、CE,在直角△ABC中,22AC BC+2268+,∵E是直角△ABC斜边AB上的中点,∴CE=12AB=5,∵M是BD的中点,E是AB的中点,∴ME=12AD=2,∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,∴最大值为1,故答案为1.【点睛】本题考查了点与圆的位置关系、三角形的中位线定理的知识,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答. 18.①②③ 【解析】 【分析】依据∠FDP=∠PBD ,∠DFP=∠BPC=60°,即可得到△DFP ∽△BPH ;依据△DFP ∽△BPH,可得FP DF PH BP ==BP=CP=CD,即可得到FP DF PH CD ==;判定△DPH ∽△CPD ,可得PH PDPD PC=,即PD 2=PH•CP ,再根据CP=CD ,即可得出PD 2=PH•CD ;根据三角形面积计算公式,结合图形得到△BPD 的面积=△BCP 的面积+△CDP 面积﹣△BCD的面积,即可得出14BPD ABCDS S =V 正方形. 【详解】∵PC=CD ,∠PCD=30°, ∴∠PDC=75°, ∴∠FDP=15°, ∵∠DBA=45°, ∴∠PBD=15°, ∴∠FDP=∠PBD , ∵∠DFP=∠BPC=60°, ∴△DFP ∽△BPH ,故①正确; ∵∠DCF=90°﹣60°=30°, ∴tan ∠DCF=3DF CD =, ∵△DFP ∽△BPH ,∴3FP DF PH BP ==, ∵BP=CP=CD ,∴FP DF PH CD ==,故②正确; ∵PC=DC ,∠DCP=30°, ∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°, ∴∠DHP=∠CDP ,而∠DPH=∠CPD , ∴△DPH ∽△CPD ,∴PH PDPD PC=,即PD2=PH•CP,又∵CP=CD,∴PD2=PH•CD,故③正确;如图,过P作PM⊥CD,PN⊥BC,设正方形ABCD的边长是4,△BPC为正三角形,则正方形ABCD的面积为16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB•sin60°=4×3=23,PM=PC•sin30°=2,∵S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=12×4×23+12×2×4﹣12×4×4=43+4﹣8=43﹣4,∴31BPDABCDSS-=V正方形,故④错误,故答案为:①②③.【点睛】本题考查了正方形的性质、相似三角形的判定与性质、解直角三角形等知识,正确添加辅助线、灵活运用相关的性质定理与判定定理是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.【解析】【分析】(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出BD DF=CE ED,从而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面积等于△ABC的面积的14,求出DH的长,从而利用S△DEF的值求出EF即可【详解】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,证明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴BD DF=CE ED.∵BD=CD,∴CD DF=CE ED,即CD CE=DF ED.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.∵AB=AC,D是BC的中点,∴AD⊥BC,BD=12BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=12•BC•AD=12×3×2=42,S△DEF=14S△ABC=14×42=3.又∵12•AD•BD=12•AB•DH,∴AD BD8624 DHAB105⋅⨯===.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=245.∵S△DEF=12·EF·DG=12·EF·245=3,∴EF=4.【点睛】本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.20.(1)该区抽样调查的人数是2400人;(2)见解析,最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)估计最喜欢读“名人传记”的学生是4896人【解析】【分析】(1)由“科普知识”人数及其百分比可得总人数;(2)总人数乘以“漫画丛书”的人数求得其人数即可补全图形,用360°乘以“其他”人数所占比例可得;(3)总人数乘以“名人传记”的百分比可得.【详解】(1)840÷35%=2400(人),∴该区抽样调查的人数是2400人;(2)2400×25%=600(人),∴该区抽样调查最喜欢“漫画丛书”的人数是600人,补全图形如下:1442400×360°=21.6°,∴最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)从样本估计总体:14400×34%=4896(人), 答:估计最喜欢读“名人传记”的学生是4896人. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比. 21. (1)14;(2)13. 