初一(上)数学【概念、定义集合】
1.1集合的概念(第一课时集合的含义)课件高一上学期数学人教A版

第1节 集合的概念
第一课时 集合的含义
教学目标
1.通过实例,了解集合的含义,体会元素与 集合的从属关系. 2.掌握集合中元素的三个特征——确定性、 互异性和无序性. 3.掌握几个常用数集及其记法.
教学重、难点
重点: 集合的含义,元素与集合的关系; 难点: 集合的含义
伍
• 范例应用
[对点练清]
1.(多选)下列对象能构成集合的是
()
A.某市拥有小轿车的家庭
B.2020 年高考数学试卷中的难题
C.所有的有理数
D.绝对值大于 5 的实数 解析:根据集合的概念,B 选项中的“难题”标准不明确,不满足集
合中元素的确定性,显然 A、C、D 选项中都能构成集合,故选 A、
C、D. 答案:ACD
谢谢
叁 当堂训练
当堂训练
1.集合 M 是由大于-2 且小于 1 的实数构成的,则下列关系式正确的是
()
A. 5∈M
B.0∉M
C.1∈M
D.-π∈M 2
解析: 5>1,故 5∉M;-2<0<1,故 0∈M;1 不小于 1,故 1∉M;
-2<-π2<1,故-π2∈M.故选 D. 答案:D
当堂训练
2.设集合 D 是由满足 y=x2 的有序实数对(x,y)组成的,则-1________D, (-1,1)________D.(用符号∉或∈填空) 解析:-1 不是有序实数对,∴-1∉D.(-1,1)满足 y=x2,∴(-1,1)∈D. 答案:∉ ∈
肆 课堂小结
课堂小结
1.集合的概念 2.集合元素的三个特征: 3.常见数集的专用符号
课后作业
由实数 x,-x|x|, x2,( x2)2,- x3组成的集合中最多含有________个 元素. 解析:由题可知 x≥0,所以 x,-x|x|, x2,( x2)2,- x3可分别化 为 x,-x2,x,x2,-x x,故由实数 x,-x|x|, x2,( x2)2,- x3 组成的集合中最多含有 4 个元素. 答案:4
集合的概念与表示(7类必考点)-2022-2023学年高一数学(苏教版2019必修第一册)

专题1.1 集合的概念与表示【考点1:集合的含义】 (1)【考点2:元素与集合的关系】 (2)【考点3:集合中元素的个数】 (3)【考点4:集合中元素的确定性、互异性、无序性】 (5)【考点5:有限集与无限集】 (7)【考点6:常用数集与点集】 (9)【考点7:集合的表示方法】 (10)【考点1:集合的含义】【知识点:集合】把一些元素组成的总体叫做集合(简称为集),集合通常用大写的拉丁字母A,B,C,…表示.1.(2022春•广南县期中)下列各对象可以组成集合的是()A.与1非常接近的全体实数B.北附广南实验学校2020~2021学年度第二学期全体高一学生C.高一年级视力比较好的同学D.中国著名的数学家【分析】根据集合的元素必须具有确定性,逐个判断各个选项即可.【解答】解:对于选项A:其中元素不具有确定性,故选项A错误,对于选项B:对于任何一个学生可以判断其是否属于{北附广南实验学校2020~2021学年度笫二学期全体高一学生},故选项B正确,对于选项C:其中元素不具有确定性,故选项C错误,对于选项D:其中元素不具有确定性,故选项D错误,故选:B.2.(2021秋•湖北月考)判断下列元素的全体可以组成集合的是()①湖北省所有的好学校;②直角坐标系中横坐标与纵坐标互为相反数的点;③n的近似值;④不大于5的自然数.A.①②B.②③C.②④D.③④【分析】由集合元素的特征可知:集合的元素具有确定性、互异性、无序性,据此即可选出.【解答】解:“好学校”不具有确定性,n的近似值不具有确定性,因此①③不能组成集合;直角坐标系中横坐标与纵坐标互为相反数的点,不大于5的自然数,满足集合的元素的特征,因此②④能组成集合.故选:C.3.(2021秋•城关区校级月考)下列给出的对象中,能组成集合的是()A.一切很大的数B.好心人C.漂亮的小女孩D.方程x2﹣1=0的实数根【分析】从集合的定义入手,由集合中的元素是确定性、互异性、无序性判定选项的正误即可.【解答】解:对于A:一切很大的数,B:好心人,C:漂亮的小女孩,描述不够准确具体,元素不能确定,所以都不正确;选项D:方程x2﹣1=0的实数根为±1,元素是确定的,具体的,是正确的.故选:D.4.(2021秋•威宁县校级月考)下列语言叙述中,能表示集合的是()A.数轴上离原点距离很近的所有点B.太阳系内的所有行星C.某高一年级全体视力差的学生D.与△ABC大小相仿的所有三角形【分析】从集合的定义入手,由集合中的元素是确定性、互异性、无序性判定选项的正误即可.【解答】解:对于A:数轴上离原点距离很近的所有点,元素不能确定,故A不能表示集合;对于B:太阳系内的所有行星,元素是确定的,能表示集合,故B正确;对于C:某高一年级全体视力差的学生,元素不能确定,故C不能表示集合;对于D:与△ABC大小相仿的所有三角形,元素不能确定,故D不能表示集合.故选:B.【考点2:元素与集合的关系】【知识点:元素与集合的关系】(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A的元素,就说a不属于集合A,记作a∉A.1.(2022•长沙模拟)已知集合A={{∅},∅},下列选项中均为A的元素的是()(1){∅};(2){{∅}};(3)∅;(4){{∅},∅}.A .(1)(2)B .(1)(3)C .(2)(3)D .(2)(4)【分析】由元素与集合的关系逐一判断即可.【解答】解:集合A ={{∅},∅},则{∅}∈A ,∅∈A ,{{∅}}⊆A ,{{∅},∅}=A ,故选:B .2.(2021秋•河北区期末)下列关系中正确的个数是( )①12∈Q ;②√2∉R ;③0∈N *;④π∈Z . A .1 B .2 C .3 D .4【分析】根据元素与集合的关系进行判断.【解答】解:①12∈Q 正确,②√2∉R 不正确,③0∈N *不正确,④π∈Z 不正确. 故选:A .3.(2021秋•桂林期末)下列关系中,正确的是( )A .﹣2∈{0,1}B .32∈ZC .π∈RD .5∈∅【分析】根据元素与集合的关系,用∈∉符号,可得结论.【解答】解:根据元素与集合的关系,用∈∉符号,﹣2∉{0,1},32∉Z ,π∈R ,5∉∅,可知C 正确. 故选:C .【考点3:集合中元素的个数】1.(2022•全国一模)已知集合A ={2,3,4,5,6},B ={(x ,y )|x ∈A ,y ∈A ,y ﹣x ∈A },则B 中所含元素的个数为( )A .2B .3C .4D .6【分析】由集合B 中的元素所满足的条件,用列举法写出集合B 中的所有元素,则答案可求.【解答】解:由A ={2,3,4,5,6},B ={(x ,y )|x ∈A ,y ∈A ,y ﹣x ∈A },当x=2时,y=4,5,6,当x=3时,y=5,6,当x=4时,y=6,所以B={(2,4),(2,5),(2,6),(3,5)(3,6),(4,6)},所以B中所含元素个数为6个.故选:D.2.(2021秋•长寿区期末)设集合P={3,4,5},Q={6,7},定义P⊗Q={(a,b)|a∈P,b∈Q},则P⊗Q中元素的个数为()A.3B.4C.5D.6【分析】由集合的定义代入写出所有元素即可.【解答】解:由题意知,P⊗Q={(a,b)|a∈P,b∈Q}={(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)},共有6个元素,故选:D.3.