十年高考真题分类汇编(2010-2019) 数学 专题01 集合 (含解析)
2010—2019“十年高考”数学真题分类汇总 复数部分 理数(附参考答案)

A.2+i 【答案】D.
B.2 i
C.5+i
D.5 i
40.(2013 安徽)设 i 是虚数单位, z 是复数 z 的共轭复数,若 z zi 2 2z ,则 z =
A.1+i
B.1 i
C. 1+i
D. 1 i
【答案】A.
41.(2013 广东)若复数 z 满足 iz 2 4i ,则在复平面内, z 对应的点的坐标是
【答案】D.
50.(2012 辽宁)复数 2-i = 2+i
A. 3 4 i 55
B. 3 + 4 i 55
C.1 4 i 5
D.1+ 3 i 5
【答案】A.
51.(2012 湖南)复数 z i(i 1) ( i 为虚数单位)的共轭复数是
A. 1 i
B. 1 i
C.1 i
【答案】A.
【答案】D.
D.1 2i
54.(2012 江西)若复数 z 1 i ( i 为虚数单位) z 是 z 的共轭复数 , 则 z2 z 2 的虚部为
A.0 【答案】A.
B. 1
C.1
D.-2
55.(2012 山东)若复数 z 满足 z2 i 11 7i ( i 为虚数单位),则 z 为
(A) 3
(B) 5
(C)3
(D)5
【答案】(D). 3.(2019 全国 III 理 2)若 z (1 i) 2i ,则 z
A. 1i
B. 1+i
C.1 i
D.1+i
【答案】D.
4.(2019 全国 I 理 2)设复数 z 满足 z i =1,z 在复平面内对应的点为(x,y),则
文科数学2010-2019高考真题《集合与常用逻辑用语》专题试题含答案

文科数学2010-2019高考真题《集合与常用逻辑用语》专题试题含答案第一讲 集合2019年1.(2019全国Ⅰ文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7UA B ===,,,则U B A =I ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,7 2.(2019全国Ⅱ文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅3.(2019全国Ⅲ文1)已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =IA .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2 4.(2019北京文1)已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =(A )(–1,1) (B )(1,2) (C )(–1,+∞) (D )(1,+∞)5.(2019天津文1)设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈<„ ,则()A C B =I U(A ){2}(B ){2,3} (C ){-1,2,3} (D ){1,2,3,4}6.(2019江苏1)已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =I .7.(2019浙江1) 已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B I ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-2010-2018年一、选择题1.(2018全国卷Ⅰ)已知集合{0,2}=A ,{21012}=--,,,,B ,则A B =I A .{0,2} B .{1,2} C .{0} D .{21012}--,,,, 2.(2018浙江)已知全集{1,2,3,4,5}U =,{1,3}A =,则=U A ðA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}3.(2018全国卷Ⅱ)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =IA .{3}B .{5}C .{3,5}D .{}1,2,3,4,5,74.(2018北京)已知集合{|||2}A x x =<,{2,0,1,2}B =-,则A B =IA .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}5.(2018全国卷Ⅲ)已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =IA .{0}B .{1}C .{1,2}D .{0,1,2}6.(2018天津)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-<R ≤,则()A B C =U IA .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}7.(2017新课标Ⅰ)已知集合{|2}A x x =<,{320}B x =->,则A .3{|}2A B x x =<I B .A B =∅IC .3{|}2A B x x =<UD .A B =R U 8.(2017新课标Ⅱ)设集合{1,2,3}A =,{2,3,4}B =则A B U =A .{1,2,3,4}B .{1,2,3}C .{2,3,4}D .{1,3,4}9.(2017新课标Ⅲ)已知集合{1,2,3,4}A =,{2,4,6,8}B =,则A B I 中元素的个数为A .1B .2C .3D .410.(2017天津)设集合{1,2,6}A =,{2,4}B =,{1,2,3,4}C =,则()A B C =U IA .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}11.(2017山东)设集合{}11M x x =-<,{}2N x x =<,则M N =I A .()1,1- B .()1,2- C .()0,2D .()1,2 12.(2017北京)已知U =R ,集合{|22}A x x x =<->或,则U A ð=A .(2,2)-B .(,2)(2,)-∞-+∞UC .[2,2]-D .(,2][2,)-∞-+∞U13.(2017浙江)已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q U =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)14.(2016全国I 卷)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则=A B IA .{1,3}B .{3,5}C .{5,7}D .{1,7}15.(2016全国Ⅱ卷)已知集合{123}A =,,,2{|9}B x x =<,则A B =I A .{210123}--,,,,, B .{21012}--,,,, C .{123},, D .{12},16.(2016全国Ⅲ)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=A .{48},B .{026},,C .{02610},,,D .{0246810},,,,,17.(2015新课标2)已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则A B U =A .)3,1(-B .)0,1(-C .)2,0(D .)3,2(18.(2015新课标1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I中的元素个数为A .5B .4C .3D .219.(2015北京)若集合{|52}A x x =-<<,{|33}B x x =-<<,则A B I =A .{|32}x x -<<B .{|52}x x -<<C .{|33}x x -<<D .{|53}x x -<<20.(2015天津)已知全集{1,2,3,4,5,6}U =,集合{}2,3,5A =,集合{1,3,4,6}B =,则集合U A B =I ðA .{3}B .{2,5}C .{1,4,6}D .{2,3,5}21.(2015陕西)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N U =A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]22.(2015山东)已知集合{}24A x x =<<,{}(1)(3)0B x x x =--<,则A B =IA .()1,3B .()1,4C .()2,3D .()2,423.(2015福建)若集合{}22M x x =-≤<,{}0,1,2N =,则M N I 等于A .{}0B .{}1C .{}0,1,2D .{}0,124.(2015广东)若集合{}1,1M =-,{}2,1,0N =-,则M N =IA .{}0,1-B .{}1C .{}0D .{}1,1-25.(2015湖北)已知集合22{(,)|1,,}A x y x y x y Z =+∈≤,{(,)|||2,B x y x =≤ ||2,,}y x y Z ∈≤,定义集合12121122{(,)|(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .3026.(2014新课标)已知集合A ={x |2230x x --≥},B ={x |-2≤x <2},则A B I =A .[-2, -1]B .[-1,1]C .[-1,2)D .[1,2)27.(2014新课标)设集合M ={0,1,2},N ={}2|320x x x -+≤,则M N I =A .{1}B .{2}C .{0,1}D .{1,2}28.(2014新课标)已知集合A ={-2,0,2},B ={x |2x -x -20=},则A B =IA . ∅B .{}2C .{}0D .{}2-29.(2014山东)设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A IA . [0,2]B .(1,3)C . [1,3)D . (1,4)30.(2014山东)设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B =IA .(0,2]B .(1,2)C .[1,2)D .(1,4) 31.(2014广东)已知集合{1,0,1}M =-,{0,1,2}N =,则M N =UA .{0,1}B .{1,0,2}-C .{1,0,1,2}-D .{1,0,1}-32.(2014福建)若集合{|24}P x x =<≤,{|3}Q x x =≥,则P Q I 等于A .}{34x x ≤<B .}{34x x <<C .}{23x x ≤<D .}{23x x ≤≤33.(2014浙江)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则U A ð= A .∅ B . }2{ C . }5{ D . }5,2{34.(2014北京)已知集合2{|20},{0,1,2}A x x x B =-==,则A B =IA .{0}B .{0,1}C .{0,2}D .{0,1,2}35.(2014湖南)已知集合{|2},{|13}A x x B x x =>=<<,则A B =IA .{|2}x x >B .{|1}x x >C .{|23}x x <<D .{|13}x x <<36.(2014陕西)已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则M N =IA .[0,1]B .[0,1)C .(0,1]D .(0,1)37.(2014江西)设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A B =I ðA .(3,0)-B .(3,1)--C .(3,1]--D .(3,3)-38.(2014辽宁)已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U A B =U ðA .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<39.(2014四川)已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B =IA .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-40.(2014湖北)已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ðA .{1,3,5,6}B .{2,3,7}C .{2,4,7}D . {2,5,7} 41.(2014湖北)设U 为全集,B A ,是集合,则“存在集合C 使得A C ⊆,U B C ⊆ð”是“∅=B A I ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件42.(2013新课标1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则A .A ∩B =∅ B .A ∪B =RC .B ⊆AD .A ⊆B 43.(2013新课标1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =IA .{}14,B .{}23,C .{}916,D .{}12,44.(2013新课标2)已知集合(){}2|14,M x x x R =-<∈,{}1,0,1,2,3N =-,则M N I =A .{}0,1,2B .{}1,0,1,2-C .{}1,0,2,3-D .{}0,1,2,3 45.(2013新课标2)已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N =IA .{2,1,0,1}--B .{3,2,1,0}---C .{2,1,0}--D .{3,2,1}---46.(2013山东)已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B =U ð,{1,2}B =,则U A B =I ðA .{3}B .{4}C .{3,4}D .∅47.(2013山东)已知集合A ={0,1,2},则集合B ={}|,x y x A y A -∈∈中元素的个数是A .1B .3C .5D .948.(2013安徽)已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=A .{}2,1--B .{}2-C .{}1,0,1-D .{}0,149.(2013辽宁)已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=I ,则A .()01,B .(]02,C .()1,2D .(]12, 50.(2013北京)已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B =IA .