【解析】 【分析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为14; (2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可. 【详解】(1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果, ∴任取一个球,摸出球上的汉字刚好是“美”的概率P=14(2)列表如下: 美 丽 光 明 美 ---- (美,丽) (光,美) (美,明) 丽 (美,丽) ---- (光,丽) (明,丽) 光 (美,光) (光,丽) ---- (光,明) 明(美,明)(明,丽)(光,明)-------根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故 取出的两个球上的汉字恰能组成“美丽”或“光明”的概率13P =. 【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 22.(1)证明见解析;(2) 2=+y x 02<≤x 1422=x .【解析】分析:(1)先判断出∠ABM=∠DOM ,进而判断出△OAC ≌△BAM ,即可得出结论;(2)先判断出BD=DM ,进而得出DM ME BD AE =,进而得出AE=122x -(),再判断出2OA OC DMOEOD OD==,即可得出结论; (3)分三种情况利用勾股定理或判断出不存在,即可得出结论. 详解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM=∠BAM=90°. ∵∠ABM+∠M=∠DOM+∠M ,∴∠ABM=∠DOM . ∵∠OAC=∠BAM ,OC=BM ,∴△OAC ≌△BAM , ∴AC=AM .(2)如图2,过点D 作DE ∥AB ,交OM 于点E . ∵OB=OM ,OD ⊥BM ,∴BD=DM .∵DE ∥AB ,∴DM ME BD AE =,∴AE=EM .∵OM=2,∴AE=122x -(). ∵DE ∥AB ,∴2OA OC DMOE OD OD==, ∴22DM OA y OD OE x =∴=+,.(02x ≤<) (3)(i ) 当OA=OC 时.∵111222DM BM OC x ===.在Rt △ODM 中,222124OD OM DM x =-=-. ∵2121224xDM y OD x x=∴=+-,.解得142x -=,或142x --=(舍). (ii )当AO=AC 时,则∠AOC=∠ACO .∵∠ACO >∠COB ,∠COB=∠AOC ,∴∠ACO >∠AOC ,∴此种情况不存在.(ⅲ)当CO=CA 时,则∠COA=∠CAO=α.∵∠CAO >∠M ,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在. 即:当△OAC 为等腰三角形时,x 的值为142-.点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键.23.(1)证明见解析;(2)证明见解析;(3)CE=13.【解析】【分析】(1)连接OB,证明△ABD≌△OBE,即可证出OE=AD.(2)连接OB,证明△OCE≌△OBE,则∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,则∠OCE=∠ABD.(3)过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,则△ADB≌△MQD,四边形MQOG为平行四边形,∠DMF=∠EDN,再结合特殊角度和已知的线段长度求出CE的长度即可.【详解】解:(1)如图1所示,连接OB,∵∠A=60°,OA=OB,∴△AOB为等边三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE为等边三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD;(2)如图2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∠ABD=∠OBE,∵∠BOA=60°,∴∠EOC=∠BOE =60°,又∵OB=OC,OE=OE,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD;(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB=12AC=AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四边形MQOG为平行四边形,设AD为x,则OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=32,DN∵tan∠BMF,∴tan∠NDE=9,3x+=,解得x=1,∴NE=52,∴DE∴CE故答案为(1)证明见解析;(2)证明见解析;(3)CE【点睛】本题考查圆的相关性质以及与圆有关的计算,全等三角形的性质和判定,第三问构造全等三角形找到与∠BMF相等的角为解题的关键.24.原计划每天安装100个座位.【解析】【分析】根据题意先设原计划每天安装x个座位,列出方程再求解.【详解】解:设原计划每天安装x个座位,采用新技术后每天安装()125%x+个座位,由题意得:()247647624764764125%x x---=+.解得:100x=.经检验:100x=是原方程的解.答:原计划每天安装100个座位.此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.25.