(2021秋•芜湖期末)集合A={x∈N*|x﹣5<0}中的元素个数是()A.0B.4C.5D.6【分析】列举法求集合A,从而确定元素个数.【解答】解:A={x∈N*|x﹣5<0}={1,2,3,4},故集合A中有4个元素,故选:B.4.(2021秋•三元区校级月考)如果集合M={x|mx2﹣4x+2=0}中只有一个元素,则实数m的所有可能值的和为()A.4B.2C.1D.0【分析】当m=0时,经检验满足条件;当m≠0时,由判别式Δ=16﹣8m=0,解得m的值,由此得出结论【解答】解:当m=0时,显然满足集合{x|mx2﹣4x+2=0}有且只有一个元素,当m≠0时,由集合{x|mx2﹣4x+2=0}有且只有一个元素,可得判别式Δ=16﹣8m=0,解得m=2,∴实数m的所有可能值的和为0+2=2,故选:B.【考点4:集合中元素的确定性、互异性、无序性】【知识点:集合中元素的确定性、互异性、无序性】(1)确定性:集合中的元素是确定的,即任何一个对象都说明它是或者不是某个集合的元素,两种情况必居其一且仅居其一,不会模棱两可,例如“著名科学家”,“与2接近的数”等都不能组成一个集合.(2)互异性:一个给定的集合中,元素互不相同,就是在同一集合中不能出现相同的元素.例如不能写成{1,1,2},应写成{1,2}.(3)无序性:集合中的元素,不分先后,没有如何顺序.例如{1,2,3}与{3,2,1}是相同的集合,也是相等的两个集合.1.(2021秋•汇川区校级月考)已知集合A中含有5和a2+2a+4这两个元素,且7∈A,则a3的值为()A.0B.1或﹣27C.1D.﹣27【分析】根据条件得“a2+2a+4=7”,求出a的值,则易求a3的值.【解答】解:依题意得:a2+2a+4=7,整理,得(a+3)(a﹣1)=0解得a1=﹣3,a2=1.故a3=﹣27或a3=1.故选:B.2.(2021•南充模拟)若集合S={a,b,c}(a、b、c∈R)中三个元素为边可构成一个三角形,那么该三角形一定不可能是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【分析】由集合元素的特点可知a,b及c互不相等,所以a,b及c构成三角形的三边长,得到三角形的三边长互不相等,此三角形没有两边相等,一定不能为等腰三角形.【解答】解:根据集合元素的互异性可知:a,b及c三个元素互不相等,若此三个元素为边可构成一个三角形,那么该三角形一定不可能是等腰三角形.故选:D.3.(2021秋•泗县校级月考)数集{1,2,x2﹣3}中的x不能取的数值的集合是()A.{2,√5}B.{﹣2,−√5}C.{±2,±√5}D.{2,−√5}【分析】利用集合中的元素具有互异性的性质可知x2﹣3≠1,且x2﹣3≠2,由此能求出数集{1,2,x2﹣3}中的x不能取的数值的集合.【解答】解:由x2﹣3≠1解得x≠±2.由x2﹣3≠2解得x≠±√5.∴x不能取得值的集合为{±2,±√5}.故选:C.4.(2021•郓城县校级一模)在集合A={1,a2﹣a﹣1,a2﹣2a+2}中,a的值可以是()A.0B.1C.2D.1或2【分析】对于集合A={1,a2﹣a﹣1,a2﹣2a+2}中的三个元素必须互不相同,由此限定参数a的取值范围,即利用集合中元素的互异性即可解决本题.【解答】解:当a=0时,a2﹣a﹣1=﹣1,a2﹣2a+2=2,当a=1时,a2﹣a﹣1=﹣1,a2﹣2a+2=1,当a=2时,a2﹣a﹣1=1,a2﹣2a+2=2,由集合中元素的互异性知:选A.故选:A.5.(2022•江西)定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0B.2C.3D.6【分析】根据题意,结合题目的新运算法则,可得集合A*B中的元素可能的情况;再由集合元素的互异性,可得集合A*B,进而可得答案.【解答】解:根据题意,设A={1,2},B={0,2},则集合A*B中的元素可能为:0、2、0、4,又有集合元素的互异性,则A*B={0,2,4},其所有元素之和为6;故选:D.6.(2021秋•市中区校级期中)含有三个实数的集合可表示为{a,ba,1},也可表示为{a2,a+b,0},则a2009+b2009的值为()A.0B.﹣1C.1D.±1【分析】对于{a,ba,1},根据集合元素的互异性,可得a≠1,a≠0;进而由集合相等,可得b=0;代入两个集合中,可得a的值,由此可得答案.【解答】解:根据题意,对于{a,ba,1},有a≠1,a≠0;又有{a,ba,1}={a2,a+b,0},则有a=0或ba=0;又由a≠0;故b=0;代入集合中.可得{a,1,0}={a2,a,0},必有a2=1,又由a≠1,则a=﹣1;则a2009+b2009=﹣1,选B.【考点5:有限集与无限集】1.(2021秋•覃塘区校级月考)下列集合中有限集的个数是()①不超过π的正整数构成的集合;②平方后等于自身的数构成的集合;③高一(2)班中体重在55kg以上的同学构成的集合;④所有小于2的整数构成的集合.A.1B.3C.2D.4【分析】分析给定四个集合中个数是否有限,进而可得答案.【解答】解:①不超过π的正整数构成的集合为{1,2,3}为有限集;②平方后等于自身的数构成的集合为{0,1}为有限集;③高一(2)班中体重在55kg以上的同学构成的集合为有限集.④所有小于2的整数构成的集合为无限集,故选:B.2.(2021秋•青羊区校级期中)以下集合为有限集的是()A.由大于10的所有自然数组成的集合B.平面内到一个定点O的距离等于定长l(l>0)的所有点P组成的集合C.由24与30的所有公约数组成的集合D.由24与30的所有公倍数组成的集合【分析】由集合的定义,对于一些比较简单的命题,可用简单的列举法进行排除,即可得到正确答案【解答】解:对于A:大于10的所有自然数:11、12、13…,一直到+∞,有无数个满足条件的自然数,所以A不合题意对于B:满足题意点的轨迹是以点O为圆心,以l为半径的圆,即满足条件的点,是圆上的点,而圆上有无数个点,所以B不合题意对于C:24与30的公约数有:1、2、3、6.有有限个,所以C满足题意对于D:设m=240×n(n∈N+),则m都可以是24与30的公倍数,所以24与30的公倍数有无数个,D不合题意故选:C.3.(2021秋•兴宁市校级月考)设集合A={面积为1的矩形},B={面积为1的正三角形},则正确的是()A.A,B都是有限集B.A,B都是无限集C.A是无限集,B是有限集D.A是有限集,B是无限集【分析】由于面积为1的矩形有无数个,而面积为1的正三角形只有一个,易得结果.【解答】解:由于面积为1的矩形有无数个,所以集合A为无限集,而面积为1的正三角形只有一个,所以集合B为有限集.故选:C.4.(2021•涿鹿县校级开学)设集合M={大于0小于1的有理数},N={小于1050的正整数},P={定圆C的内接三角形},Q={所有能被7整除的数},其中无限集是()A.M、N、P B.M、P、Q C.N、P、Q D.M、N、Q【分析】利用集合中元素的个数有限与无限进行判断,即可得出结论.【解答】解:集合M={大于0小于1的有理数},是无限集,N={小于1050的正整数},是有限集,P={定圆C的内接三角形},是无限集,Q={所有能被7整除的数},是无限集,故选:B.5.