{}0B .{}1,0-C .{}0,1D .{}1,0,1-51.(2013广东)设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =IA .{0}B .{0,2}C .{2,0}-D .{2,0,2}-52.(2013广东)设整数4n ≥,集合{}1,2,3,,X n =L ,令集合{(,,)|,,S x y z x y z X =∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∉53.(2013陕西)设全集为R , 函数()f x =M , 则C M R 为A . [-1,1]B . (-1,1)C .,1][1,)(∞-⋃+∞-D .,1)(1,)(∞-⋃+∞-54.(2013江西)若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =A .4B .2C .0D .0或4 55.(2013湖北)已知全集为R ,集合112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =IA .{}|0x x ≤B .{}|24x x ≤≤C .{}|024x x x ≤<>或D .{}|024x x x <≤≥或56.(2012广东)设集合{1,2,3,4,5,6},{1,3,5}U M ==;则U C M =A .{,,}246B .{1,3,5}C .{,,}124D .U57.(2012浙江)设全集{}1,2,3,4,5,6U =,设集合{}1,2,3,4P =,{}3,4,5Q =,则U P Q ⋂ð=A .{}1,2,3,4,6B .{}1,2,3,4,5C .{}1,2,5D .{}1,258.(2012福建)已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是A .N M ⊆B .M N M =UC .M N N =ID .{2}M N =I59.(2012新课标)已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则A .AB Ü B .B A ÜC .A B =D .A B =∅I60.(2012安徽)设集合A ={|3213x x --剟},集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=A .(1,2)B .[1,2]C .[ 1,2)D .(1,2 ]61.(2012江西)若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为A .5B .4C .3D .262.(2011浙江)若{|1},{|1}P x x Q x x =<=>-,则A .P Q ⊆B .Q P ⊆C .R C P Q ⊆D .R Q C P ⊆63.(2011新课标)已知集合M ={0,1,2,3,4},N ={1,3,5},P M N =⋂,则P 的子集共有A .2个B .4个C .6个D .8个64.(2011北京)已知集合P =2{|1}x x ≤,{}M a =.若P M P =U ,则a 的取值范围是A .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1]U [1,+∞)65.(2011江西)若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于A .M N ⋃B .M N ⋂C .()()n n C M C N ⋃D .()()n n C M C N ⋂ 66.(2011湖南)设全集{1,2,3,4,5}U M N =⋃=,{2,4}U M C N ⋂=,则N =A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}67.(2011广东)已知集合A ={(,)|,x y x y 为实数,且221}x y +=,B ={(,)|,x y x y 为实数且1}x y +=,则A ⋂B 的元素个数为A .4B .3C .2D .168.(2011福建)若集合M ={-1,0,1},N ={0,1,2},则M ∩N 等于A .{0,1}B .{-1,0,1}C .{0,1,2}D .{-1,0,1,2}69.(2011陕西)设集合{}22||cos sin |,M y y x x x R ==-∈,1{|||N x x i =-<}i x R ∈为虚数单位,,则M N ⋂为A .(0,1)B .(0,1]C .[0,1)D .[0,1]70.(2011辽宁)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若I N I M =∅ð,则=N M YA .MB .NC .ID .∅71.(2010湖南)已知集合{}1,2,3M =,{}2,3,4N =,则A .M N ⊆B .N M ⊆C .{}2,3M N =ID .{}1,4M N =U72.(2010陕西)集合A ={}|12x x -≤≤,B ={}|1x x <,则()R A B ⋂ð=A .{}|1x x >B .{}|1x x ≥C .{}|12x x <≤D .{}|12x x ≤≤73.(2010浙江)设P ={x ︱x <4},Q ={x ︱2x <4},则A .P Q ⊆B .Q P ⊆C .R P Q ⊆ðD .R Q P ⊆ð74.(2010安徽)若集合121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则A =R ð A .2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭U B .22⎛⎫+∞ ⎪ ⎪⎝⎭C .2(,0])2-∞+∞UD .2)2+∞ 75.(2010辽宁)已知,A B 均为集合U ={1,3,5,7,9}的子集,且{3}A B =I ,{9}U B A =I ð,则A =A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}二、填空题76.(2018江苏)已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B =I .77.(2017江苏)已知集合{1,2}A =,2{,3B a a =+},若{1}A B =I ,则实数a 的值为____. 78.(2015江苏)已知集合{}123A =,,,{}245B =,,,则集合A B U 中元素的个数为 . 79.(2015湖南)已知集合U ={}1,2,3,4,A ={}1,3,B ={}1,3,4,则A U (U B ð)= .80.(2014江苏)已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A I .81.(2014重庆)设全集{|110}U n N n =∈≤≤,{1,2,3,5,8}A =,{1,3,5,7,9}B =,则()U A B ⋂ð= .82.(2014福建)若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.83.(2013湖南)已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则()U A B I ð= .84.(2010湖南)若规定{}1210,,...,E a a a =的子集{}12,,...,n i i i a a a 为E 的第k 个子集,其中k =12111222n i i i ---++⋅⋅⋅+,则(1){}1,3,a a 是E 的第____个子集;(2)E 的第211个子集是_______.85.(2010江苏)设集合{1,1,3}A =-,2{2,4}B a a =++,{3}A B =I ,则实数a =__. 答案部分20191.解析 因为{}1234567234{}}23{567U A B ===,,,,,,,,,,,,,,, 所以C 17{}6U A =,,, 则{67?}U B A =I ,ð. 故选C .2.解析 (1,)A =-+∞,(,2)B =-∞,(1,2)A B =-I .故选C.3.解析 因为{}1,0,1,2A =-,2{|1}{|11}B x x x x ==-剟?, 所以{}1,0,1A B =-I .故选A .4.解析 由数轴可知,{}1A B x x =>U .故选C.5.解析 设集合{}1,1,2,3,5A =-,{}13C x x =∈<R „, 则{}1,2A C =I . 又{}2,3,4B =, 所以{}{}{}{}1,22,3,41,2,3,4A C B ==I U U .故选D. 6.解析 因为{}1,0,1,6A =-,{}|0,B x x x =>∈R , 所以{}{}{}1,0,1,6|0,1,6A B x x x =->∈=R I I .7.解析{1,3}U A =-ð,{1}U A B =-I ð.故选A .2010-20181.A 【解析】由题意{0,2}A B =I ,故选A .2.C 【解析】因为{1,2,3,4,5}U =,{1,3}A =,所以=U A ð{2,4,5}.故选C . 3.C 【解析】因为{}1,3,5,7A =,{}2,3,4,5B =,所以{3,5}A B =I ,故选C .4.A 【解析】{|||2}(2,2)A x x =<=-,{2,0,1,2}B =-,∴{0,1}A B =I ,故选A . 5.C 【解析】由题意知,{|10}A x x =-≥,则{1,2}A B =I .故选C .6.C 【解析】由题意{1,0,1,2,3,4}A B =-U ,∴(){1,0,1}A B C =-U I ,故选C .7.A 【解析】∵3{|}2B x x =<,∴3{|}2A B x x =<I , 选A . 8.A 【解析】由并集的概念可知,{1,2,3,4}A B =U ,选A . 9.B 【解析】由集合交集的定义{2,4}A B =I ,选B .10.B 【解析】∵{1,2,4,6}A B =U ,(){1,2,4}A B C =U I ,选B . 11.C 【解析】{|02}M x x =<<,所以{|02}M N x x =<<I ,选C . 12.C 【解析】{|22}U A x x =-≤≤ð,选C .13.A 【解析】由题意可知{|12}P Q x x =-<<U ,选A . 14.B 【解析】由题意得,{1,3,5,7}A =,{|25}B x x=剟,则{3,5}A B =I .选B .15.D 【解析】易知{|33}B x x =-<<,又{1,2,3}A =,所以{1,2}A B =I 故选D . 16.C 【解析】由补集的概念,得{0,2,6,10}A B =ð,故选C .17.A 【解析】∵(1,2)A =-,(0,3)B =,∴(1,3)A B =-U .18.D 【解析】集合{|32,}A x x n n N ==+∈,当0n =时,322n +=,当1n =时,325n +=,当2n =时,328n +=,当3n =时,3211n +=,当4n =时,3214n +=,∵{6,8,10,12,14}B =,∴A B I 中元素的个数为2,选D .19.A 【解析】{|32}A B x x =-<<I . 20.B 【解析】{2,5}U B ð=,∴U A B I =ð{2,5}.21.A 【解析】∵{0,1}M =,{|01}N x x ≤=<,∴M N U =[0,1]. 22.C 【解析】因为{|13}B x x =<<,所以(2,3)A B =I ,故选C . 23.D 【解析】∵{0,1}M N =I . 24.B 【解析】{1}M N =I . 25.C 【解析】由题意知,22{(,)1,,}{(1,0),(1,0),(0,1),(0,1)}A x y x y x y =+≤∈=--Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,所以由新定义集合A B ⊕可知,111,0x y =±=或110,1x y ==±.当111,0x y =±=时,123,2,1,0,1,2,3x x +=---, 122,1,0,1,2y y +=--,所以此时A B ⊕中元素的个数有:7535⨯=个;当110,1x y ==±时,122,1,0,1,2x x +=--,123,2,1,0,1,2,3y y +=---,这种情形下和第一种情况下除12y y +的值取3-或3外均相同,即此时有5210⨯=, 由分类计数原理知,A B ⊕中元素的个数为351045+=个,故应选C . 26.A 【解析】{}|13A x x x =-≤或≥,故A B I =[-2, -1].27.D 【解析】{}|12N x x =≤≤,∴M N I ={1,2}.28.B 【解析】∵{}1,2B =-,∴A B =I {}2. 29.C 【解析】|1|213x x -<⇒-<<,∴(1,3)A =-,[1,4]B =.∴[1,3)A B =I . 30.C 【解析】∵(0,2)A =,[1,4]B =,所以A B =I [1,2). 31.C 【解析】{}{}{}1,0,10,1,21,0,1,2M N ⋃=-⋃=-,选C .32.A 【解析】P Q I =}{34x x ≤<.33.B 【解析】由题意知{|2}U x N x =∈≥,{|A x N x =∈,所以U A ð={|2x N x ∈<≤,选B .34.C 【解析】∵{}{}2|200,2A x x x =-==.∴A B =I ={}0,2.35.C 【解析】A B =I {|23}x x <<.36.B 【解析】∵21x <,∴11x -<<,∴M N =I {}|01x x <≤,故选B .37.C 【解析】{}|3,3A x x =-<,{}|15R B x x x =->≤或ð,∴()R A B =I ð{}|31x x --≤≤.38.D 【解析】由已知得,{=0A B x x ≤U 或}1x ≥,故()U A B =U ð{|01}x x <<.39.A 【解析】{|12}A x x =-≤≤,Z B =,故A B =I {1,0,1,2}-. 40.C 【解析】{}2,4,7U A =ð.41.C 【解析】“存在集合C 使得,U A C B C⊆⊆ð”⇔“∅=B A I ”,选C .42.B 【解析】A =(-∞,0)∪(2,+∞),∴A U B =R ,故选B . 43.A 【解析】{}1,4,9,16B =,∴{}1,4A B =I .44.A 【解析】∵(1,3)M =-,∴{}0,1,2M N =I .45.C 【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N I {2,1,0}=--,选C . 46.A 【解析】由题意{}1,2,3A B =U ,且{1,2}B =,所以A 中必有3,没有4,{}3,4U B =ð,故U A B =I ð{}3.47.C 【解析】0,0,1,2,0,1,2x y x y ==-=--;1,0,1,2,1,0,1x y x y ==-=-;2,0,1,2,2,1,0x y x y ==-=.∴B 中的元素为2,1,0,1,2--共5个.48.A 【解析】A :1->x ,{|1}R A x x =-≤ð,(){1,2}R A B =--I ð,所以答案选A49.D 【解析】由集合A ,14x <<;所以(1,2]A B =I . 