(1)x=270或x=520;(2)当320<x<520时,选择方式B更省钱;当x=520时,两种方式花钱一样多;当x>520时选择方式A更省钱.【解析】【分析】(1)根据收取费用=月使用费+超时单价×超过时间,可找出y A、y B关于x的函数关系式;根据方式A和方式B的收费金额相等,分类讨论,列出方程,求解即可.(2)列不等式,求解即可得出结论.【详解】(1)当时,与x之间的函数关系式为:当时,与x之间的函数关系式为:即当时,与x之间的函数关系式为:当时, 与x之间的函数关系式为:即方式A和方式B的收费金额相等,当时,当时,解得:当时,解得:即x=270或x=520时,方式A和方式B的收费金额相等.(2) 若上网时间x超过320分钟,解得320<x<520,当320<x<520时,选择方式B更省钱;解得x=520,当x=520时,两种方式花钱一样多;解得x>520,当x>520时选择方式A更省钱.考查一次函数的应用,列出函数关系式是解题的关键.注意分类讨论,不要漏解.26.(1)∠DOA =100°;(2)证明见解析.【解析】试题分析:(1)根据∠CBA=50°,利用圆周角定理即可求得∠DOA的度数;(2)连接OE,利用SSS证明△EAO≌△EDO,根据全等三角形的性质可得∠EDO=∠EAO=90°,即可证明直线ED与⊙O相切.试题解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;(2)证明:连接OE,在△EAO和△EDO中,AO=DO,EA=ED,EO=EO,∴△EAO≌△EDO,得到∠EDO=∠EAO=90°,∴直线ED与⊙O相切.考点:圆周角定理;全等三角形的判定及性质;切线的判定定理27.(1)证明见解析;(2)BC=;.【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴=.∴BF==.。
【精选3份合集】贵州省贵阳市2019年中考一模数学试卷有答案含解析
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.一次函数y kx b =+满足0kb <,且y 随x 的增大而减小,则此函数的图像一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限解析:C【解析】【分析】y 随x 的增大而减小,可得一次函数y=kx+b 单调递减,k <0,又满足kb<0,可得b>0,由此即可得出答案.【详解】∵y 随x 的增大而减小,∴一次函数y=kx+b 单调递减,∴k<0,∵kb<0,∴b>0,∴直线经过第二、一、四象限,不经过第三象限,故选C .【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k 、b 是常数)的图象和性质是解题的关键.2.如图,三角形纸片ABC ,AB =10cm ,BC =7cm ,AC =6cm ,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长为( )A.9cm B.13cm C.16cm D.10cm解析:A【解析】试题分析:由折叠的性质知,CD=DE,BC=BE.易求AE及△AED的周长.解:由折叠的性质知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).故选A.点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<1解析:C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.4.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限解析:D【解析】【分析】【详解】∵点A(a ,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a ,b)在第四象限,故选D .【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =5,那么点C 的位置可以在( )A .点C 1处B .点C 2处 C .点C 3处D .点C 4处解析:D【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin A =54DC AC AC==5∵在RT△AD 4C 中,D 44C =,AD=8, ∴A 4C 228445+=故答案为D.6.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )A .2、40B .42、38C .40、42D .42、40解析:D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.7.一个正比例函数的图象过点(2,﹣3),它的表达式为( )A .3y -2x =B .2y 3x =C .3y 2x =D .2y -3x = 解析:A【解析】【分析】利用待定系数法即可求解.【详解】设函数的解析式是y=kx ,根据题意得:2k=﹣3,解得:k=32-. ∴ 函数的解析式是:32y x =-. 故选A .8.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒解析:B【解析】【分析】 根据题意可知DE 是AC 的垂直平分线,CD=DA .即可得到∠DCE=∠A,而∠A 和∠B 互余可求出∠A,由三角形外角性质即可求出∠CDA 的度数.解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,故选B.