设集合A={周长为4cm的正方形},B={面积为4cm2的长方形},则正确的是()A.A,B都是有限集B.A,B都是无限集C.A是无限集,B是有限集D.A是有限集,B是无限集【分析】集合A:周长为4cm的正方形的边长1cm,这样的正方形只有1个,是有限集;集合B:面积为4cm2的长方形,长与宽可以任意变化,这样的长方形有无数个,是无限集.【解答】解:集合A:周长为4cm的正方形,可以解得边长1cm,这样的正方形只有1个.所以为有限集.集合B:面积为4cm2的长方形,长与宽可以任意变化,这样的长方形有无数个,所以为无限集.故选:D.6.(2021秋•杨浦区校级期中)若整数集Z的子集S满足条件:对任何a,b∈S,都有a﹣b∈S,就称S是封闭集.下列命题中错误的是()A.若S是封闭集且S≠{0},则S一定是无限集B.对任意整数a,b,S={n|ax+by,x,y∈Z}是封闭集C.若S是封闭集,则存在整数k∈S,使得S中任何元素都是k的整数倍D.存在非零整数a,b和封闭集S,使得a,b∈S,但a,b的最大公约数d∉S【分析】由封闭集定义可分析出A,B,C正确.【解答】解:由封闭集定义可得0∈S,若非零整数k∈S,则0﹣k即﹣k∈S,进一步得k﹣(﹣k)=2k∈S和﹣k﹣k=﹣2k∈S,从而±3k,±4k,±5k,…都在S中,可知A,C正确,对于B,由ax1+by1∈S,ax2+by2∈S,可得(ax1+by1)﹣(ax2+by2)=a(x1﹣x2)+b(y1﹣y2)∈S,可知B正确,故选:D.【考点6:常用数集与点集】1.集合M={(x,y)|xy>0,x+y<0,x∈R,y∈R}是()A.第一象限的点集B.第二象限的点集C.第三象限的点集D.第四象限的点集【分析】利用不等式的性质可得:x +y <0,xy >0,⇔x <0,y <0.进而判断出集合的意义.【解答】解:由x +y <0,xy >0,⇔x <0,y <0.故集合M ={(x ,y )|xy >0,x +y <0,x ∈R ,y ∈R }是第三象限的点集.故选:C .2.(2021秋•安康月考)方程组{x +y =1x −y =3的解集是( )A .{2,﹣1}B .{x =2,y =﹣1}C .{(x ,y )|(2,﹣1)}D .{(2,﹣1)}【分析】先求出方程组的解,然后利用列举法表示集合即可.【解答】解:由{x +y =1x −y =3得{x =2y =−1,即方程组构成的集合为{(2,﹣1)},故选:D .3.(2021秋•西城区期末)方程组{x +y =0x 2+x =2的解集是( )A .{(1,﹣1),(﹣1,1)}B .{(1,1),(﹣2,2)}C .{(1,﹣1),(﹣2,2)}D .{(2,﹣2),(﹣2,2)}【分析】解原方程组得出x ,y 的值,然后写出原方程组的解集即可.【解答】解:解{x +y =0x 2+x =2得,{x =−2y =2或{x =1y =−1,∴原方程组的解集为:{(1,﹣1),(﹣2,2)}.故选:C .4.(2021秋•垫江县校级月考)若用列举法表示集合A ={(x ,y )|{2y −x =7x +y =2},则下列表示正确的是() A .{x =﹣1,y =3} B .{(﹣1,3)} C .{3,﹣1} D .{﹣1,3}【分析】先解方程组,然后用列举法表示所求集合,需要注意集合中的元素.【解答】解:{2y −x =7x +y =2,解得{x =−1y =3,所以A ={(x ,y )|{2y −x =7x +y =2}={(﹣1,3)}.故选:B .【考点7:集合的表示方法】【知识点:集合的表示方法】列举法根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系结构法从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断数轴法在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系1.(2021秋•昌吉州期末)集合A={x∈N∗|63−x∈N∗}用列举法可以表示为()A.{3,6}B.{1,2}C.{0,1,2}D.{﹣2,﹣1,0,1,2}【分析】根据x∈N*,63−x∈N∗可得出x的取值分别为1,2,从而得出A={1,2}.【解答】解:∵x∈N*,63−x∈N∗,∴A={1,2}.故选:B.2.(2021秋•合肥期末)集合{x∈N|x﹣2<2}用列举法表示是()A.{1,2,3}B.{1,2,3,4}C.{0,1,2,3,4}D.{0,1,2,3}【分析】化简集合,将元素一一列举出来即可.【解答】解:集合{x∈N|x﹣2<2}={x∈N|x<4}={0,1,2,3}.故选:D.3.(2021秋•桂林期末)下列集合表示正确的是()A.{2,4}B.{2,4,4}C.(1,2,3)D.{高个子男生}【分析】根据集合的表示,及元素的特性,即可得出结论.【解答】解:根据集合的表示,B不满足互异性,C应写在花括号内,D中元素不确定,故选:A.4.(2022春•南关区校级期末)集合{x∈N|x﹣3<2},用列举法表示是()A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}【分析】化简集合,将元素一一列举出来.【解答】解:集合{x∈N|x﹣3<2}={x∈N|x<5}={0,1,2,3,4}.故选:A.5.(2021秋•宜春期末)在数轴上与原点距离不大于3的点的坐标的集合是()A.{x|x≤﹣3或x≥3}B.{x|﹣3≤x≤3}C.{x|x≤﹣3}D.{x|x≥3}【分析】在数轴上与原点距离不大于3的点的坐标的集合即满足|x|≤3的x的集合.【解答】解:在数轴上与原点距离不大于3的点的坐标的集合是满足|x|≤3的x的集合,解绝对值不等式可得:{x|﹣3≤x≤3},故选:B.。
集合的概念课件-高一上学期数学人教A版(2019)必修第一册

提示:偶数和
(4)奇数集表示为{x ∈Z|x =2k + 1, k∈Z};
奇数的共同特
(5)偶数集表示为{x ∈Z|x =2k, k∈Z}.
征是什么?
▲约定:若从上下文的关系看, x∈R是明确的,则可省略不写.
题型二
Hale Waihona Puke 描述法表示集合∈代表元素 代表元素
的范围
各位判官,辩一辩
{ x>1} {x∈Z|x=2m} {x∈A|P(x)}
代表元素的
共同特征
思维升华
用列举法表示集合应注意的两点
(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素.
(2)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素.
例2 用描述法表示下列集合:
【例2-1】 用描述法表示下列集合:
(1)正偶数集;
(2)被3除余2的正整数集合;
(3)平面直角坐标系中坐标轴上的点组成的集合.
解
(1)偶数可用式子x=2n,n∈Z表示,但此题要求为正偶数,
故限定n∈N+,所以正偶数可表示为{x|x=2n,n∈N+}.
(2)设被3除余2的数为x,则x=3n+2,n∈Z,但元素为正整数,故n∈N,
自然数集N可以表述为{0,1,2,...}
实数集能用描述法表述吗?
实数集可以写成 {实数}
但不能写成{实数集}{全体实数}{R}
但不建议!
二、
描述法
1.定义:
一般地,设A是一个集合,我们把集合A中所有具有的共同特征P(x)
的元素x所组成的集合表示为
∈∣
这种表示集合的方法称为描述法.