50.B 【解析】集合B 中含-1,0,故{}1,0A B =-I .51.A 【解析】∵{}2,0S =-,{}0,2T =,∴S T =I {}0.52.B 【解析】特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤, x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立, 此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立, 此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立, 此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈. 综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.53.D 【解析】()f x 的定义域为M =[-1,1],故R Mð=(,1)(1,)-∞-⋃+∞,选D54.A 【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =. 55.C 【解析】[)0,A =+∞,[]2,4B =,∴[0,2)(4,)R A B =+∞I U ð.56.A 【解析】U M ð={,,}246.57.D 【解析】Q {}3,4,5Q =,∴U Q ð={}1,2,6,∴U P Q I ð={}1,2.58.D 【解析】由M ={1,2,3,4},N ={-2,2},可知-2∈N ,但是-2∉M ,则N ⊄M ,故A 错误.∵M U N ={1,2,3,4,-2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D .59.B 【解析】A =(-1,2),故B ⊂≠A ,故选B . 60.D 【解析】{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=I .61.C 【解析】根据题意容易看出x y +只能取-1,1,3等3个数值.故共有3个元素. 62.D 【解析】{|1}P x x =< ∴{|1}R P x x =≥ð,又∵{|1}Q x x =>,∴R Q P⊆ð,故选D .63.B 【解析】{1,3}P M N ==I ,故P 的子集有4个.64.C 【解析】因为P M P =U ,所以M P ⊆,即a P ∈,得21a ≤,解得11a -≤≤,所以a 的取值范围是[1,1]-.65.D 【解析】因为{1,2,3,4}M N =U ,所以()()UUM N I痧=()U M N U ð={5,6}.66.B 【解析】因为U M N⊂ð,所以()()()U UU U N N M N M ==U U 痧痧=[()]U U N M I 痧={1,3,5}. 67.C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x -=,解得0x =或1x =,这时1y =或0y =,即{(0,1),(1,0)}A B =I ,有2个元素. 68.A 【解析】集合{1,0,1}{0,1,2}={0,1}M N =-I I .69.C 【解析】对于集合M ,函数|cos 2|y x =,其值域为[0,1],所以[0,1]M =,根据复<21x <,所以(1,1)N =-,则[0,1]M N =I .70.A 【解析】根据题意可知,N 是M 的真子集,所以M N M =U . 71.C 【解析】{}{}{}1,2,32,3,42,3M N ==I I 故选C.72.D 【解析】{}{}|1,|12R RB x x A B x x ==I 痧≥≤≤73.B 【解析】{}22<<x x Q -=,可知B 正确,74.A 【解析】不等式121log 2x …,得12112201log log ()2x >⎧⎪⎨⎪⎩…,得2x „, 所以R A ð=(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭U . 75.D 【解析】因为{3}A B =I ,所以3∈A ,又因为{9}U B A =I ð,所以9∈A ,所以选D .本题也可以用Venn 图的方法帮助理解.76.{1,8}【解析】由集合的交运算可得A B =I {1,8}.77.1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =. 78.5【解析】{1,2,3}{2,4,5}{1,2,3,4,5}A B ==U U ,5个元素. 79.{1,2,3}【解析】{2}U B =ð,A U (U Bð)={1,2,3}.80.{}1,3-【解析】=B A I {}1,3-.81.{}7,9【解析】{}1,2,3,4,5,6,7,8,9,10U =,{}4,6,7,9,10U A =ð,{}()7,9U A B =I ð.82.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上符合条件的有序数组的个数是6. 83.{}6,8【解析】()U A B Ið={6,8}{2,6,8}{6,8}=I .84.【解析】(1)5 根据k 的定义,可知1131225k --=+=;(2)12578{,,,,}a a a a a 此时211k =,是个奇数,所以可以判断所求集中必含元素1a ,又892,2均大于211,故所求子集不含910,a a ,然后根据2j (j =1,2,⋅⋅⋅7)的值易推导出所求子集为12578{,,,,}a a a a a .85.1【解析】考查集合的运算推理.3∈B ,23a +=,1a =.。
文科数学2010-2019高考真题分类训练专题一 集合与常用逻辑用语第一讲 集合

A. {4,8}
B. {0,2,6}
C. {0,2,6,10}
D. {0,2,4,6,8,10}
17.(2015 新课标 2)已知集合 A = {x | −1 x 2} , B = {x | 0 x 3} ,则 A B =
A. (−1,3)
B. (−1,0)
C. (0,2)
D. (2,3)
A.{1, 2,3, 4}
B.{1, 2,3}
C.{2,3, 4} D.{1,3, 4}
9.(2017 新课标Ⅲ)已知集合 A = {1, 2,3, 4}, B = {2, 4, 6,8},则 A B 中元素的个数为
A.1
B.2
C.3
D.4
10.(2017 天津)设集合 A = {1, 2, 6} , B = {2, 4} , C = {1, 2,3, 4} ,则 ( A B) C =
33.(2014 浙江)设全集U = x N | x 2,集合 A = x N | x2 5 ,则 ðU A =
A.
B. {2}
C. {5}
D. {2,5}
34.(2014 北京)已知集合 A = {x | x2 − 2x = 0}, B = {0,1, 2},则 A B =
7.(2017 新课标Ⅰ)已知集合 A = {x | x 2}, B = {3 − 2x 0},则
A. A C. A
B = {x | x 3} 2
B = {x | x 3} 2
B. A B = D. A B = R
8.(2017 新课标Ⅱ)设集合 A = {1, 2,3}, B = {2,3, 4} 则 A B =
A.(–1,+∞)
文科数学2010-2019高考真题分类训练专题一集合与常用逻辑用语第二讲常用逻辑用语答案

专题一 集合与常用逻辑用语第二讲 常用逻辑用语答案部分2019年1.解析 若0b =,则()cos f x x =是偶函数;反之,若()f x 为偶函数,则()()f x f x -=,即()()cos sin cos sin cos sin x b x x b x x b x -+-=-=+,即sin 0b x =对x ∀成立, 可得0b =,故“0b =”是“()f x 为偶函数”的充分必要条件.故选C.2.解析 由11x -<,得02x <<,因为05x <<不能推出02x <<, 但02x <<可以推出05x <<,所以05x <<是02x <<的必要不充分条件, 即05x <<是11x -<的必要不充分条件. 故选B .3.解析 因为a >0,b >0,若a +b ≤4,则24ab a b +剟,则4ab …,即44a b ab +⇒剟. 反之,若4ab …,取1a =,4b =,则44ab =…,但5a b +=,即4ab …推不出a +b ≤4,所以a +b ≤4是4ab …的充分不必要条件.故选A .4.解析 作出不等式组620x y x y +⎧⎨-⎩……的平面区域如图阴影部分所示. 由图可知,命题():,,29p x y D x y ∃∈+…;是真命题,则p ⌝假命题; 命题():,,212q x y D x y ∀∈+…是假命题,则真命题;所以:由或且非逻辑连词连接的命题判断真假有:p q ∨真; p q ⌝∨假;●p q ∧⌝真;❍p q ⌝∧⌝假;故答案●正确.故选A .2010-2018年1.A 【解析】若m α⊄,n α⊂,m ∥n ,由线面平行的判定定理知m ∥α.若m ∥α,m α⊄,n α⊂,不一定推出m ∥n ,直线m 与n 可能异面,故“m ∥n ”是“m ∥α”的充分不必要条件.故选A .2.B 【解析】a ,b ,c ,d 是非零实数,若ad bc =,则b d a c=,此时a ,b ,c ,d 不一定成等比数列;反之,若a ,b ,c ,d 成等比数列,则a c b d=,所以ad bc =,所以“ad bc =”是“a ,b ,c ,d 成等比数列”的必要而不充分条件.故选B .3.A 【解析】由38x >,得2x >,由||2x >,得2x >或2x <-,故“38x >”是“||2x >”的充分而不必要条件,故选A .4.A 【解析】由1>a 可得11<a 成立;当11<a ,即1110--=<a a a , 解得0<a 或1>a ,推不出1>a 一定成立;所以“1a >”是“11a<”的充分非必要条件.故选A .5.B 【解析】由20x -≥,得2x ≤,由|1|1x -≤,得02x ≤≤,所以“20x -≥”是“|1|1x -≤”的必要而不充分条件.选B .6.B 【解析】取0x =,知1p 成立;若22a b <,得||||a b =,q 为假,所以p q ⌝∧为真,选B .7.A 【解析】因为,m n 为非零向量,所以||||cos ,0⋅=<><m n m n m n 的充要条件是cos ,0<><m n .因为0λ<,则由λ=m n 可知,m n 的方向相反,,180<>=o m n ,所以cos ,0<><m n ,所以“存在负数λ,使得λ=m n ”可推出“0⋅<m n ”;而0⋅<m n 可推出cos ,0<><m n ,但不一定推出,m n 的方向相反,从而不一定推得“存在负数λ,使得λ=m n ”,所以“存在负数λ,使得λ=m n ”是“0⋅<m n ”的充分而不必要条件.8.C 【解析】∵655465()()S S S S a a d ---=-=,当0d >,可得465+2S S S >;当465+2S S S >,可得0d >.所以“0d >”是“465+2S S S >” 充分必要条件,选C .9.A 【解析】根据已知,如果直线,a b 相交,则平面,αβ一定存在公共点,故其一定相交;反之,如果平面,αβ相交,分别位于这两个平面内的直线不一定相交,故为充分不必要条件,选A .10.A 【解析】当0b <时,2min ()()24b b f x f =-=-,即2()[,)4b f x ∈-+∞, 而222(())()()(())24b b f f x f x bf x f x =+=+-的对称轴也是2b -, 又2[,)24b b -∈-+∞,所以当()2b f x =-时,2min (())4b f f x =-, 故(())f f x 的最小值与()f x 的最小值相等;另一方面,取0b =,2()f x x =与4(())f f x x =有相等的最小值0,故选A .11.A 【解析】由“1x =”显然能推出“2210x x -+=”,故条件是充分的;又由“2210x x -+=”可得10)1(2=⇒=-x x ,所以条件也是必要的;故选A . 12.D 【解析】若0a b +>,取3,2a b ==-,则0ab >不成立;反之,若2,3a b =-=-,则0a b +>也不成立,因此“0a b +>”是“0ab >”的既不充分也不必要条件.13.C 【解析】∵(1,3)(,3)-⊆-∞,所以p 是q 成立的必要不充分条件.14.A 【解析】由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,故应选A .15.A 【解析】a >b >1时,有22log log 0a b >>成立,反之也正确.16.D 【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D .17.A 【解析】∵22cos 2cos sin ααα=-,当sin cos αα=时,cos20α=,充分性成立;当cos20α=时,即22cos sin 0αα-=,∴cos sin αα=或cos sin αα=-,必要性不成立. 18.A 【解析】||||cos ,a b a b a b ⋅=⋅<>r r r r r r ,由已知得cos ,1a b <>=r r ,即,0a b <>=r r ,//a b r r .而当a r ∥b r 时,,a b <>r r 还可能是π,此时||||a b a b ⋅=-r r r r , 故“a b a b ⋅=r r r r ”是“//a b r r ”的充分而不必要条件.19.B 【解析】∵(0,)2x π∈,所以sin 20x >.任意(0,)2x π∈,sin cos k x x x <,等价于任意(0,)2x π∈,2sin 2x k x <.当(0,)2x π∈时,02x π<<,设2t x =, 则0t π<<.设()sin f t t t =-,则()1cos f t t '=-0>,所以()sin f t t t =-在(0,)π上单调递增,所以()0f t >,所以sin 0t t >>,即1sin t t >,所以1k ≤. 所以任意(0,)2x π∈,2sin 2x k x<,等价于1k ≤.因为1k ≤⇒1k <, 但1k ≤⇐1k <,所以“对任意(0,)2x π∈,sin cos k x x x <”是 “1k <”的必要而不充分条件.20.C 【解析】设3()f x x =,(0)0f '=,但是()f x 是单调增函数,在0x =处不存在极值,故若p 则q 是一个假命题,由极值的定义可得若q 则p 是一个真命题,故选C .21.A 【解析】由正弦定理sin sin a b A B=,故“b a ≤”⇔“B A sin sin ≤”. 