【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.9.甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( )A.甲B.乙C.丙D.都一样解析:B【解析】【分析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.【详解】解:降价后三家超市的售价是:甲为(1-20%)2m=0.64m,乙为(1-40%)m=0.6m,丙为(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此时顾客要购买这种商品最划算应到的超市是乙.故选:B.【点睛】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.10.如图所示的两个四边形相似,则α的度数是( )A.60°B.75°C.87°D.120°解析:C。
【数学】2019年贵州省铜仁市中考真题(解析版)
2019年贵州省铜仁市中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.2019的相反数是()A.B.﹣C.|2019| D.﹣2019 2.如图,如果∠1=∠3,∠2=60°,那么∠4的度数为()A.60°B.100°C.120°D.130°3.今年我市参加中考的学生约为56000人,56000用科学记数法表示为()A.56×103B.5.6×104C.0.56×105D.5.6×10﹣44.某班17名女同学的跳远成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90 人数 2 3 2 3 4 1 1 1这些女同学跳远成绩的众数和中位数分别是()A.1.70,1.75 B.1.75,1.70 C.1.70,1.70 D.1.75,1.725 5.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°6.一元二次方程4x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为()A.12 B.14 C.24 D.218.如图,四边形ABCD为菱形,AB=2,∠DAB=60°,点E、F分别在边DC、BC上,且CE=CD,CF=CB,则S△CEF=()A.B.C.D.9.如图,平行四边形ABCD中,对角线AC、BD相交于点O,且AC=6,BD=8,P是对角线BD上任意一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F.设BP =x,EF=y,则能大致表示y与x之间关系的图象为()A.B.C.D.10.如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②△DFG ≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是()A.2 B.3 C.4 D.5二、填空题:(本大题共8个小题,每小题4分,共32分)11.因式分解:a2﹣9=.12.小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是S小刘2=0.6,S小李2=1.4,那么两人中射击成绩比较稳定的是;13.如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为;14.分式方程=的解为y=.15.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为.16.如图,在△ABC中,D是AC的中点,且BD⊥AC,ED∥BC,ED交AB于点E,BC=7cm,AC=6cm,则△AED的周长等于cm.17.如果不等式组的解集是x<a﹣4,则a的取值范围是.18.按一定规律排列的一列数依次为:﹣,,﹣,,…(a≠0),按此规律排列下去,这列数中的第n个数是.(n为正整数)三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10分)(1)计算:|﹣|+(﹣1)2019+2sin30°+(﹣)0.(2)先化简,再求值:(﹣)÷,其中x=﹣2.20.(10分)如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:BD=CE.21.(10分)某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中1门.某班班主任对全班同学的选课情况进行了调查统计,制成了两幅不完整的统计图(图(1)和图(2)):(1)请你求出该班的总人数,并补全条形图(注:在所补小矩形上方标出人数);(2)在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修羽毛球的概率是多少?22.(10分)如图,A、B两个小岛相距10km,一架直升飞机由B岛飞往A岛,其飞行高度一直保持在海平面以上的h km,当直升机飞到P处时,由P处测得B岛和A岛的俯角分别是45°和60°,已知A、B、P和海平面上一点M都在同一个平面上,且M位于P的正下方,求h(结果取整数,≈1.732)四、(本大题满分12分)23.(12分)如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.五、(本大题满分12分)24.(12分)如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过F作FG⊥BA,垂足为G.