【人教版】必修一数学:04-集合的基本关系及运算:知识讲解和巩固练习_集合基本关系运算(提高版,含答案)

集合的基本关系及运算【学习目标】1.理解集合之间包含与相等的含义,能识别一些给定集合的子集.在具体情境中,了解空集和全集的含义.2.理解两个集合的交集和并集的含义,会求两个简单集合的交集与并集.理解在给定集合中一个子集的补集的含义,会求给定子集的补集. 【要点梳理】要点一、集合之间的关系1.集合与集合之间的“包含”关系集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;子集:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset).记作:A B(B A)⊆⊇或,当集合A 不包含于集合B 时,记作A B ,用Venn 图表示两个集合间的“包含”关系:A B(B A)⊆⊇或要点诠释: (1)“A 是B 的子集”的含义是:A 的任何一个元素都是B 的元素,即由任意的x A ∈,能推出x B ∈. (2)当A 不是B 的子集时,我们记作“A ⊆B (或B ⊇A )”,读作:“A 不包含于B ”(或“B 不包含A ”).真子集:若集合A B ⊆,存在元素x ∈B 且x A ∉,则称集合A 是集合B 的真子集(proper subset).记作:A B(或B A)规定:空集是任何集合的子集,是任何非空集合的真子集. 2.集合与集合之间的“相等”关系A B B A ⊆⊆且,则A 与B 中的元素是一样的,因此A=B要点诠释:任何一个集合是它本身的子集,记作A A ⊆.要点二、集合的运算 1.并集一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集,记作:A ∪B 读作:“A 并B ”,即:A ∪B={x|x ∈A ,或x ∈B}Venn 图表示:要点诠释:(1)“x ∈A ,或x ∈B ”包含三种情况:“,x A x B ∈∉但”;“,x B x A ∈∉但”;“,x A x B ∈∈且”.(2)两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只出现一次).2.交集一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集;记作:A ∩B ,读作:“A 交B ”,即A ∩B={x|x ∈A ,且x ∈B};交集的Venn 图表示:要点诠释:(1)并不是任何两个集合都有公共元素,当集合A 与B 没有公共元素时,不能说A 与B 没有交集,而是A B =∅.(2)概念中的“所有”两字的含义是,不仅“A ∩B 中的任意元素都是A 与B 的公共元素”,同时“A 与B 的公共元素都属于A ∩B ”.(3)两个集合求交集,结果还是一个集合,是由集合A 与B 的所有公共元素组成的集合. 3.补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set),简称为集合A 的补集,记作:U U A A={x|x U x A}∈∉;即且;痧补集的Venn 图表示:要点诠释:(1)理解补集概念时,应注意补集U A ð是对给定的集合A 和()U A U ⊆相对而言的一个概念,一个确定的集合A ,对于不同的集合U ,补集不同.(2)全集是相对于研究的问题而言的,如我们只在整数范围内研究问题,则Z 为全集;而当问题扩展到实数集时,则R 为全集,这时Z 就不是全集.(3)U A ð表示U 为全集时A 的补集,如果全集换成其他集合(如R )时,则记号中“U ”也必须换成相应的集合(即R A ð).4.集合基本运算的一些结论A B A A B B A A=A A =A B=B A ⋂⊆⋂⊆⋂⋂∅∅⋂⋂,,,,A AB B A B A A=A A =A A B=B A ⊆⋃⊆⋃⋃⋃∅⋃⋃,,,,U U (A)A=U (A)A=⋃⋂∅,痧 若A ∩B=A ,则A B ⊆,反之也成立 若A ∪B=B ,则A B ⊆,反之也成立若x ∈(A ∩B),则x ∈A 且x ∈B 若x ∈(A ∪B),则x ∈A ,或x ∈B求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法. 【典型例题】类型一、集合间的关系例1. 集合{}|2,A a a k k N ==∈,集合21|1(1)(1),8n B b b n n N ⎧⎫⎡⎤==--⋅-∈⎨⎬⎣⎦⎩⎭,那么,A B 间的关系是( ).A.A B B.B A C. A =B D.以上都不对 【答案】B【解析】先用列举法表示集合A 、B ,再判断它们之间的关系.由题意可知,集合A 是非负偶数集,即{}0,2,4,6,8,A =⋅⋅⋅.集合B 中的元素211(1)(1)8n b n ⎡⎤=--⋅-⎣⎦0()1(1)(1)()4n n n n ⎧⎪=⎨+-⎪⎩为非负偶数时,为正奇数时.而1(1)(1)4n n +-(n 为正奇数时)表示0或正偶数,但不是表示所有的正偶数,即1,3,5,7,n =⋅⋅⋅.由1(1)(1)4n n +-依次得0,2,6,12,⋅⋅⋅,即{}0261220B =⋅⋅⋅,,,,,. 综上知,B A ,应选B .【总结升华】判断两个集合间的关系的关键在于:弄清两个集合的元素的构成,也就是弄清楚集合是由哪些元素组成的.这就需要把较为抽象的集合具体化(如用列举法来表示集合)、形象化(用Venn 图,或数形集合表示).举一反三:【变式1】若集合{}{}|21,,|41,A x x k k z B x x l l z ==-∈==±∈,则( ). A.A B B.B A C. A =B D.A B Z =【答案】C例2. 写出集合{a ,b ,c}的所有不同的子集.【解析】不含任何元素子集为∅,只含1个元素的子集为{a},{b},{c},含有2个元素的子集有{a ,b},{a ,c},{b ,c},含有3个元素的子集为{a ,b ,c},即含有3个元素的集合共有23=8个不同的子集.如果集合增加第4个元素d ,则以上8个子集仍是新集合的子集,再将第4个元素d 放入这8个子集中,会得到新的8个子集,即含有4个元素的集合共有24=16个不同子集,由此可推测,含有n 个元素的集合共有2n个不同的子集.【总结升华】要写出一个集合的所有子集,我们可以按子集的元素个数的多少来分别写出.当元素个数相同时,应依次将每个元素考虑完后,再写剩下的子集.如本例中要写出2个元素的子集时,先从a 起,a 与每个元素搭配有{a ,b},{a ,c},然后不看a ,再看b 可与哪些元素搭配即可.同时还要注意两个特殊的子集:∅和它本身.举一反三:【变式1】已知{},a b A ⊆{},,,,a b c d e ,则这样的集合A 有 个.【答案】7个【变式2】同时满足:①{}1,2,3,4,5M ⊆;②a M ∈,则6a M -∈的非空集合M 有( ) A. 16个 B. 15个 C. 7个 D. 6个 【答案】C【解析】3a =时,63a -=;1a =时,65a -=;2a =时,64a -=;4a =时,62a -=;5a =时,61a -=;∴非空集合M 可能是:{}{}{}{}{}{}3,1,5,2,4,1,3,5,2,3,4,1,2,4,5,{}1,2,3,4,5共7个.故选C.例3.集合A={x|y=x 2+1},B={y|y=x 2+1},C={(x,y)|y=x 2+1},D={y=x 2+1}是否表示同一集合? 【答案】以上四个集合都不相同【解析】集合A={x|y=x 2+1}的代表元素为x ,故集合A 表示的是函数y=x 2+1中自变量x 的取值范围,即函数的定义域A=(,)-∞+∞;集合B={y|y=x 2+1}的代表元素为y ,故集合B 表示的是函数y=x 2+1中函数值y 的取值范围,即函数的值域B=[1,)+∞;集合C={(x,y)|y=x 2+1}的代表元素为点(x ,y ),故集合C 表示的是抛物线y=x 2+1上的所有点组成的集合;集合D={y=x 2+1}是用列举法表示的集合,该集合中只有一个元素:方程y=x 2+1.【总结升华】认清集合的属性,是突破此类题的关键.首先应当弄清楚集合的表示方法,是列举法还是描述法;其次对于用描述法表示的集合一定要认准代表元素,准确理解对代表元素的限制条件.举一反三:【变式1】 设集合{(,)|34}M x y y x ==+,{(,)|32}N x y y x ==--,则M N =( )A. {1,1}-B. {1,1}x y =-=C.