22.C 【解析】把量词“∀”改为“∃”,把结论否定,故选C .23.A 【解析】当1a b ==时,22()(1)2a bi i i +=+=,反之,若i bi a 2)(2=+,则有1a b ==- 或1a b ==,因此选A .24.C 【解析】由不等式的性质可知,命题p 是真命题,命题q 为假命题,故①p q ∧为假命题,②p q ∨为真命题,③q ⌝为真命题,则()p q ∧⌝为真命题,④p ⌝为假命题,则()p q ⌝∨为假命题,所以选C .25.A 【解析】从原命题的真假人手,由于12n n n a a a ++<{}1n n n a a a +⇔<⇔为递减数列,即原命题和否命题均为真命题,又原命题与逆否命题同真同假,则逆命题、否命题和逆否命题均为真命题,选A .26.D 【解析】2"40"b ac -≤推不出2"0"ax bx c ++≥,因为与a 的符号不确定,所以A不正确;当20b =时,由""a c >推不出22""ab cb >,所以B 不正确;“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有0x <”,所以C 不正确.选D .27.C 【解析】当a =0 时,()f x x =,∴()f x 在区间()0,+∞内单调递增;当0a <时,()1f x a x x a ⎛⎫=- ⎪⎝⎭中一个根10a <,另一个根为0,由图象可知()f x 在区间()0,+∞内单调递增;∴"0"a ≤是“函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的充分条件,相反,当()1f x a x x a ⎛⎫=-⎪⎝⎭在区间(0,+)∞内单调递增, ∴0a =或10a<,即0a ≤;"0"a ≤是“函数()=(-1)f x ax x 在区间(0,+)∞内 单调递增”的必要条件,故前者是后者的充分必要条件.所以选C .28.A 【解析】当ϕπ=时,sin 2y x =-过原点;()sin 2y x ϕ=+过原点,则,,0,,ϕππ=⋅⋅⋅-⋅⋅⋅等无数个值.选A .29.C 【解析】abi b a z R b a bi a z 2,,222+-=⇒∈+=设.对选项A 为实数则若z b z ⇒=≥0,02,所以为实数z 为真.对选项B 为纯虚数且则若z b a z ⇒≠=<0,0,02,所以为纯虚数z 为真.对选项C 00,0,2<⇒≠=z b a z 且则为纯虚数若,所以02≥z 为假.对选项D 00,0,2<⇒≠=z b a z 且则为纯虚数若,所以02<z 为真. 所以选C .30.B 【解析】由f ()是奇函数可知f (0)=0,即cos φ=0,解出φ=π2+π,∈,所以选项B 正确. 31.D 【解析】否定为:存在0x R ∈,使得200x <,故选D .32.C 【解析】由命题的否定易知选C .33.A 【解析】“至少有一位学员没有降落在指定范围”即为:“甲或乙没有降落在指定范围内”.34.D 【解析】存在性命题的否定为“∃”改为“∀”,后面结论加以否定,故为300,R x C Q x Q ∀∈∉.35.C 【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若4πα=, 则tan 1α=”的逆否命题是 “若tan 1α≠,则4πα≠”.36.A 【解析】①,,,b m m b αβαββ⊥⊥⋂=⊂,b a b a αα⇒⊥⊂⇒⊥②如果//a m ;∵b m ⊥,一定有a b ⊥但不能保证b α⊥,既不能推出αβ⊥37.D 【解析】∵,0xx R e ∀∈>,故排除A ;取=2,则2222=,故排除B ;0a b +=, 取0a b ==,则不能推出1a b=-,故排除C ;应选D . 38.B 【解析】0a =时i a b +不一定是纯虚数,但i a b +是纯虚数0a =一定成立,故“0a =”是“复数i a b +是纯虚数”的必要而不充分条件.39.B 【解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”,故选B .40.A 【解析】p :“函数()xa x f =在R 上是减函数 ”等价于10<<a ;q :“函数 ()()32x a x g -=在R 上是增函数”等价于02>-a ,即,20<<a 且a ≠1,故p 是q 成立的充分不必要条件.选A .41.C 【解析】命题p 为假,命题q 也为假,故选.42.A 【解析】3a b c ++=的否定是3a b c ++≠,222a b c ++≥3的否定是222a b c ++<3,故选A .43.A 【解析】由1a b +==>得, 1cos 2θ>-, 20,3πθ⎡⎫⇒∈⎪⎢⎣⎭.由1a b -==> 得1cos 2θ<,3πθπ⎛⎤⇒∈ ⎥⎝⎦.选A . 44.D 【解析】根据定义若“若a b =r r ,则a b =-r r ”.45.A 【解析】显然1a =时一定有N M ⊆,反之则不一定成立,如1a =-,故“1a =”是“N M ⊆” 充分不必要条件.46.D 【解析】根据定义容易知D 正确.47.C 【解析】∵1p 是真命题,则1p ⌝为假命题;2p 是假命题,则2p ⌝为真命题,∴1q :12p p ∨ 是真命题,2q :12p p ∧是假命题,3q :()12p p ⌝∨为假命题, 4q :()12p p ∧⌝为真命题,故选C .48.C 【解析】由于a >0,令函数22211()222b b y ax bx a x a a=-=--,此时函数对应的开口向上,当x =b a 时,取得最小值22b a -,而0x 满足关于x 的方程ax b =,那么0x =b a,min y =2200122b ax bx a-=-,那么对于任意的x ∈R , 都有212y ax bx =-≥22b a -=20012ax bx -. 49.11-(答案不唯一)【解析】由题意知,当1a =,1b =-时,满足a b >,但是11a b>,故答案可以为11-.(答案不唯一,满足0a >,0b <即可)50.①④【解析】由“中位点”可知,若C 在线段AB 上,则线段AB 上任一点都为“中位点”,C 也不例外,故①正确;对于②假设在等腰Rt △ABC 中,∠ACB =90°,如图所示,点P 为斜边AB 中点,设腰长为2,则|P A |+|PB |+|PC |=32|AB |=C 为“中位点”,则|CB |+|CA |=4<对于③,若B ,C 三等分AD ,若设|AB |=|BC |=|CD |=1,则|BA |+|BC |+|BD |=4=|CA |+|CB |+|CD |,故③错;对于④,在梯形ABCD 中,对角线AC 与BD 的交点为O ,在梯形ABCD 内任取不同于点O 的一点M ,则在△MAC 中,|MA |+|MC |>|AC |=|OA |+|OC |,同理在△MBD 中,|MB |+|MD |>|BD |=|OB |+|OD |,则得,|MA |+|MB |+|MC |+|MD |>|OA |+|OB |+|OC |+|OD |,故O 为梯形内唯一中位点是正确的.51.3或4【解析】 易知方程得解都是正整数解,由判别式1640n ∆=-≥得,14n ≤≤,逐个分析,当1,2n =时,方程没有整数解;而当3n =时, 方程有正整数解1、3;当4n =时,方程有正整数解2.52.【解析】对任何x R ∈,都有2250x x ++≠.。
理科数学2010-2019高考真题十年分类专题一 集合与常用逻辑用语 第二讲常用逻辑用语(A组)

专题一 集合与常用逻辑用语第二讲 常用逻辑用语(A 组)2019年1.(2019全国Ⅱ理7)设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面2010-2018年一、选择题1.(2017新课标Ⅰ)设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数1z ,2z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p2.(2015新课标)设命题p :n N ∃∈,22n n >,则p ⌝为A .2,2n n N n ∀∈>B .2,2n n N n ∃∈≤C .2,2nn N n ∀∈≤ D .2,2n n N n ∃∈= 3.(2014新课标2)函数()f x 在0=x x 处导数存在,若()00p f x '=:,0:q x x =是()f x 的极值点,则A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件4.(2011新课标)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p πθ+>⇔∈a b 2:p ||1+>a b ⇔2(,]3πθπ∈ 13:||1[0,)3p πθ->⇔∈a b 4:p ||1->a b ⇔(,]3πθπ∈ 其中真命题是A .14,p pB .13,p pC .23,p pD .24,p p5.(2010新课标)已知命题1p :函数22x x y -=-在R 为增函数,2p :函数22x x y -=+ 在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是A .1q ,3qB .2q ,3qC .1q ,4qD .2q ,4q二、填空题无。
集合与常用逻辑用语-2010-2019年高考文科数学真题专题分类汇编训练

专题一 集合与常用逻辑用语第一讲 集合2019年1.(2019全国Ⅰ文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7UA B ===,,,则U B A =I ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,72.(2019全国Ⅱ文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅3.(2019全国Ⅲ文1)已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =IA .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,24.(2019北京文1)已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =(A )(–1,1) (B )(1,2) (C )(–1,+∞) (D )(1,+∞)5.(2019天津文1)设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈<„ ,则()A C B =I U(A ){2}(B ){2,3} (C ){-1,2,3} (D ){1,2,3,4}6.(2019江苏1)已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =I .7.(2019浙江1) 已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B I ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-2010-2018年一、选择题1.(2018全国卷Ⅰ)已知集合{0,2}=A ,{21012}=--,,,,B ,则A B =I A .{0,2} B .{1,2} C .{0} D .{21012}--,,,, 2.(2018浙江)已知全集{1,2,3,4,5}U =,{1,3}A =,则=U A ðA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}3.(2018全国卷Ⅱ)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =IA .{3}B .{5}C .{3,5}D .{}1,2,3,4,5,74.(2018北京)已知集合{|||2}A x x =<,{2,0,1,2}B =-,则A B =IA .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}5.(2018全国卷Ⅲ)已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =IA .{0}B .{1}C .{1,2}D .{0,1,2}6.(2018天津)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-<R ≤,则()A B C =U IA .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}7.(2017新课标Ⅰ)已知集合{|2}A x x =<,{320}B x =->,则A .3{|}2A B x x =<I B .A B =∅IC .3{|}2A B x x =<UD .A B =R U 8.(2017新课标Ⅱ)设集合{1,2,3}A =,{2,3,4}B =则A B U =A .{1,2,3,4}B .{1,2,3}C .{2,3,4}D .{1,3,4}9.(2017新课标Ⅲ)已知集合{1,2,3,4}A =,{2,4,6,8}B =,则A B I 中元素的个数为A .1B .2C .3D .410.(2017天津)设集合{1,2,6}A =,{2,4}B =,{1,2,3,4}C =,则()A B C =U IA .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}11.(2017山东)设集合{}11M x x =-<,{}2N x x =<,则M N =I A .()1,1- B .()1,2- C .()0,2D .()1,2 12.(2017北京)已知U =R ,集合{|22}A x x x =<->或,则U A ð=A .(2,2)-B .(,2)(2,)-∞-+∞UC .[2,2]-D .(,2][2,)-∞-+∞U13.(2017浙江)已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q U =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)14.(2016全国I 卷)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则=A B IA .{1,3}B .{3,5}C .{5,7}D .{1,7}15.(2016全国Ⅱ卷)已知集合{123}A =,,,2{|9}B x x =<,则A B =I A .{210123}--,,,,, B .{21012}--,,,, C .{123},, D .{12},16.(2016全国Ⅲ)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=A .{48},B .{026},,C .{02610},,,D .{0246810},,,,,17.(2015新课标2)已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则A B U =A .)3,1(-B .)0,1(-C .)2,0(D .)3,2(18.(2015新课标1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I中的元素个数为A .5B .4C .3D .219.(2015北京)若集合{|52}A x x =-<<,{|33}B x x =-<<,则A B I =A .{|32}x x -<<B .{|52}x x -<<C .{|33}x x -<<D .{|53}x x -<<20.(2015天津)已知全集{1,2,3,4,5,6}U =,集合{}2,3,5A =,集合{1,3,4,6}B =,则集合U A B =I ðA .{3}B .