(1)求证:FG是⊙O的切线;(2)已知FG=2,求图中阴影部分的面积.六、(本大题满分14分)25.(14分)如图,已知抛物线y=ax2+bx﹣1与x轴的交点为A(﹣1,0),B(2,0),且与y轴交于C点.(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME ⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由.(3)已知点P是直线y=x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标.【参考答案】一、选择题1.D【解析】2019的相反数是﹣2019,故选:D.2.C【解析】∵∠1=∠3,∴a∥b,∴∠5=∠2=60°,∴∠4=180°﹣60°=120°,故选:C.3.B【解析】将56000用科学记数法表示为:5.6×104.故选:B.4.B【解析】由表可知,1.75出现次数最多,所以众数为1.75;由于一共调查了2+3+2+3+1+1+1=17人,所以中位数为排序后的第9人,即:170.故选:B.5.C【解析】一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案,只有630不能被180整除,所以a+b不可能是630°.故选:C.6.B【解析】∵△=(﹣2)2﹣4×4×(﹣1)=20>0,∴一元二次方程4x2﹣2x﹣1=0有两个不相等的实数根.故选:B.7.A【解析】∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=BC,EF=GH=AD,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=7,∴四边形EFGH的周长=7+5=12.故选:A.8.D【解析】∵四边形ABCD为菱形,AB=2,∠DAB=60°∴AB=BC=CD=2,∠DCB=60°∵CE=CD,CF=CB∴CE=CF=∴△CEF为等边三角形∴S△CEF==故选:D.9.A【解析】当0≤x≤4时,∵BO为△ABC的中线,EF∥AC,∴BP为△BEF的中线,△BEF∽△BAC,∴,即,解得y=,同理可得,当4<x≤8时,y=(8﹣x).10.【解析】∵正方形ABCD中,AB=6,E为AB的中点∴AD=DC=BC=AB=6,AE=BE=3,∠A=∠C=∠ABC=90°∵△ADE沿DE翻折得到△FDE∴∠AED=∠FED,AD=FD=6,AE=EF=3,∠A=∠DFE=90°∴BE=EF=3,∠DFG=∠C=90°∴∠EBF=∠EFB∵∠AED+∠FED=∠EBF+∠EFB∴∠DEF=∠EFB∴BF∥ED故结论①正确;∵AD=DF=DC=6,∠DFG=∠C=90°,DG=DG∴Rt△DFG≌Rt△DCG∴结论②正确;∵FH⊥BC,∠ABC=90°∴AB∥FH,∠FHB=∠A=90°∵∠EBF=∠BFH=∠AED∴△FHB∽△EAD∴结论③正确;∵Rt△DFG≌Rt△DCG∴FG=CG设FG=CG=x,则BG=6﹣x,EG=3+x在Rt△BEG中,由勾股定理得:32+(6﹣x)2=(3+x)2解得:x=2∴BG=4∴tan∠GEB==故结论④正确;∵△FHB∽△EAD,且设FH=a,则HG=4﹣2a在Rt△FHG中,由勾股定理得:a2+(4﹣2a)2=22解得:a=2(舍去)或a=∴S△BFG=×4×=2.4故结论⑤错误;故选:C.二、填空题11.(a+3)(a﹣3)【解析】a2﹣9=(a+3)(a﹣3).12.小刘【解析】由于S小刘2<S小李2,且两人10次射击成绩的平均值相等,∴两人中射击成绩比较稳定的是小刘,故答案为:小刘13.100°【解析】∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=100°,故答案为:100°14.-3【解析】去分母得:5y=3y﹣6,解得:y=﹣3,经检验y=﹣3是分式方程的解,则分式方程的解为y=﹣3.故答案为:﹣315.20%【解析】设这两年中投入资金的平均年增长率是x,由题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意舍去).答:这两年中投入资金的平均年增长率约是20%.故答案是:20%.16.10【解析】∵D是AC的中点,且BD⊥AC,∴AB=BC=7cm,AD=AC=3cm,∵ED∥BC,∴AE=BE=AB=3.5cm,ED=BC=3.5cm,∴△AED的周长=AE+ED+AD=10cm.故答案为:10.17.a≥﹣3【解析】解这个不等式组为x<a﹣4,则3a+2≥a﹣4,解这个不等式得a≥﹣3故答案a≥﹣3.18.(﹣1)n•【解析】第1个数为(﹣1)1•,第2个数为(﹣1)2•,第3个数为(﹣1)3•,第4个数为(﹣1)4•,…,所以这列数中的第n个数是(﹣1)n•.故答案为(﹣1)n•.三、简答题19.解:(1)|﹣|+(﹣1)2019+2sin30°+(﹣)0=+(﹣1)+2×+1=+(﹣1)+1+1=;(2)(﹣)÷====,当x=﹣2时,原式=.20.证明:∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAE=90°,∠BAE+∠BAD=90°,∴∠CAE=∠BAD.又AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE(ASA).∴BD=CE.21.解:(1)该班的总人数为12÷24%=50(人),足球科目人数为50×14%=7(人),补全图形如下:(2)设排球为A,羽毛球为B,乒乓球为C.画树状图为:共有12种等可能的结果数,其中有1人选修排球、1人选修羽毛球的占4种,所以恰好有1人选修排球、1人选修羽毛球的概率==,22.