(1,1)-D. {(1,1)}- 【答案】D【解析】排除法:集合M 、N 都是点集,因此MN 只能是点集,而选项A 表示二元数集合,选项B表示二元等式集合,选项C 表示区间(1,1)-(无穷数集合)或单独的一个点的坐标(不是集合),因此可以判断选D .【变式2】 设集合{|21,}M x y x x Z ==+∈,{|21,}N y y x x Z ==+∈,则M 与N 的关系是( ) A. N M Ü B. M N Ü C. N M = D. N M =∅【答案】A【解析】集合M 表示函数21,y x x Z =+∈的定义域,有{}M =整数;集合N 表示函数21,y x x Z =+∈的值域,有{}N =奇数,故选A.【高清课堂:集合的概念、表示及关系 377430 例2】【变式3】 设M={x|x=a 2+1,a ∈N +},N={x|x=b 2-4b+5,b ∈N +},则M 与N 满足( ) A. M=N B. M N C. N M D. M ∩N=∅【答案】B【解析】 当a ∈N +时,元素x=a 2+1,表示正整数的平方加1对应的整数,而当b ∈N +时,元素x=b 2-4b+5=(b-2)2+1,其中b-2可以是0,所以集合N 中元素是自然数的平方加1对应的整数,即M 中元素都在N 中,但N 中至少有一个元素x=1不在M 中,即M N ,故选B.【高清课堂:集合的概念、表示及关系 377430 例3】 例4.已知},,,0{},,,{y x N y x xy x M =-=若M =N ,则+++2()(x y x )()1001002y x y +++ = .A .-200B .200C .-100D .0【思路点拨】解答本题应从集合元素的三大特征入手,本题应侧重考虑集合中元素的互异性. 【答案】D【解析】由M=N ,知M ,N 所含元素相同.由O ∈{0,|x|,y}可知O ∈若x=0,则xy=0,即x 与xy 是相同元素,破坏了M 中元素互异性,所以x ≠0.若x ·y=0,则x=0或y=0,其中x=0以上讨论不成立,所以y=0,即N 中元素0,y 是相同元素,破坏了N 中元素的互异性,故xy ≠00,则x=y ,M ,N 可写为M={x ,x 2,0},N={0,|x|,x}由M=N 可知必有x 2=|x|,即|x|2=|x| ∴|x|=0或|x|=1若|x|=0即x=0,以上讨论知不成立 若|x|=1即x=±1当x=1时,M 中元素|x|与x 相同,破坏了M 中元素互异性,故 x ≠1 当x=-1时,M={-1,1,0},N={0,1,-1}符合题意,综上可知,x=y=-1∴+++2()(x y x )()1001002y x y +++ =-2+2-2+2+…+2=0【总结升华】解答本题易忽视集合的元素具有的“互异性”这一特征,而找不到题目的突破口.因此,集合元素的特征是分析解决某些集合问题的切入点.举一反三:【变式1】设a ,b ∈R ,集合b{1,a+b,a}={0,,b}a,则b-a=( ) 【答案】2【解析】由元素的三要素及两集合相等的特征:b1{0,,b},0{1,a+b,a}a 0a b=0a∈∈≠∴+,又,∴当b=1时,a=-1,b{0,b}={0,-1,1}a∴,当b=1a时,∴b=a 且a+b=0,∴a=b=0(舍) ∴综上:a=-1,b=1,∴b-a=2. 类型二、集合的运算例 5. 设集合{}{}|3,,|31,A x x k k Z B y y k k Z ==∈==+∈,{}|32,C z z k k Z ==+∈,{}|61,D w w k k Z ==+∈,求,,,A B A C B C B D .【答案】AB AC B C ===∅,BD D =【解析】先将集合A 、B 、C 、D 转化为文字语言叙述,以便弄清楚它们的构成,再求其交集即可.集合{}|3,A x x k k Z ==∈表示3的倍数所组成的集合;集合{}|31,B x x k k Z ==+∈表示除以3余1的整数所组成的集合; 集合{}|32,C x x k k Z ==+∈表示除以3余2的整数所组成的集合; 集合{}|61,D x x k k Z ==+∈表示除以6余1的整数所组成的集合;A B A C B C ∴===∅,B D D =.【总结升华】求两个集合的交集或并集,关键在于弄清两个集合由哪些元素所构成的,因而有时需要对集合进行转化,或具体化、形象化.如本例中转化为用自然语言来描述这些集合,有利于弄清集合的元素的构成.类似地,若一个集合元素的特征由不等式给出时,利用数轴就能使问题直观形象起来.举一反三:【变式1】已知集合M={y|y=x 2-4x+3,x ∈R },N={y|y=-x 2-2x+8,x ∈R },则M ∩N 等于( ) A. ∅ B. R C. {-1,9} D. [-1,9] 【答案】D【解析】集合M 、N 均表示构成相关函数的因变量取值范围,故可知:M={y|y ≥-1},N={y|y ≤9},所以M ∩N={y|-1≤y ≤9},选D.例6. 设集合M={3,a},N={x|x 2-2x<0,x ∈Z},M ∩N={1},则M ∪N 为( ) A. {1,3,a} B. {1,2,3,a} C. {1,2,3} D. {1,3} 【思路点拨】先把集合N 化简,然后再利用集合中元素的互异性解题. 【答案】D【解析】由N={x|x 2-2x<0,x ∈Z}可得:N={x|0<x<2,x ∈Z}={1},又由M ∩N={1},可知1∈M ,即a=1,故选D.举一反三:【变式1】(1)已知:M={x|x ≥2},P={x|x 2-x-2=0},求M ∪P 和M ∩P ;(2)已知:A={y|y=3x 2}, B={y|y=-x 2+4}, 求:A ∩B ,A ∪B ;(3)已知集合A={-3, a 2 ,1+a}, B={a-3, a 2+1, 2a-1}, 其中a ∈R ,若A ∩B={-3},求A ∪B. 【答案】(1){x|x ≥2或x=-1},{2};(2){y|0≤y ≤4},R ;(3){-4,-3,0,1,2}. 【解析】(1)P={2,-1},M ∪P={x|x ≥2或x=-1},M ∩P={2}.(2)∵A={y|y ≥0}, B={y|y ≤4}, A ∩B={y|0≤y ≤4}, A ∪B=R . (3)∵A ∩B={-3},-3∈B ,则有:①a-3=-3⇒a=0, A={-3,0,1}, B={-3,1,-1}⇒A ∩B={-3,1},与已知不符,∴a ≠0;②2a-1=-3⇒a=-1, ∴ A={-3,1,0}, B={-4,2,-3}, 符合题设条件,∴A ∪B={-4,-3,0,1,2}.【总结升华】此例题既练习集合的运算,又考察了集合元素的互异性.其中(1)易错点为求并集时,是否意识到要补上孤立点-1;而(2)中结合了二次函数的值域问题;(3)中根据集合元素的互异性,需要进行分类讨论,当求出a 的一个值时,又要检验是否符合题设条件.【高清课堂:集合的运算 377474 例5】【变式2】设集合A={2,a 2-2a ,6},B={2,2a 2,3a-6},若A ∩B={2,3},求A ∪B. 【答案】{2,3,6,18}【解析】由A ∩B={2,3},知元素2,3是A ,B 两个集合中所有的公共元素,所以3∈{2,a 2-2a ,6},则必有a 2-2a=3,解方程a 2-2a-3=0得a=3或a=-1当a=3时,A={2,3,6},B={2,18,3}∴A ∪B={2,3,6}∪{2,18,3}={2,3,6,18} 当a=-1时,A={2,3,6},B={2,2,-9}这既不满足条件A ∩B={2,3},也不满足B 中元素具有互异性,故a=-1不合题意,应舍去. 综上A ∪B={2,3,6,18}例7.已知全集{}{}21,2,3,4,5,|40U A x x px ==++=,求C u A.【思路点拨】C u A 隐含了A U ⊆,对于A U ⊆,注意不要忘记A =∅的情形.【答案】 当44p -<<时,C u A={}1,2,3,4,5;当4p =-时,C u A={}1,3,4,5;当5p =-时,C u A={}2,3,5. 【解析】当A =∅时,方程240x px ++=无实数解. 此时2160,44p p ∆=-<-<<.C u A=U当A ≠∅时,二次方程240x px ++=的两个根12,x x ,必须属于U . 因为124x x =,所以只可能有下述情形:当122x x ==时,4p =-,此时{}2,A = C u A={}1,3,4,5; 当121,4x x ==时,5p =-,此时{}1,4,A = C u A={}2,3,5. 综上所述,当44p -<<时,C u A={}1,2,3,4,5;当4p =-时,C u A={}1,3,4,5; 当5p =-时,C u A={}2,3,5.