{2,5}C .{1,4,6}D .{2,3,5}21.(2015陕西)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N U =A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]22.(2015山东)已知集合{}24A x x =<<,{}(1)(3)0B x x x =--<,则A B =IA .()1,3B .()1,4C .()2,3D .()2,423.(2015福建)若集合{}22M x x =-≤<,{}0,1,2N =,则M N I 等于A .{}0B .{}1C .{}0,1,2D .{}0,124.(2015广东)若集合{}1,1M =-,{}2,1,0N =-,则M N =IA .{}0,1-B .{}1C .{}0D .{}1,1-25.(2015湖北)已知集合22{(,)|1,,}A x y x y x y Z =+∈≤,{(,)|||2,B x y x =≤ ||2,,}y x y Z ∈≤,定义集合12121122{(,)|(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .3026.(2014新课标)已知集合A ={x |2230x x --≥},B ={x |-2≤x <2},则A B I =A .[-2, -1]B .[-1,1]C .[-1,2)D .[1,2)27.(2014新课标)设集合M ={0,1,2},N ={}2|320x x x -+≤,则M N I =A .{1}B .{2}C .{0,1}D .{1,2}28.(2014新课标)已知集合A ={-2,0,2},B ={x |2x -x -20=},则A B =IA . ∅B .{}2C .{}0D .{}2-29.(2014山东)设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A IA . [0,2]B .(1,3)C . [1,3)D . (1,4)30.(2014山东)设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B =IA .(0,2]B .(1,2)C .[1,2)D .(1,4) 31.(2014广东)已知集合{1,0,1}M =-,{0,1,2}N =,则M N =UA .{0,1}B .{1,0,2}-C .{1,0,1,2}-D .{1,0,1}-32.(2014福建)若集合{|24}P x x =<≤,{|3}Q x x =≥,则P Q I 等于A .}{34x x ≤<B .}{34x x <<C .}{23x x ≤<D .}{23x x ≤≤33.(2014浙江)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则U A ð= A .∅ B . }2{ C . }5{ D . }5,2{34.(2014北京)已知集合2{|20},{0,1,2}A x x x B =-==,则A B =IA .{0}B .{0,1}C .{0,2}D .{0,1,2}35.(2014湖南)已知集合{|2},{|13}A x x B x x =>=<<,则A B =IA .{|2}x x >B .{|1}x x >C .{|23}x x <<D .{|13}x x <<36.(2014陕西)已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则M N =IA .[0,1]B .[0,1)C .(0,1]D .(0,1)37.(2014江西)设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A B =I ðA .(3,0)-B .(3,1)--C .(3,1]--D .(3,3)-38.(2014辽宁)已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U A B =U ðA .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<39.(2014四川)已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B =IA .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-40.(2014湖北)已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ðA .{1,3,5,6}B .{2,3,7}C .{2,4,7}D . {2,5,7} 41.(2014湖北)设U 为全集,B A ,是集合,则“存在集合C 使得A C ⊆,U B C ⊆ð”是“∅=B A I ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件42.(2013新课标1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则A .A ∩B =∅ B .A ∪B =RC .B ⊆AD .A ⊆B 43.(2013新课标1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =IA .{}14,B .{}23,C .{}916,D .{}12,44.(2013新课标2)已知集合(){}2|14,M x x x R =-<∈,{}1,0,1,2,3N =-,则M N I =A .{}0,1,2B .{}1,0,1,2-C .{}1,0,2,3-D .{}0,1,2,3 45.(2013新课标2)已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N =IA .{2,1,0,1}--B .{3,2,1,0}---C .{2,1,0}--D .{3,2,1}---46.(2013山东)已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B =U ð,{1,2}B =,则U A B =I ðA .{3}B .{4}C .{3,4}D .∅47.(2013山东)已知集合A ={0,1,2},则集合B ={}|,x y x A y A -∈∈中元素的个数是A .1B .3C .5D .948.(2013安徽)已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=A .{}2,1--B .{}2-C .{}1,0,1-D .{}0,149.(2013辽宁)已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=I ,则A .()01,B .(]02,C .()1,2D .(]12, 50.(2013北京)已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B =IA .{}0B .{}1,0-C .{}0,1D .{}1,0,1-51.(2013广东)设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =IA .{0}B .{0,2}C .{2,0}-D .{2,0,2}-52.(2013广东)设整数4n ≥,集合{}1,2,3,,X n =L ,令集合{(,,)|,,S x y z x y z X =∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∉53.(2013陕西)设全集为R , 函数()f x =M , 则C M R 为A . [-1,1]B . (-1,1)C .,1][1,)(∞-⋃+∞-D .,1)(1,)(∞-⋃+∞-54.(2013江西)若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =A .4B .2C .0D .0或4 55.(2013湖北)已知全集为R ,集合112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =IA .{}|0x x ≤B .{}|24x x ≤≤C .{}|024x x x ≤<>或D .{}|024x x x <≤≥或56.(2012广东)设集合{1,2,3,4,5,6},{1,3,5}U M ==;则U C M =A .{,,}246B .{1,3,5}C .{,,}124D .U57.(2012浙江)设全集{}1,2,3,4,5,6U =,设集合{}1,2,3,4P =,{}3,4,5Q =,则U P Q ⋂ð=A .{}1,2,3,4,6B .{}1,2,3,4,5C .{}1,2,5D .{}1,258.(2012福建)已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是A .N M ⊆B .M N M =UC .M N N =ID .{2}M N =I59.(2012新课标)已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则A .AB Ü B .B A ÜC .A B =D .A B =∅I60.(2012安徽)设集合A ={|3213x x --剟},集合B 为函数)1lg(-=x y 的定义域,则A ⋂B= A .(1,2) B .[1,2] C .[ 1,2) D .(1,2 ]61.(2012江西)若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为A .5B .4C .3D .262.(2011浙江)若{|1},{|1}P x x Q x x =<=>-,则A .P Q ⊆B .Q P ⊆C .R C P Q ⊆D .R Q C P ⊆63.(2011新课标)已知集合M ={0,1,2,3,4},N ={1,3,5},P M N =⋂,则P 的子集共有A .2个B .4个C .6个D .8个64.(2011北京)已知集合P =2{|1}x x ≤,{}M a =.若P M P =U ,则a 的取值范围是A .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1]U [1,+∞)65.(2011江西)若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于A .M N ⋃B .M N ⋂C .()()n n C M C N ⋃D .()()n n C M C N ⋂ 66.(2011湖南)设全集{1,2,3,4,5}U M N =⋃=,{2,4}U M C N ⋂=,则N =A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}67.(2011广东)已知集合A ={(,)|,x y x y 为实数,且221}x y +=,B ={(,)|,x y x y 为实数且1}x y +=,则A ⋂B 的元素个数为A .4B .3C .2D .168.(2011福建)若集合M ={-1,0,1},N ={0,1,2},则M ∩N 等于A .{0,1}B .{-1,0,1}C .{0,1,2}D .{-1,0,1,2}69.(2011陕西)设集合{}22||cos sin |,M y y x x x R ==-∈,1{|||N x x i =-<}i x R ∈为虚数单位,,则M N ⋂为A .(0,1)B .(0,1]C .[0,1)D .[0,1]70.(2011辽宁)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若I N I M =∅ð,则=N M YA .MB .NC .ID .∅71.(2010湖南)已知集合{}1,2,3M =,{}2,3,4N =,则A .M N ⊆B .N M ⊆C .{}2,3M N =ID .{}1,4M N =U72.(2010陕西)集合A ={}|12x x -≤≤,B ={}|1x x <,则()R A B ⋂ð=A .{}|1x x >B .{}|1x x ≥C .{}|12x x <≤D .{}|12x x ≤≤73.(2010浙江)设P ={x ︱x <4},Q ={x ︱2x <4},则A .P Q ⊆B .Q P ⊆C .R P Q ⊆ðD .R Q P ⊆ð 74.(2010安徽)若集合121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则A =R ð A .2(,0]2⎛⎫-∞+∞ ⎪ ⎪⎝⎭U B .22⎛⎫+∞ ⎪ ⎪⎝⎭C .2(,0],)2-∞+∞UD .2)2+∞ 75.(2010辽宁)已知,A B 均为集合U ={1,3,5,7,9}的子集,且{3}A B =I ,{9}U B A =I ð,则A =A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}二、填空题76.(2018江苏)已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B =I .77.(2017江苏)已知集合{1,2}A =,2{,3B a a =+},若{1}A B =I ,则实数a 的值为____.78.(2015江苏)已知集合{}123A =,,,{}245B =,,,则集合A B U 中元素的个数为 .79.(2015湖南)已知集合U ={}1,2,3,4,A ={}1,3,B ={}1,3,4,则A U (U B ð)= .80.(2014江苏)已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A I .81.(2014重庆)设全集{|110}U n N n =∈≤≤,{1,2,3,5,8}A =,{1,3,5,7,9}B =,则()U A B ⋂ð= .82.(2014福建)若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.83.(2013湖南)已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则()U A B I ð= .84.(2010湖南)若规定{}1210,,...,E a a a =的子集{}12,,...,n i i i a a a 为E 的第k 个子集,其中k =12111222n i i i ---++⋅⋅⋅+,则(1){}1,3,a a 是E 的第____个子集;(2)E 的第211个子集是_______.85.(2010江苏)设集合{1,1,3}A =-,2{2,4}B a a =++,{3}A B =I ,则实数a =__.专题一 集合与常用逻辑用语第二讲 常用逻辑用语2019年1.(2019北京文6) 设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件2.(2019天津文3)设x R ∈,则“05x <<”是“11x -<”的(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件3.