解:由题意得,∠A=30°,∠B=45°,AB=10km,在Rt△APM和Rt△BPM中,tan A==,tan B==1,∴AM==h,BM=h,∵AM+BM=AB=10,∴h+h=10,解得:h=15﹣5≈6;答:h约为6km.四、23.解:(1)∵一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3,∴3=﹣,解得:x=﹣4,y=﹣=﹣4,故B(﹣4,3),A(3,﹣4),把A,B点代入y=kx+b得:,解得:,故直线解析式为:y=﹣x﹣1;(2)y=﹣x﹣1,当y=0时,x=﹣1,故C点坐标为:(﹣1,0),则△AOB的面积为:×1×3+×1×4=;(3)不等式kx+b>﹣的解集为:x<﹣4或0<x<3.五、24.(1)证明:连接OF,AO,∵AB=AF=EF,∴==,∴∠ABF=∠AFB=∠EBF=30°,∵OB=OF,∴∠OBF=∠BFO=30°,∴∠ABF=∠OFB,∴AB∥OF,∵FG⊥BA,∴OF⊥FG,∴FG是⊙O的切线;(2)解:∵==,∴∠AOF=60°,∵OA=OF,∴△AOF是等边三角形,∴∠AFO=60°,∴∠AFG=30°,∵FG=2,∴AF=4,∴AO=4,∵AF∥BE,∴S△ABF=S△AOF,∴图中阴影部分的面积==.六、25.解:(1)将A(﹣1,0),B(2,0)分别代入抛物线y=ax2+bx﹣1中,得,解得:∴该抛物线的表达式为:y=x2﹣x﹣1.(2)在y=x2﹣x﹣1中,令x=0,y=﹣1,∴C(0,﹣1)∵点C关于x轴的对称点为C1,∴C1(0,1),设直线C1B解析式为y=kx+b,将B(2,0),C1(0,1)分别代入得,解得,∴直线C1B解析式为y=﹣x+1,设M(t,+1),则E(t,0),F(0,+1)∴S矩形MFOE=OE×OF=t(﹣t+1)=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,S矩形MFOE最大值=,此时,M(1,);即点M为线段C1B中点时,S矩形MFOE最大.(3)由题意,C(0,﹣1),C1(0,1),以C、C1、P、Q为顶点的四边形为平行四边形,分以下两种情况:①C1C为边,则C1C∥PQ,C1C=PQ,设P(m,m+1),Q(m,﹣m﹣1),∴|(﹣m﹣1)﹣(m+1)|=2,解得:m1=4,m2=﹣2,m3=2,m4=0(舍),P1(4,3),Q1(4,5);P2(﹣2,0),Q2(﹣2,2);P3(2,2),Q3(2,0)②C1C为对角线,∵C1C与PQ互相平分,C1C的中点为(0,0),∴PQ的中点为(0,0),设P(m,m+1),则Q(﹣m,+m﹣1)∴(m+1)+(+m﹣1)=0,解得:m1=0(舍去),m2=﹣2,∴P4(﹣2,0),Q4(2,0);综上所述,点P和点Q的坐标为:P1(4,3),Q1(4,5)或P2(﹣2,0),Q2(﹣2,2)或P3(2,2),Q3(2,0)或P4(﹣2,0),Q4(2,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年贵州省贵阳市中考数学试卷以及逐题解析一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分 1.(3分)23可表示为( ) A .32⨯B .222⨯⨯C .33⨯D .33+2.(3分)如图是由4个相同的小立方体搭成的几何体,则它的主视图是( )A .B .C .D .3.(3分)选择计算2222(43)(43)xy x y xy x y -++的最佳方法是( ) A .运用多项式乘多项式法则 B .运用平方差公式 C .运用单项式乘多项式法则D .运用完全平方公式4.(3分)如图,菱形ABCD 的周长是4cm ,60ABC ∠=︒,那么这个菱形的对角线AC 的长是( )A .1cmB .2 cmC .3cmD .4cm5.(3分)如图,在33⨯的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A.19B.16C.29D.136.(3分)如图,正六边形ABCDEF内接于O,连接BD.则CBD∠的度数是()A.30︒B.45︒C.60︒D.90︒7.(3分)如图,下面是甲乙两位党员使用“学习强国APP”在一天中各项目学习时间的统计图,根据统计图对两人各自学习“文章”的时间占一天总学习时间的百分比作出的判断中,正确的是()A.甲比乙大B.甲比乙小C.甲和乙一样大D.甲和乙无法比较8.(3分)数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a 的值是()A.3B.4.5C.6D.189.(3分)如图,在ABC∆中,AB AC=,以点C为圆心,CB长为半径画弧,交AB于点B和点D ,再分别以点B ,D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM交AB 于点E .若2AE =,1BE =,则EC 的长度是( )A .2B .3CD10.(3分)在平面直角坐标系内,已知点(1,0)A -,点(1,1)B 都在直线1122y x =+上,若抛物线21(0)y ax x a =-+≠与线段AB 有两个不同的交点,则a 的取值范围是( )A .2a -…B .98a <C .918a <…或2a -… D .928a -<…二、填空题:每小题4分,共20分。