【总结升华】求集合A 的补集,只需在全集中剔除集合A 的元素后组成一个集合即可.由于本题中集合A 的元素不确定,因此必须分类讨论才行.举一反三:【变式1】 设全集U={x ∈N +|x ≤8},若A ∩(C u B)={1,8},(C u A)∩B={2,6},(C u A)∩(C u B)={4,7},求集合A ,B.【答案】{1,3,5,8},{2,3,5,6}. 【解析】全集U={1,2,3,4,5,6,7,8}由A ∩(C u B)={1,8}知,在A 中且不在B 中的元素有1,8;由(C u A)∩B={2,6},知不在A 中且在B 中的元素有2,6;由(C u A)∩(C u B)={4,7},知不在A 中且不在B 中的元素有4,7,则元素3,5必在A ∩B 中.由集合的图示可得A={1,3,5,8},B={2,3,5,6}. 类型三、集合运算综合应用例8.已知全集A={x|-2≤x ≤4}, B={x|x>a}. (1)若A ∩B ≠∅,求实数 a 的取值范围; (2)若A ∩B ≠A ,求实数a 的取值范围;(3)若A ∩B ≠∅且A ∩B ≠A ,求实数a 的取值范围. 【思路点拨】(1)画数轴;(2)注意是否包含端点. 【答案】(1)a<4;(2)a ≥-2;(3)-2≤a<4. 【解析】(1)∵A={x|-2≤x ≤4}, B={x|x>a},又A ∩B ≠∅,如图,a<4; (2)画数轴同理可得:a ≥-2;(3)画数轴同理可得:如图,-2≤a<4. 【总结升华】此问题从题面上看是集合的运算,但其本质是一个定区间,和一个动区间的问题.思路是,使动区间沿定区间滑动,数形结合解决问题.举一反三:【变式1】已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是( ) A .(-∞, -1] B .[1, +∞) C .[-1,1] D .(-∞,-1] ∪[1,+∞) 【答案】C【解析】P ={x ︱11x -≤≤}又 P M P =, ∴M P ⊆,∴ 11a -≤≤ 故选C .例9. 设集合{}{}222|40,|2(1)10,A x x x B x x a x a a R =+==+++-=∈.(1)若A B B =,求a 的值; (2)若A B B =,求a 的值. 【思路点拨】明确A B B =、A B B =的含义,根据问题的需要,将其转化为等价的关系式B A ⊆和A B ⊆,是解决本题的关键.同时,在包含关系式B A ⊆中,不要漏掉B =∅的情况.【答案】(1)1a =或1a ≤-;(1)2. 【解析】首先化简集合A ,得{}4,0A =-.(1)由AB B =,则有B A ⊆,可知集合B 为∅,或为{}0、{}4-,或为{}0,4-.①若B =∅时,224(1)4(1)0a a ∆=+--<,解得1a <-. ②若0B ∈,代入得21011a a a -=⇒==-或.当1a =时,{}{}2|400,4,B x x x A =+==-=符合题意; 当1a =-时,{}{}2|00,B x x A ===⊆也符合题意. ③若4B -∈,代入得2870a a -+=,解得7a =或1a =. 当1a =时,已讨论,符合题意;当7a =时,{}{}2|1648012,4B x x x =++==--,不符合题意. 由①②③,得1a =或1a ≤-. (2),AB B A B =∴⊆.又{}4,0A =-,而B 至多只有两个根,因此应有A B =,由(1)知1a =. 【总结升华】两个等价转化:,A B B A B A B B B A =⇔⊆=⇔⊆非常重要,注意应用.另外,在解决有条件A B ⊆的集合问题时,不要忽视A ≠∅的情况.举一反三:【变式1】已知集合{}{}222,|120A B x x ax a =-=++-=,若A B B =,求实数a 的取值范围.【答案】4,a ≥或4a <- 【解析】A B B =,B A ∴⊆.①当B =∅时,此时方程22120x ax a ++-=无解,由0∆<,解得4,a >或4a <-. ②当B ≠∅时,此时方程22120x ax a ++-=有且仅有一个实数解-2,0∴∆=,且22(2)2120a a --+-=,解得4a =.综上,实数a 的取值范围是4,a ≥或4a <-.【变式2】设全集U R =,集合{}{}|12,|40A x x B x x p =-≤≤=+<,若B C u A ,求实数p 的取值范围.【答案】4p ≥【解析】 C u A={}|1,2x x x <->或,|4p B x x ⎧⎫=<-⎨⎬⎩⎭.B C u A ,∴14p-≤-,即4p ≥.∴实数p 的取值范围是4p ≥. 【巩固练习】1.1. 设A={(x, y)| |x+1|+(y-2)2=0},B={-1, 2},则必有( ) A 、B A Ü B 、A B Ü C 、A=B D 、A ∩B=∅ 2. 集合M={y| y=x 2-1, x ∈R}, N={x| y=23x -},则M ∩N 等于( )A 、{(-2, 1), (2, 1)}B 、{|0x x ≤≤C 、{|1x x -≤≤D 、∅3.已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是 ( )4.已知集合,A B 满足AB A =,那么下列各式中一定成立的是( )A . AB B . B AC . AB B = D . A B A =5.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .-1 C .1或-1 D .1或-1或06.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( )A .N M =B .MN C .N M D .M N =∅7.设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或,则___________,__________==b a .8.某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人.9.若{}{}21,4,,1,A x B x==且AB B =,则x = .10.若{}|1,I x x x Z =≥-∈,则N C I = . 11.设全集{}(,),U x y x y R =∈,集合2(,)12y M x y x ⎧+⎫==⎨⎬-⎩⎭,{}(,)4N x y y x =≠-,那么()()U U C M C N 等于________________.12.设集合{}1,2,3,4,5,6M =,12,,,k S S S ⋅⋅⋅都是M 的含两个元素的子集,且满足:对任意的{},i i i S a b =,{},j j j S a b =({},,1,2,3,,i j i j k ≠∈⋅⋅⋅),都有min ,min ,j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭({}min ,x y 表示两个数,x y 中的较小者)则k 的最大值是 .13.设222{|40},{|2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈,如果A B B =,求实数a 的取值范围.14.设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=;若()U C A B =∅,求m 的值.15.设1234,,,a a a a N +∈,集合{}{}222212341234,,,,,,,A a a a a B a a a a ==.满足以下两个条件: (1){}1414,,10;AB a a a a =+=(2)集合AB 中的所有元素的和为124,其中1234a a a a <<<.求1234,,,a a a a 的值.【答案与解析】1.【答案】D【解析】.学生易错选C 。
2019-2020年高三数学总复习 集合的概念和表示方法教案 理