(2019浙江5)若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.(2019全国Ⅲ文11)记不等式组6,20x y x y +⎧⎨-≥⎩…表示的平面区域为D .命题 :(,),29p x y D x y ∃∈+…;命题:(,),212q x y D x y ∀∈+„.下面给出了四个命题 ①p q ∨ ②p q ⌝∨ ③p q ∧⌝ ④p q ⌝∧⌝ 这四个命题中,所有真命题的编号是A .①③B .①②C .②③D .③④2010-2018年一、 选择题1.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.(2018北京)设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的C .充分必要条件D .既不充分也不必要条件 3.(2018天津)设x ∈R ,则“38x >”是“||2x >” 的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.(2018上海)已知a R ∈,则“1a >”是“11a<”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件5.(2017天津)设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件6.(2017山东)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a b <.下列命题为真命题的是A .p q ∧B .p q ⌝∧C .p q ⌝∧D .p q ⌝⌝∧7.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“465+2S S S >”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D .既不充分也不必要条件9.(2016年山东)已知直线,a b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面β相交”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(2016年浙江高考)已知函数2()f x x bx =+,则“0b <”是“(())f f x 的最小值与()f x 的最小值相等”的C .充分必要条件D .既不充分也不必要条件 11.(2015重庆)“1x =”是“2210x x -+=”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件12.(2015浙江)设a ,b 是实数,则“0a b +>”是“0ab >”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件13.(2015安徽)设p :3x <,q :13x -<<,则p 是q 成立的A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件14.(2015湖北)命题“000(0,),ln 1x x x ∃∈+∞=-”的否定是A .(0,),ln 1x x x ∀∈+∞≠-B .(0,),ln 1x x x ∀∉+∞=-C .000(0,),ln 1x x x ∃∈+∞≠-D .000(0,),ln 1x x x ∃∉+∞=-15.(2015四川)设,a b 为正实数,则“1a b >>”是“22log log 0a b >>”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件16.(2015山东)设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是A .若方程20x x m +-=有实根,则0m >B .若方程20x x m +-=有实根,则0m ≤C .若方程20x x m +-=没有实根,则0m >D .若方程20x x m +-=没有实根,则0m ≤17.(2015陕西)“sin cos αα=”是“cos20α=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件18.(2015北京)设,a b 是非零向量,“||||⋅=a b a b ”是“a ∥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件19.(2015福建)“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件20.(2014新课标2)函数()f x 在0=x x 处导数存在,若()00p f x '=:,0:q x x =是()f x 的极值点,则A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件21.(2014广东)在ABC ∆中,角A ,B ,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A sin sin ≤”的A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件22.(2014福建)命题“[)30,.0x x x ∀∈+∞+≥”的否定是 A .()30,.0x x x ∀∈+∞+< B .()3,0.0x x x ∀∈-∞+≥ C .[)30000,.0x x x ∃∈+∞+< D .[)30000,.0x x x ∃∈+∞+≥ 23.(2014浙江)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件24.(2014湖南)已知命题22:,;:,.p x y x y q x y x y >-<->>若则命题若则在命题①p q ∧ ②p q ∨ ③()p q ∧⌝ ④()p q ⌝∨中,真命题是A .①③B .①④C .②③D .②④25.(2014陕西)原命题为“若12n n n a a a ++<,n N +∈,则{}n a 为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是A .真,真,真B .假,假,真C .真,真,假D .假,假,假26.(2014江西)下列叙述中正确的是A .若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤B .若,,a b c R ∈,则22""ab cb >的充要条件是""a c >C .命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥”D .l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ27.(2013安徽)“0a ≤”是“函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件28.(2013北京)“ϕπ=”是“曲线()sin 2y x ϕ=+过坐标原点的”A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 29.设z 是复数, 则下列命题中的假命题是A .若20z ≥, 则z 是实数B .若20z <, 则z 是虚数C .若z 是虚数, 则20z ≥D .若z 是纯虚数, 则20z <30.(2013浙江)已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件31.(2013重庆)命题“对任意x R ∈,都有20x ≥”的否定为A .对任意x R ∈,都有20x <B .不存在x R ∈,都有20x <C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x < 32.(2013四川)设x Z ∈,集合A 是奇数集,集合B 是偶数集,若命题p :,2x A x B ∀∈∈,则A .p ⌝:,2x A xB ∀∈∉ B .p ⌝:2x A x B ∀∉∉,C .p ⌝:2x A x B ∀∉∈,D .p ⌝:2x A x B ∀∈∉,33.(2013湖北)在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A .()()p q ⌝∨⌝B . ()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨ 34.(2012湖北)命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q 35.(2012湖南)命题“若4πα=,则tan 1α=”的逆否命题是 A .若4πα≠,则tan 1α≠ B .若4πα=,则tan 1α≠C .若tan 1α≠,则4πα≠ D .若tan 1α≠,则4πα=36.(2012安徽)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D . 即不充分不必要条件37.(2012福建)下列命题中,真命题是A .00,0xx R e ∃∈„ B .2,2x x R x ∀∈> C .0a b +=的充要条件是1a b=- D .1a >,1b >是1ab >的充分条件 38.(2012北京)设,a b ∈R ,“0a =”是‘复数i a b +是纯虚数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件39.(2012湖北)命题“存在一个无理数,它的平方是有理数”的否定是A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数40.(2012山东)设0>a 且1≠a ,则“函数()x a x f =在R 上是减函数”是“()()32x a x g -=在R 上是增函数”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件41.(2012山东)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是A .p 为真B .q ⌝为假C .p q ∧为假D .p q ∨为真42.(2011山东)已知,,a b c R ∈,命题“若a b c ++=3,则222a b c ++≥3”,的否命题是A .若3a b c ++≠,则222a b c ++<3B .若3a b c ++=,则222a b c ++<3C .若3a b c ++≠,则222a b c ++≥3D .若222a b c ++≥3,则3a b c ++=43.(2011新课标)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p πθ+>⇔∈a b 2:p ||1+>a b ⇔2(,]3πθπ∈ 13:||1[0,)3p πθ->⇔∈a b 4:p ||1->a b ⇔(,]3πθπ∈ 其中真命题是A .14,p pB .13,p pC .23,p pD .24,p p44.(2011陕西)设,a b 是向量,命题“若=-a b ,则=a b ”的逆命题是A .若≠a b ,则≠a bB .若=-a b ,则≠a bC .若≠a b ,则≠a bD .若=a b ,则=-a b45.(2011湖南)设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件46.(2011安徽)命题“所有能被2整聊的整数都是偶数”的否定..是 A .所有不能被2整除的数都是偶数B .所有能被2整除的整数都不是偶数C .存在一个不能被2整除的数都是偶数D .存在一个能被2整除的数都不是偶数47.(2010新课标)已知命题1p :函数22x x y -=-在R 为增函数,2p :函数22x x y -=+ 在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是A .1q ,3qB .2q ,3qC .1q ,4qD .2q ,4q48.(2010辽宁)已知a >0,则0x 满足关于x 的方程ax b =的充要条件是A .220011,22x R ax bx ax bx ∃∈-≥- B .220011,22x R ax bx ax bx ∃∈-≤- C .220011,22x R ax bx ax bx ∀∈-≥- D .220011,22x R ax bx ax bx ∀∈-≤- 二、填空题49.(2018北京)能说明“若a b >,则11a b<”为假命题的一组a ,b 的值依次为____. 50.(2013四川)设n P P P ,,,⋯⋯21为平面a 内的n 个点,在平面a 内的所有点中,若点P 到点n P P P ,,,⋯⋯21的距离之和最小,则称点P 为点12n P P P ⋅⋅⋅,,,的一个“中位点”,例如,线段AB 上的任意点都是端点A ,B 的中位点,现有下列命题: ①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点;其中的真命题是________________(写出所有的真命题的序号).51.(2011陕西)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = .52.(2010安徽)命题“存在x R ∈,使得2250x x ++=”的否定是 .专题一 集合与常用逻辑用语第一讲 集合答案部分 20191.解析 因为{}1234567234{}}23{567U A B ===,,,,,,,,,,,,,,,所以C 17{}6U A =,,, 则{67?}U B A =I ,ð. 故选C .2.解析 (1,)A =-+∞,(,2)B =-∞,(1,2)A B =-I .故选C.3.解析 因为{}1,0,1,2A =-,2{|1}{|11}B x x x x ==-剟?, 所以{}1,0,1A B =-I .故选A .4.解析 由数轴可知,{}1A B x x =>U .故选C.5.解析 设集合{}1,1,2,3,5A =-,{}13C x x =∈<R „, 则{}1,2A C =I . 又{}2,3,4B =, 所以{}{}{}{}1,22,3,41,2,3,4A C B ==I U U .故选D.6.解析 因为{}1,0,1,6A =-,{}|0,B x x x =>∈R ,所以{}{}{}1,0,1,6|0,1,6A B x x x =->∈=R I I .7.解析 {1,3}U A =-ð,{1}U A B =-I ð.故选A . 2010-20181.A 【解析】由题意{0,2}A B =I ,故选A .2.C 【解析】因为{1,2,3,4,5}U =,{1,3}A =,所以=U A ð{2,4,5}.故选C .3.C 【解析】因为{}1,3,5,7A =,{}2,3,4,5B =,所以{3,5}A B =I ,故选C .4.A 【解析】{|||2}(2,2)A x x =<=-,{2,0,1,2}B =-,∴{0,1}A B =I ,故选A .5.C 【解析】由题意知,{|10}A x x =-≥,则{1,2}A B =I .