11.(4分)若分式22x xx-的值为0,则x 的值是 .12.(4分)在平面直角坐标系内,一次函数11y k x b =+与22y k x b =+的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是 .13.(4分)一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m与n的关系是.14.(4分)如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若2OA=,则四叶幸运草的周长是.15.(4分)如图,在矩形ABCD中,4AB=,30∠=︒,点F是对角线AC上的一个动DCA点,连接DF,以DF为斜边作30∠=︒的直角三角形DEF,使点E和点A位于DF两DFE侧,点F从点A到点C的运动过程中,点E的运动路径长是.三、解答题:本大题10小题,共100分.16.(8分)如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当3a=,2b=时,求矩形中空白部分的面积.17.(10分)为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:数据分析:样本数据的平均数、众数和中位数如下表得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.18.(10分)如图,四边形ABCD是平行四边形,延长AD至点E,使D E A D=,连接BD.(1)求证:四边形BCED是平行四边形;(2)若2DA DB==,1cos4A=,求点B到点E的距离.19.(10分)为落实立德树人的根本任务,加强思改、历史学科教师的专业化队伍建设.某校计划从前来应聘的思政专业(一名研究生,一名本科生)、历史专业(一名研究生、一名本科生)的高校毕业生中选聘教师,在政治思想审核合格的条件下,假设每位毕业生被录用的机会相等(1)若从中只录用一人,恰好选到思政专业毕业生的概率是:(2)若从中录用两人,请用列表或画树状图的方法,求恰好选到的是一名思政研究生和一名历史本科生的概率.20.(10分)某文具店最近有A,B两款毕业纪念册比较畅销,近两周的销售情况是:第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A款销售数量是20本,B款销售数量是10本,销售总价是280元.(1)求A,B两款毕业纪念册的销售单价;(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能够买多少本A款毕业纪念册.21.(8分)如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中OP为下水管道口直径,OB为可绕转轴O自由转动的阀门.平时阀门被管道中排出的水冲开,可排出城市污水;当河水上涨时,阀门会因河水压迫而关闭,以防河水倒灌入城中.若阀门的直径100OB OP cm==,OA为检修时阀门开启的位置,且OA OB=.(1)直接写出阀门被下水道的水冲开与被河水关闭过程中POB∠的取值范围;(2)为了观测水位,当下水道的水冲开阀门到达OB位置时,在点A处测得俯角67.5CAB∠=︒,若此时点B恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留小数点后一位)1.41=,sin67.50.92︒=,cos67.50.38︒=,tan67.5 2.41︒=,sin22.50.38︒=,cos22.50.92︒=,tan22.50.41)︒=22.(10分)如图,已知一次函数28y x=-+的图象与坐标轴交于A,B两点,并与反比例函数8yx=的图象相切于点C.(1)切点C的坐标是;(2)若点M为线段BC的中点,将一次函数28y x=-+的图象向左平移(0)m m>个单位后,点C 和点M 平移后的对应点同时落在另一个反比例函数ky x=的图象上时,求k 的值.23.(10分)如图,已知AB 是O 的直径,点P 是O 上一点,连接OP ,点A 关于OP 的对称点C 恰好落在O 上. (1)求证://OP BC ;(2)过点C 作O 的切线CD ,交AP 的延长线于点D .如果90D ∠=︒,1DP =,求O 的直径.24.(12分)如图,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且关于直线1x =对称,点A 的坐标为(1,0)-. (1)求二次函数的表达式;(2)连接BC ,若点P 在y 轴上时,BP 和BC 的夹角为15︒,求线段CP 的长度; (3)当1a x a +剟时,二次函数2y x bx c =++的最小值为2a ,求a 的值.25.(12分)(1)数学理解:如图①,ABC ∆是等腰直角三角形,过斜边AB 的中点D 作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角ABC∆内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB BE AF=+,求ADB∠的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,BN的数量关系.2019年贵州省贵阳市中考数学试卷答案与解析一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分 1.(3分)23可表示为( ) A .32⨯B .222⨯⨯C .33⨯D .33+【分析】直接利用有理数乘方的意义分析得出答案. 【解答】解:23可表示为:33⨯. 故选:C .【点评】此题主要考查了有理数的乘方,正确把握有理数的乘方定义是解题关键. 2.(3分)如图是由4个相同的小立方体搭成的几何体,则它的主视图是( )A .B .C .D .【分析】主视图有2列,每列小正方形数目分别为1,2.