2019-2020年高三数学总复习集合的概念和表示方法教案理教材分析集合概念的基本理论,称为集合论.它是近、现代数学的一个重要基础.一方面,许多重要的数学分支,如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其反映的数学思想,在越来越广泛的领域中得到应用.在小学和初中数学中,学生已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(直线、圆)等,有了一定的感性认识.这节内容是初中有关内容的深化和延伸.首先通过实例引出集合与集合元素的概念,然后通过实例加深对集合与集合元素的理解,最后介绍了集合的常用表示方法,包括列举法,描述法,还给出了画图表示集合的例子.本节的重点是集合的基本概念与表示方法,难点是运用集合的两种常用表示方法———列举法与描述法正确表示一些简单的集合.教学目标1. 初步理解集合的概念,了解有限集、无限集、空集的意义,知道常用数集及其记法.2. 初步了解“属于”关系的意义,理解集合中元素的性质.3. 掌握集合的表示法,通过把文字语言转化为符号语言(集合语言),培养学生的理解、化归、表达和处理问题的能力.任务分析这节内容学生已在小学、初中有了一定的了解,这里主要根据实例引出概念.介绍集合的概念采用由具体到抽象,再由抽象到具体的思维方法,学生容易接受.在引出概念时,从实例入手,由具体到抽象,由浅入深,便于学生理解,紧接着再通过实例理解概念.集合的表示方法也是通过实例加以说明,化难为易,便于学生掌握.教学设计一、问题情境1. 在初中,我们学过哪些集合?2. 在初中,我们用集合描述过什么?学生讨论得出:在初中代数里学习数的分类时,学过“正数的集合”,“负数的集合”;在学习一元一次不等式时,说它的所有解为不等式的解集.在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.3. “集合”一词与我们日常生活中的哪些词语的意义相近?学生讨论得出:“全体”、“一类”、“一群”、“所有”、“整体”,……4. 请写出“小于10”的所有自然数.0,1,2,3,4,5,6,7,8,9.这些可以构成一个集合.5. 什么是集合?二、建立模型1. 集合的概念(先具体举例,然后进行描述性定义)(1)某种指定的对象集在一起就成为一个集合,简称集.(2)集合中的每个对象叫作这个集合的元素.(3)集合中的元素与集合的关系:a是集合A中的元素,称a属于集合A,记作a∈A;a不是集合A中的元素,称a不属于集合A,记作aA.例:设B={1,2,3},则1∈B,4B.2. 集合中的元素具备的性质(1)确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是否属于这个集合的元素也就确定了.如上例,给出集合B,4不是集合的元素是可以确定的.(2)互异性:集合中的元素是互异的,即集合中的元素是没有重复的.例:若集合A={a,b},则a与b是不同的两个元素.(3)无序性:集合中的元素无顺序.例:集合{1,2}与集合{2,1}表示同一集合.3. 常用的数集及其记法全体非负整数的集合简称非负整数集(或自然数集),记作N.非负整数集内排除0的集合简称正整数集,记作N*或N+;全体整数的集合简称整数集,记作Z;全体有理数的集合简称有理数集,记作Q;全体实数的集合简称实数集,记作R.4. 集合的表示方法[问题]如何表示方程x2-3x+2=0的所有解?(1)列举法列举法是把集合中的元素一一列举出来的方法.例:x2-3x+2=0的解集可表示为{1,2}.(2)描述法描述法是用确定的条件表示某些对象是否属于这个集合的方法.例:①x2-3x+2=0的解集可表示为{x|x2-3x+2=0}.②不等式x-3>2的解集可表示为{x|x-3>2}.③Venn图法例:x2-3x+2=0的解集可以表示为(1,2).5. 集合的分类(1)有限集:含有有限个元素的集合.例如,A={1,2}.(2)无限集:含有无限个元素的集合.例如,N.(3)空集:不含任何元素的集合,记作.例如,{x|x2+1=0,x∈R}=.注:对于无限集,不宜采用列举法.三、解释应用[例题]1. 用适当的方法表示下列集合.(1)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数.(2)平面内到一个定点O的距离等于定长l(l>0)的所有点P.(3)在平面a内,线段AB的垂直平分线.(4)不等式2x-8<2的解集.2. 用不同的方法表示下列集合.(1){2,4,6,8}.(2){x|x2+x-1=0}.(3){x∈N|3<x<7}.3. 已知A={x∈N|66-x∈N}.试用列举法表示集合A.(A={0,3,5})4. 用描述法表示在平面直角坐标中第一象限内的点的坐标的集合.[练习]1. 用适当的方法表示下列集合.(1)构成英语单词mathematics(数字)的全体字母.(2)在自然集内,小于1000的奇数构成的集合.(3)矩形构成的集合.2. 用描述法表示下列集合.(1){3,9,27,81,…}.(2)四、拓展延伸把下列集合“翻译”成数学文字语言来叙述.(1){(x,y)|y=x2+1,x∈R}.(2){y|y=x2+1,x∈R}.(3){(x,y)|y=x2+1,x∈R}.(4){x|y=x2+1,y∈N*}.点评这篇案例注重新、旧知识的联系与过渡,以旧引新,从学生的原有知识、经验出发,创设问题情境;从实例引出集合的概念,再结合实例让学生进一步理解集合的概念,掌握集合的表示方法.非常注重实例的使用是这篇案例的突出特点.这样做,通俗易懂,使学生便于学习和掌握.例题、练习由浅入深,对培养学生的理解能力、表达能力、思维能力大有裨益.拓展延伸注重数学语言的转化和训练,注重区分形似而质异的数学问题,加强了学生对数学概念的理解和认识.2019-2020年高三数学总复习频率与概率教案理教材分析频率与概率是两个不同的概念,但是二者又有密切的联系.如何从二者的异同点中抽象出概率的定义是本案例的主要内容.本节课蕴涵了具体与抽象之间的辩证关系.讲授过程中对教材处理稍有不当,可能直接影响学生对本节重点(即概念的理解)的掌握程度.因此,如何设计合适的实例,怎样引导学生理解和总结是处理好本节的关键,也是处理好本节教材的难点.教学目标通过本节课教学,使学生能理清频率和概率的关系,并能正确理解概率的意义,增强学生的对立与统一的辩证思想意识.任务分析由于频率在大量重复试验的前提下可以近似地叫作这个事件的概率,因此本节课应从具有大量重复试验的实例入手.为加深学生的理解程度,可采用学生亲自参与到试验中去,从操作中去体会,去总结.概率可看作频率理论上的期望值,从数量上反映了随机事件发生的可能性大小.因此,为巩固学生总结出的知识,最后还要回归到实例中去,让学生去运用,以符合认知过程.教学设计一、问题情境在日常生活中,我们经常遇到某某事件发生的概率是多少,如xx年2月5日《文汇报》登载的两则消息.本报讯记者梁红英报道:2月3日晚6点19分,一彩民购买的“江浙沪大乐透”彩票,同时投中10注一等奖,独揽48571620元巨额奖金,创下中国彩票史上个人一次性奖额之最.……据有关人士介绍,该彩民当时花了200元买下100注“江浙沪大乐透”彩票,分成10组,每组10注,每组的自选号码相同.结果,其中1组所选号码与前晚“江浙沪大乐透”xx015期开奖号码完全一致.本报讯记者江世亮报道:……对这种似乎不可能发生事件的发生,从数学概率论上将作何解释?为此,记者于昨日午夜电话连线采访了本市一位数学建模专家,他说,以他现在不完全掌握的情况来分析,像这名幸运者同时获得10个大奖的概率,可称得上一次万亿分之一的事件,通俗地讲就是接近于零.对文中的“万亿分之一”我们怎样理解呢?再如:天气预报说“明天降雨的概率是80%,我们明天出门要不要带伞?收音机里广播报道xx年冬某地“流行性感冒的发病率为10%”,我们这里要不要采取预防措施?……对这些在传播媒体上出现的数字80%,10%等,我们该作何理解呢?二、建立模型为了解决诸如以上的实际问题,我们不妨先从熟悉的频率的概念入手.首先,将全班同学平均分成三组,第一组做掷硬币试验,次数越多越好,观察掷出正面向上的次数,然后把试验结果和计算结果分别填入下表.表28-1第二组做抓阄试验.写五个阄,即分别标号为1,2,3,4,5,有放回地抓,每次记录下号数,次数越多越好.不妨统计一下各号数所占频率.第三组做摸围棋子试验.预先准备黑、白围棋子若干,然后给该组学生黑子30粒,白子10粒,让该组学生有放回地摸,次数为100次,每次摸出1粒,并记录下每次摸到的棋子的颜色,求出白子出现的频率.试验结束,让各组学生回答试验结果.第一组正面向上的频率必然接近,第二组结果肯定是每个号出现的频率接近,而第三组结果肯定位于附近.各组学生所得结果可能大于预定数,也可能小于预定数,但都比较接近.让学生讨论:出现与上述结果比较接近的数字受何因素影响?(学生思考,讨论,教师投影以下表格)历史上有些学者还做了成千上万次掷硬币的试验,结果如下表所示:表28-2观察上表后,引导学生总结:在多次重复试验中,同一事件发生的频率在某一个数值附近摆动,而且随着试验次数的增加,一般摆动幅度的越小,而且观察到的大偏差也越少,频率呈现一定的稳定性.通过三组试验,我们可以发现:虽然,,三个数值不等,但是三个试验存在共性,即随机事件的频率随试验次数的增加稳定在某一数值附近.