故选C .6.C 【解析】由题意{1,0,1,2,3,4}A B =-U ,∴(){1,0,1}A B C =-U I ,故选C .7.A 【解析】∵3{|}2B x x =<,∴3{|}2A B x x =<I , 选A .8.A 【解析】由并集的概念可知,{1,2,3,4}A B =U ,选A .9.B 【解析】由集合交集的定义{2,4}A B =I ,选B .10.B 【解析】∵{1,2,4,6}A B =U ,(){1,2,4}A B C =U I ,选B .11.C 【解析】{|02}M x x =<<,所以{|02}M N x x =<<I ,选C .12.C 【解析】{|22}U A x x =-≤≤ð,选C .13.A 【解析】由题意可知{|12}P Q x x =-<<U ,选A .14.B 【解析】由题意得,{1,3,5,7}A =,{|25}B x x =剟,则{3,5}A B =I .选B . 15.D 【解析】易知{|33}B x x =-<<,又{1,2,3}A =,所以{1,2}A B =I 故选D .16.C 【解析】由补集的概念,得{0,2,6,10}A B =ð,故选C .17.A 【解析】∵(1,2)A =-,(0,3)B =,∴(1,3)A B =-U .18.D 【解析】集合{|32,}A x x n n N ==+∈,当0n =时,322n +=,当1n =时,325n +=,当2n =时,328n +=,当3n =时,3211n +=,当4n =时,3214n +=,∵{6,8,10,12,14}B =,∴A B I 中元素的个数为2,选D .19.A 【解析】{|32}A B x x =-<<I .20.B 【解析】{2,5}U B ð=,∴U A B I =ð{2,5}.21.A 【解析】∵{0,1}M =,{|01}N x x ≤=<,∴M N U =[0,1].22.C 【解析】因为{|13}B x x =<<,所以(2,3)A B =I ,故选C .23.D 【解析】∵{0,1}M N =I .24.B 【解析】{1}M N =I .25.C 【解析】由题意知,22{(,)1,,}{(1,0),(1,0),(0,1),(0,1)}A x y x y x y =+≤∈=--Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,所以由新定义集合A B ⊕可知,111,0x y =±=或110,1x y ==±.当111,0x y =±=时,123,2,1,0,1,2,3x x +=---,122,1,0,1,2y y +=--,所以此时A B ⊕中元素的个数有:7535⨯=个;当110,1x y ==±时,122,1,0,1,2x x +=--,123,2,1,0,1,2,3y y +=---,这种情形下和第一种情况下除12y y +的值取3-或3外均相同,即此时有5210⨯=,由分类计数原理知,A B ⊕中元素的个数为351045+=个,故应选C .26.A 【解析】{}|13A x x x =-≤或≥,故A B I =[-2, -1].27.D 【解析】{}|12N x x =≤≤,∴M N I ={1,2}.28.B 【解析】∵{}1,2B =-,∴A B =I {}2.29.C 【解析】|1|213x x -<⇒-<<,∴(1,3)A =-,[1,4]B =.∴[1,3)A B =I .30.C 【解析】∵(0,2)A =,[1,4]B =,所以A B =I [1,2).31.C 【解析】{}{}{}1,0,10,1,21,0,1,2M N ⋃=-⋃=-,选C .32.A 【解析】P Q I =}{34x x ≤<.33.B 【解析】由题意知{|2}U x N x =∈≥,{|A x N x =∈,所以U A ð={|2x N x ∈<≤,选B .34.C 【解析】∵{}{}2|200,2A x x x =-==.∴A B =I ={}0,2.35.C 【解析】A B =I {|23}x x <<.36.B 【解析】∵21x <,∴11x -<<,∴M N =I {}|01x x <≤,故选B . 37.C 【解析】{}|3,3A x x =-<,{}|15R B x x x =->≤或ð,∴()R A B =I ð{}|31x x --≤≤. 38.D 【解析】由已知得,{=0A B x x ≤U 或}1x ≥,故()U A B =U ð{|01}x x <<. 39.A 【解析】{|12}A x x =-≤≤,Z B =,故A B =I {1,0,1,2}-.40.C 【解析】{}2,4,7U A =ð.41.C 【解析】“存在集合C 使得,U A C B C ⊆⊆ð”⇔“∅=B A I ”,选C .42.B 【解析】A =(-∞,0)∪(2,+∞),∴A U B =R ,故选B .43.A 【解析】{}1,4,9,16B =,∴{}1,4A B =I .44.A 【解析】∵(1,3)M =-,∴{}0,1,2M N =I .45.C 【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N I {2,1,0}=--,选C .46.A 【解析】由题意{}1,2,3A B =U ,且{1,2}B =,所以A 中必有3,没有4,{}3,4U B =ð,故U A B =I ð{}3. 47.C 【解析】0,0,1,2,0,1,2x y x y ==-=--;1,0,1,2,1,0,1x y x y ==-=-;2,0,1,2,2,1,0x y x y ==-=.∴B 中的元素为2,1,0,1,2--共5个.48.A 【解析】A :1->x ,{|1}R A x x =-≤ð,(){1,2}R A B =--I ð,所以答案选A49.D 【解析】由集合A ,14x <<;所以(1,2]A B =I .50.B 【解析】集合B 中含-1,0,故{}1,0A B =-I .51.A 【解析】∵{}2,0S =-,{}0,2T =,∴S T =I {}0.52.B 【解析】特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立, 此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.53.D 【解析】()f x 的定义域为M =[-1,1],故R M ð=(,1)(1,)-∞-⋃+∞,选D54.A 【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =.55.C 【解析】[)0,A =+∞,[]2,4B =,∴[0,2)(4,)R A B =+∞I U ð.56.A 【解析】U M ð={,,}246.57.D 【解析】Q {}3,4,5Q =,∴U Q ð={}1,2,6,∴U P Q I ð={}1,2. 58.D 【解析】由M ={1,2,3,4},N ={-2,2},可知-2∈N ,但是-2∉M ,则N ⊄M ,故A 错误.∵M U N ={1,2,3,4,-2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D .59.B 【解析】A =(-1,2),故B ⊂≠A ,故选B .60.D 【解析】{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=I .61.C 【解析】根据题意容易看出x y +只能取-1,1,3等3个数值.故共有3个元素.62.D 【解析】{|1}P x x =< ∴{|1}R P x x =≥ð,又∵{|1}Q x x =>,∴R Q P ⊆ð,故选D .63.B 【解析】{1,3}P M N ==I ,故P 的子集有4个.64.C 【解析】因为P M P =U ,所以M P ⊆,即a P ∈,得21a ≤,解得11a -≤≤,所以a 的取值范围是[1,1]-.65.D 【解析】因为{1,2,3,4}M N =U ,所以()()U U M N I 痧=()U M N U ð={5,6}. 66.B 【解析】因为U M N ⊂ð,所以()()()U U U U N N M N M ==U U 痧痧 =[()]U U N M I 痧={1,3,5}.67.C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x -=,解得0x =或1x =,这时1y =或0y =,即{(0,1),(1,0)}A B =I ,有2个元素.68.A 【解析】集合{1,0,1}{0,1,2}={0,1}M N =-I I .69.C 【解析】对于集合M ,函数|cos 2|y x =,其值域为[0,1],所以[0,1]M =,根据复<21x <,所以(1,1)N =-,则[0,1]M N =I .70.A 【解析】根据题意可知,N 是M 的真子集,所以M N M =U .71.C 【解析】{}{}{}1,2,32,3,42,3M N ==I I 故选C.72.D 【解析】{}{}|1,|12R R B x x A B x x ==I 痧≥≤≤73.B 【解析】{}22<<x x Q -=,可知B 正确, 74.A 【解析】不等式121log 2x …,得12112201log log ()2x >⎧⎪⎨⎪⎩…,得x „, 所以R A ð=(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭U .75.D 【解析】因为{3}A B =I ,所以3∈A ,又因为{9}U B A =I ð,所以9∈A ,所以选D .本题也可以用Venn 图的方法帮助理解.76.{1,8}【解析】由集合的交运算可得A B =I {1,8}.77.1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =. 78.5【解析】{1,2,3}{2,4,5}{1,2,3,4,5}A B ==U U ,5个元素.79.{1,2,3}【解析】{2}U B =ð,A U (U B ð)={1,2,3}.80.{}1,3-【解析】=B A I {}1,3-.81.{}7,9【解析】{}1,2,3,4,5,6,7,8,9,10U =,{}4,6,7,9,10U A =ð, {}()7,9U A B =I ð.82.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上符合条件的有序数组的个数是6.83.{}6,8【解析】()U A B I ð={6,8}{2,6,8}{6,8}=I .84.【解析】(1)5 根据k 的定义,可知1131225k --=+=;(2)12578{,,,,}a a a a a 此时211k =,是个奇数,所以可以判断所求集中必含元素1a ,又892,2均大于211,故所求子集不含910,a a ,然后根据2j (j =1,2,⋅⋅⋅7)的值易推导出所求子集为12578{,,,,}a a a a a .85.1【解析】考查集合的运算推理.3∈B ,23a +=,1a =.专题一 集合与常用逻辑用语第二讲 常用逻辑用语答案部分2019年1.解析 若0b =,则()cos f x x =是偶函数;反之,若()f x 为偶函数,则()()f x f x -=,即()()cos sin cos sin cos sin x b x x b x x b x -+-=-=+,即sin 0b x =对x ∀成立, 可得0b =,故“0b =”是“()f x 为偶函数”的充分必要条件.故选C.2.解析 由11x -<,得02x <<,因为05x <<不能推出02x <<, 但02x <<可以推出05x <<,所以05x <<是02x <<的必要不充分条件, 即05x <<是11x -<的必要不充分条件. 故选B .3.解析 因为a >0,b >0,若a +b ≤4,则24ab a b +剟,则4ab „,即44a b ab +⇒剟. 反之,若4ab „,取1a =,4b =,则44ab =„,但5a b +=,即4ab „推不出a +b ≤4,所以a +b ≤4是4ab „的充分不必要条件.故选A .4.解析 作出不等式组620x y x y +⎧⎨-⎩……的平面区域如图阴影部分所示. 由图可知,命题():,,29p x y D x y ∃∈+…;是真命题,则p ⌝假命题;命题():,,212q x y D x y ∀∈+„是假命题,则真命题;所以:由或且非逻辑连词连接的命题判断真假有:p q ∨真; p q ⌝∨假;●p q ∧⌝真;❍p q ⌝∧⌝假;故答案●正确.故选A .2010-2018年1.A 【解析】若m α⊄,n α⊂,m ∥n ,由线面平行的判定定理知m ∥α.若m ∥α,m α⊄,n α⊂,不一定推出m ∥n ,直线m 与n 可能异面,故“m ∥n ”是“m ∥α”的充分不必要条件.故选A .2.B 【解析】a ,b ,c ,d 是非零实数,若ad bc =,则b d a c=,此时a ,b ,c ,d 不一定成等比数列;反之,若a ,b ,c ,d 成等比数列,则a c b d=,所以ad bc =,所以“ad bc =”是“a ,b ,c ,d 成等比数列”的必要而不充分条件.故选B .3.A 【解析】由38x >,得2x >,由||2x >,得2x >或2x <-,故“38x >”是“||2x >” 的充分而不必要条件,故选A .4.A 【解析】由1>a 可得11<a 成立;当11<a ,即1110--=<a a a , 解得0<a 或1>a ,推不出1>a 一定成立;所以“1a >”是“11a<”的充分非必要条件.故选A .5.B 【解析】由20x -≥,得2x ≤,由|1|1x -≤,得02x ≤≤,所以“20x -≥”是“|1|1x -≤”的必要而不充分条件.选B .6.B 【解析】取0x =,知1p 成立;若22a b <,得||||a b =,q 为假,所以p q ⌝∧为真,选B .7.A 【解析】因为,m n 为非零向量,所以||||cos ,0⋅=<><m n m n m n 的充要条件是cos ,0<><m n .因为0λ<,则由λ=m n 可知,m n 的方向相反,,180<>=o m n ,所以cos ,0<><m n ,所以“存在负数λ,使得λ=m n ”可推出“0⋅<m n ”;而0⋅<m n 可推出cos ,0<><m n ,但不一定推出,m n 的方向相反,从而不一定推得“存在负数λ,使得λ=m n ”,所以“存在负数λ,使得λ=m n ”是“0⋅<m n ”的充分而不必要条件.8.C 【解析】∵655465()()S S S S a a d ---=-=,当0d >,可得465+2S S S >;当465+2S S S >,可得0d >.所以“0d >”是“465+2S S S >” 充分必要条件,选C .9.A 【解析】根据已知,如果直线,a b 相交,则平面,αβ一定存在公共点,故其一定相交;反之,如果平面,αβ相交,分别位于这两个平面内的直线不一定相交,故为充分不必要条件,选A .10.A 【解析】当0b <时,2min ()()24b b f x f =-=-,即2()[,)4b f x ∈-+∞, 而222(())()()(())24b b f f x f x bf x f x =+=+-的对称轴也是2b -, 又2[,)24b b -∈-+∞,所以当()2b f x =-时,2min (())4b f f x =-, 故(())f f x 的最小值与()f x 的最小值相等;另一方面,取0b =,2()f x x =与4(())f f x x =有相等的最小值0,故选A . 11.A 【解析】由“1x =”显然能推出“2210x x -+=”,故条件是充分的;又由“2210x x -+=”可得10)1(2=⇒=-x x ,所以条件也是必要的;故选A . 12.D 【解析】若0a b +>,取3,2a b ==-,则0ab >不成立;反之,若2,3a b =-=-,则0a b +>也不成立,因此“0a b +>”是“0ab >”的既不充分也不必要条件.13.C 【解析】∵(1,3)(,3)-⊆-∞,所以p 是q 成立的必要不充分条件.14.A 【解析】由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,故应选A .15.A 【解析】a >b >1时,有22log log 0a b >>成立,反之也正确.16.D 【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D .17.A 【解析】∵22cos 2cos sin ααα=-,当sin cos αα=时,cos20α=,充分性成。