【解答】解:如图所示:它的主视图是:.故选:B .【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键. 3.(3分)选择计算2222(43)(43)xy x y xy x y -++的最佳方法是( )A .运用多项式乘多项式法则B .运用平方差公式C .运用单项式乘多项式法则D .运用完全平方公式【分析】直接利用平方差公式计算得出答案.【解答】解:选择计算2222(43)(43)xy x y xy x y -++的最佳方法是:运用平方差公式. 故选:B .【点评】此题主要考查了多项式乘法,正确应用公式是解题关键.4.(3分)如图,菱形ABCD 的周长是4cm ,60ABC ∠=︒,那么这个菱形的对角线AC 的长是( )A .1cmB .2 cmC .3cmD .4cm【分析】由于四边形ABCD 是菱形,AC 是对角线,根据60ABC ∠=︒,而AB BC =,易证BAC ∆是等边三角形,从而可求AC 的长.【解答】解:四边形ABCD 是菱形,AC 是对角线, AB BC CD AD ∴===, 60ABC ∠=︒, ABC ∴∆是等边三角形, AB BC AC ∴==,菱形ABCD 的周长是4cm , 1AB BC AC cm ∴===.故选:A .【点评】本题考查了菱形的性质、等边三角形的判定和性质.菱形的对角线平分对角,解题的关键是证明ABC ∆是等边三角形.5.(3分)如图,在33⨯的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是( )A .19B .16C .29 D .13【分析】直接利用轴对称图形的性质分析得出答案.【解答】解:如图所示:当1,2两个分别涂成灰色,新构成灰色部分的图形是轴对称图形, 故新构成灰色部分的图形是轴对称图形的概率是:2163=. 故选:D .【点评】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键. 6.(3分)如图,正六边形ABCDEF 内接于O ,连接BD .则CBD ∠的度数是( )A .30︒B .45︒C .60︒D .90︒【分析】根据正六边形的内角和求得BCD ∠,然后根据等腰三角形的性质即可得到结论. 【解答】解:在正六边形ABCDEF 中,(62)1801206BCD -⨯︒∠==︒,BC CD =,1(180120)302CBD ∴∠=︒-︒=︒,故选:A .【点评】本题考查的是正多边形和圆、等腰三角形的性质,三角形的内角和,熟记多边形的内角和是解题的关键.7.(3分)如图,下面是甲乙两位党员使用“学习强国APP ”在一天中各项目学习时间的统计图,根据统计图对两人各自学习“文章”的时间占一天总学习时间的百分比作出的判断中,正确的是( )A.甲比乙大B.甲比乙小C.甲和乙一样大D.甲和乙无法比较【分析】由扇形统计图可知,乙党员学习文章时间的百分比是20%,再由条形统计图求出甲党员学习文章的百分比,进行比较即可.【解答】解:由扇形统计图可知,乙党员学习文章时间的百分比是20%,由条形统计图求出甲党员学习文章的百分比是15(1530105)25%÷+++=,所以甲党员的百分比比乙党员的百分比大.故选:A.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.8.(3分)数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a 的值是()A.3B.4.5C.6D.18【分析】根据题意列方程即可得到结论.【解答】解:数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,a a∴-=-,929解得:6a=,故选:C.【点评】本题考查了两点间的距离:两点间的连线段长叫这两点间的距离.也考查了数轴.9.(3分)如图,在ABC=,以点C为圆心,CB长为半径画弧,交AB于点B ∆中,AB AC和点D ,再分别以点B ,D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM交AB 于点E .若2AE =,1BE =,则EC 的长度是( )A .2B .3C D【分析】利用基本作图得到CE AB ⊥,再根据等腰三角形的性质得到3AC =,然后利用勾股定理计算CE 的长.【解答】解:由作法得CE AB ⊥,则90AEC ∠=︒, 213AC AB BE AE ==+=+=,在Rt ACE ∆中,CE = 故选:D .【点评】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).10.(3分)在平面直角坐标系内,已知点(1,0)A -,点(1,1)B 都在直线1122y x =+上,若抛物线21(0)y ax x a =-+≠与线段AB 有两个不同的交点,则a 的取值范围是( )A .2a -…B .98a <C .918a <…或2a -… D .928a -<…【分析】分0a >,0a <两种情况讨论,根据题意列出不等式组,可求a 的取值范围. 【解答】解:抛物线21(0)y ax x a =-+≠与线段AB 有两个不同的交点,∴令211122x ax x +=-+,则22310ax x -+= ∴△980a =->98a ∴<①当0a <时,110111a a ++⎧⎨-+⎩……解得:2a -…2a ∴-…②当0a >时,110111a a ++⎧⎨-+⎩……解得:1a (918)a ∴<… 综上所述:918a <…或2a -…故选:C .【点评】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键. 二、填空题:每小题4分,共20分。