2019年高考数学真题分类汇编:集合.doc

2019 年高考数学真题分类汇编专题 01:集合一、单选题1.(2019?浙江)已知全集 U={-1 ,0,1,2,3} ,集合 A={0,1,2} ,B={-1 ,0,1} ,则=()A. {-1}B. {0 ,1}C. {-1 ,2,3}D. {-1 , 0,1,3}【答案】 A2.(2019?天津)设集合,则()A.{2}B.{2 ,3}C.{-1 ,2,3}D.{1 ,2,3,4}【答案】 D3.(2019?全国Ⅲ)已知集合 A={-1 ,0,1,2} ,B={x|x 2≤1} ,则 A∩B= ()A.{-1 ,0,1}B.{0,1}C.{-1 ,1}D.{0,1,2}【答案】 A4.(2019?卷Ⅱ)已知集合 A={x|x>-1} ,B={x|x<2} ,则 A∩B=()A. (-1 ,+∞)B. ( - ∞, 2)C.( -1 ,2)D.【答案】 C5. (2019?卷Ⅱ)设集合 A={x|x 2-5x+6>0} ,B={ x|x-1<0},则A∩B= ()A.(- ∞, 1)B.(-2,1)C.(-3 ,-1)D.(3,+∞)【答案】 A6. (2019?北京)已知集合A={x|-1<x<2} ,B={x|x>1} ,则 AUB= ()A. (-1 ,1)B. (1,2)C.(-1 ,+∞)D.(1,+∞)【答案】 C7.(2019?卷Ⅰ)已知集合 U=,A=,B=则=()A. B.C. D.【答案】 C8. (2019?卷Ⅰ)已知集合M=,N=,则M N=()A. B.C. D.【答案】 C9.(2019?全国Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著。
某中学为了了解本校学生阅读四大名著的情况,随机调查了 100 位学生,其中阅读过《西游记》或《红楼梦》的学生共有 90 位,阅读过《红楼梦》的学生共有 80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8【答案】 C二、填空题10. (2019?江苏)已知集合,,则________.【答案】。
十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):常用逻辑用

A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
28.(2014•陕西•理 T8)原命题为“若 z1,z2 互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真
假性的判断依次如下,正确的是( )
A.真,假,真 B.假,假,真
C.真,真,假 D.假,假,假
的( )
A.充要条件
B.充分而不必要条件
C.必要而不充分条件 D.既不充分也不必要条件
3
18.(2016•山东•理 T6)已知直线 a,b 分别在两个不同的平面 α,β 内.则“直线 a 和直线 b 相交”是“平面
α 和平面 β 相交”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
13.(2017•天津•理 T4)设 θ∈R,则“
π
- 12
<
π
12”是“sin
1
θ<2”的(
)
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
14.(2017•浙江•理 T6)已知等差数列{an}的公差为 d,前 n 项和为 Sn,则“d>0”是“S4+S6>2S5”的 ( )
+ ≥ 6, 1.(2019•全国 3•文 T11)记不等式组 2 - ≥ 0 表示的平面区域为 D.命题 p:∃(x,y)∈D,2x+y≥9;命题 q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题 ①p∨q ②¬p∨q ③p∧¬q ④¬p∧¬q 这四个命题中,所有真命题的编号是( ) A.①③ B.①② C.②③ D.③④
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十年高考真题分类汇编(2010—2019)数学 专题01 集合 1.(2019•全国1•理T1)已知集合M={x|-4A.{x|-4【答案】C 【解析】由题意得N={x|-22.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁UA=( ) A.{1,6} B.{1,7}C.{6,7} D.{1,6,7} 【答案】C 【解析】由已知得∁UA={1,6,7},∴B∩∁UA={6,7}.故选C. 3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( ) A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞) 【答案】A 【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A. 4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( ) A.(-1,+∞) B.(-∞,2)C.(-1,2) D.⌀ 【答案】C 【解析】由题意,得A∩B=(-1,2),故选C. 5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( ) A.{-1,0,1} B.{0,1}C.{-1,1} D.{0,1,2} 【答案】A 【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A. 6.(2019•北京•文T1)已知集合A={x|-11},则A∪B=( ) A.(-1,1) B.(1,2)C.(-1,+∞) D.(1,+∞) 【答案】C 【解析】∵A={x|-11},∴A∪B=(-1,+∞),故选C. 7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( ) A.{2} B.{2,3}C.{-1,2,3} D.{1,2,3,4} 【答案】D 【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D. 8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁UA)∩B=( ) A.{-1} B.{0,1}C.{-1,2,3} D.{-1,0,1,3} 【答案】A 【解析】∁UA={-1,3},则(∁UA)∩B={-1}. 9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁RA=( ) A.{x|-1C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2} 【答案】B 【解析】A={x|x<-1或x>2},所以∁RA={x|-1≤x≤2}. 10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( ) A.{0,2} B.{1,2}C.{0} D.{-2,-1,0,1,2} 【答案】A 【解析】由交集定义知A∩B={0,2}. 11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( ) A.{3} B.{5}C.{3,5} D.{1,2,3,4,5,7} 【答案】C 【解析】集合A、B的公共元素为3,5,故A∩B={3,5}. 12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( ) A.{0} B.{1}C.{1,2} D.{0,1,2} 【答案】C 【解析】由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}. 13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( ) A.{0,1} B.{-1,0,1} C.{-2,0,1,2} D.{-1,0,1,2} 【答案】A 【解析】∵A={x|-214.(2018•天津•理T1)设全集为R,集合A={x|0A.{x|0【答案】B 【解析】∁RB={x|x<1},A∩(∁RB)={x|015.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( ) A.{-1,1} B.{0,1} C.{-1,0,1} D.{2,3,4} 【答案】C 【解析】A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}. 16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁UA=( ) A.⌀ B.{1,3}C.{2,4,5} D.{1,2,3,4,5} 【答案】C 【解析】∵A={1,3},U={1,2,3,4,5},∴∁UA={2,4,5},故选C. 17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( ) A.9 B.8 C.5 D.4 【答案】A 【解析】满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。 18.(2017•全国3•理T1,)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为 A.3 B.2 C.1 D.0 【答案】B 【解析】A表示圆x2+y2=1上所有点的集合,B表示直线y=x上所有点的集合,易知圆x2+y2=1与直线y=x相交,故A∩B中有2个元素. 19.(2017•全国1•理T1)已知集合A={x|x<1},B={x|3x<1},则( ) A.A∩B={x|x<0} B.A∪B=R C.A∪B={x|x>1} D.A∩B=⌀ 【答案】A 【解析】∵3x<1=30,∴x<0,∴B={x|x<0},∴A∩B={x|x<0},A∪B={x|x<1}.故选A. 20.(2017•全国2•理T2)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( ) A.{1,-3} B.{1,0} C.{1,3} D.{1,5} 【答案】C 【解析】由A∩B={1},可知1∈B,所以m=3,即B={1,3}. 21.(2017•全国1•文T1)已知集合A={x|x<2},B={x|3-2x>0},则( ) A.A∩B={x|x<32}
B.A∩B=⌀ C.A∪B={x|x<32}
D.A∪B=R 【答案】A
【解析】∵A={x|x<2},B={x|x<32}, ∴A∪B={x|x<2},A∩B={x|x<32},故选A.
22.(2017•全国2•文T1)设集合A={1,2,3},B={2,3,4},则A∪B=( ) A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4} 【答案】A 【解析】因为A={1,2,3},B={2,3,4},所以A∪B={1,2,3,4},故选A. 23.(2017•全国3•文T1)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为( ) A.1 B.2 C.3 D.4 【答案】B 【解析】由题意可得A∩B={2,4},则A∩B中有2个元素.故选B. 24.(2017•天津•理T1)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=( ) A.{2} B.{1,2,4} C.{1,2,4,6} D.{x∈R|-1≤x≤5} 【答案】B 【解析】∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6}.∵C={x∈R|-1≤x≤5},∴(A∪B)∩C={1,2,4}. 25.(2017•北京•理T1)若集合A={x|-23},则A∩B=( ) A.{x|-2C.{x|-1【答案】A 【解析】A∩B={x|-226.(2017•北京•文T1)已知全集U=R,集合A={x|x<-2或x>2},则∁UA=( ) A.(-2,2) B.(-∞,-2)∪(2,+∞) C.[-2,2] D.(-∞,-2]∪[2,+∞) 【答案】C 【解析】因为A={x|x<-2或x>2},所以∁UA={x|-2≤x≤2}. 27.(2016•全国1•理T1)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=( ) A.(-3,-32) B.(-3,32)
C.(1,32) D.(32,3) 【答案】D 【解析】A=(1,3),B=(32,+∞),所以A∩B=(32,3),故选D. 28.(2016•全国2•理T2)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=( ) A.{1} B.{1,2} C.{0,1,2,3} D.{-1,0,1,2,3} 【答案】C 【解析】由题意可知,B={x|-129.(2016•全国3•理T1)设集合S={x|(x-2)•(x-3)≥0},T={x|x>0},则S∩T=( ) A.[2,3] B.(-∞,2]∪[3,+∞) C.[3,+∞) D.(0,2]∪[3,+∞) 【答案】D 【解析】S={x|x≤2或x≥3}.因为T={x|x>0},所以S∩T={x|030.(2016•全国1•文T1)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( ) A.{1,3} B.{3,5}C.{5,7} D.{1,7} 【答案】B 【解析】A∩B={3,5},故选B. 31.(2016•全国2•文T1)已知集合A={1,2,3},B={x|x2<9},则A∩B=( ) A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2} C.{1,2,3} D.{1,2} 【答案】D 【解析】B={x|-332.(2016•全国3•文T1)设集合A={0,2,4,6,8,10},B={4,8},则∁AB=( ) A.{4,8} B.{0,2,6}