同时还可看出,不同的随机事件对应的数值可能不同.我们就用这一数值表示事件发生的可能性大小,即概率.(引出概率定义)定义可采用学生口述、教师补充的方式,然后可以投影此定义:一般地,在n次重复进行的试验中,事件A发生的频率,当n很大时,总是在某个常数附近摆动,随着n的增加,摆度幅度越来越小,这时就把这个常数叫作事件A的概率,记为P(A).学生可考虑如下问题:(1)概率P(A)的取值范围是什么?(2)必然事件、不可能性事件的概率各是多少?(3)频率和概率有何关系?其中重点是问题(3),应启发、引导学生总结出:在大量重复试验的前提下,频率可以近似地称为这个事件的概率,而概率可看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性大小.为加深对二者关系的理解,可以进行如下类比:给定一根木棒,谁都不怀疑它有“客观”的长度,长度是多少?我们可以用尺或仪器去测量,不论尺或仪器多么精确,测得的数值总是稳定在木棒真实的“长度”值的附近.事实上,人们也是把测量所得的值当作真实的“长度”值.这里测量值就像本节中的频率,“客观”长度就像概率.概率的这种定义叫作概率的统计定义.在实践中,经常采用这种方法求事件的概率.三、解释应用[例题]1. 把第三组试验中的黑棋子减少10粒,即20粒黑子,10粒白子,那么摸到黑子的概率约为多少?学生通过多次试验,可以发现此概率约为.2. 为确定某类种子的发芽率,从一批种子中抽出若干批做发芽试验,其结果如下:表28-3从以上的数据可以看出,这类种子的发芽率约为0.9.[练习]某射击手在同一条件下进行射击,结果如下:表28-4(1)计算表中击中靶心的各个频率.(表中各频率分别为0.8,0.95,0.88,0.92,0.89,0.91)(2)这个射手射击一次,击中靶心的概率约是多少?(由此(1)可知,这个射手射击一次,击中靶心的概率约是0.9)四、拓展延伸“某彩票的中奖概率为”是否意味着买1000张彩票就一定能中奖?从概率的统计定义出发,我们先来考虑此题的简化情形:在投掷一枚均匀硬币的随机试验中,正面出现的概率是,这是否意味着投掷2次硬币就会出现1次正面呢?根据经验,我们投掷2次硬币有可能1次正面也不出现,即出现2次反面的情形,但是在大量重复掷硬币的试验中,如掷10000次硬币,则出现正面的次数约为5000次.买1000张彩票相当于做1000次试验,结果可能是一次奖也没中,或者中一次奖,或者多次中奖.所以“彩票中奖概率为”并不意味着买1000张彩票就一定能中奖.只有当所买彩票的数量n非常大时,才可以将大量重复买彩票这个试验看成中奖的次数约为(比如说买1000000张彩票,则中奖的次数约为1000),并且n越大,中奖次数越接近于.由此我们可以说,对于小概率事件,从理论上来讲,发生的可能性很小,甚至在一定条件下可能不会发生.但是,实际上小概率事件仍有发生的可能,如本节开头提到的万亿分之一的概率事件就发生了.点评针对这节课以概念为主,而又抽象的特点,案例设计了以学生动手试验为主,引导学生体会概念的教学方法,同时对这节中较抽象的内容:频率和概率的关系做了形象的类比,以便学生理解.这篇案例增加了试验内容,其目的是更有力地帮助学生理解定义.另外,例题与练习的配备有利于学生加深对这节内容的理解.因此,这节课的整体设计符合学生对新知识认识的规律,符合新课程标准的精神.。
高一上数学集合的概念

高一上数学集合的概念摘要:一、集合的概念1.集合的定义2.集合的元素3.集合的表示方法二、集合的基本运算1.集合的并集2.集合的交集3.集合的补集三、集合之间的关系1.子集2.超集3.相等集四、集合的应用1.数学问题中的集合应用2.集合在实际生活中的应用正文:集合是数学中的一个基本概念,它是一种包含一组元素的东西。
在高一上学期的数学课程中,我们将学习集合的概念以及集合的基本运算和关系。
一、集合的概念集合的定义是指一个确定的、互异的、无序的一组元素。
这些元素可以是任何事物,如数字、字母、人、动物等。
集合的元素是集合的基本构成部分,可以是单个元素,也可以是多个元素。
集合的表示方法有列举法、描述法和图示法等。
二、集合的基本运算集合的运算主要包括并集、交集和补集三种。
集合A 和集合B 的并集是指包含所有属于集合A 或集合B 的元素的集合。
集合A 和集合B 的交集是指包含所有既属于集合A 又属于集合B 的元素的集合。
集合的补集是指包含所有不属于该集合的元素的集合。
三、集合之间的关系集合之间存在三种关系:子集、超集和相等集。
如果一个集合的所有元素都属于另一个集合,那么前者是后者的子集。
如果一个集合的所有元素都属于另一个集合,那么前者是后者的超集。
如果两个集合拥有相同的元素,那么这两个集合是相等集。
四、集合的应用集合在数学中有广泛的应用,如集合的运算可以用来解决一些复杂的问题,如集合的补集可以用来求解一些不等式问题,集合的关系可以用来证明一些数学结论。
此外,集合的概念和运算在实际生活中也有广泛的应用,如数据处理、计算机科学、经济学等领域。
新高考数学复习考点知识与题型专题讲解1---集合的概念(解析版)
新高考数学复习考点知识与题型专题讲解1 集合的概念考点知识讲解1 元素与集合1.元素与集合的概念(1)元素:一般地,把统称为元素.元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的叫做集合(简称为__).集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的是一样的,就称这两个集合是相等的.(4)元素的特性:、、.答案:(1)研究对象(2)总体集(3)元素(4)确定性无序性互异性2.元素与集合的关系答案:∈∈NN*或N+ZQR考点知识讲解2 集合的表示方法1.列举法把集合的元素出来,并用花括号“{}”括起来表示集合的方法叫做列举法.温馨提示:运用列举法表示集合,应注意:(1)元素间用“,”分隔,不能用其它符号代替;(2)元素不重复;(3)元素间无顺序;(4)“{}”表示“所有”、“整体”的含义,不能省略2.描述法(1)定义:用集合所含元素的表示集合的方法称为描述法.(2)书写形式:,其中x代表集合中的元素,p(x)为集合中元素所具备的共同特征.要注意竖线不能省略,同时表达要力求简练、明确.答案:一一列举共同特征{x|p(x)}题型一对集合含义的理解1.考察下列每组对象,能构成集合的是()①中国各地最美的乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④【答案】B【解析】①中“最美”标准不明确,不符合确定性,②③④中的元素标准明确,均可构成集合.故选:B.2.下列每组对象能构成一个集合是________(填序号).(1)某校2019年在校的所有高个子同学;(2)不超过20的非负数;(3)帅哥;(4)平面直角坐标系内第一象限的一些点;(5.【答案】(2)【解析】(1)“高个子”没有明确的标准,因此(1)不能构成集合. (2)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,故“不超过20的非负数”能构成集合;(3)“帅哥”没有一个明确的标准,因此不能构成集合;(4)“一些点”无明确的标准,因此不能构成集合;(5)”不明确精确到什么程度,所以不能构成集合.故答案为:(2)题型二元素与集合的关系3.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中说法正确的个数是()A.0B.1C.2D.3【答案】A【解析】因为N*是不含0的自然数,所以①错误;取a∉N,∉N,所以②错误;对于③,当a =b =0时,a +b 取得最小值是0,而不是2,所以③错误; 对于④,解集中只含有元素1,故④错误. 故选:A4.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1π构成的集合,Q 是由元素π,1,|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是由满足不等式-1≤x ≤1的整数构成的集合,Q 是由方程x ()()1-1x x +=0的解构成的集合 【答案】AD【解析】由于A ,D 中P ,Q 的元素完全相同,所以P 与Q 表示同一个集合,而B ,C 中P ,Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选:AD. 题型三 元素的特性的应用5.已知集合A ={x ∈Z|2x -4x -5<0},B ={x|4x >2m },若A∩B 有三个元素,则实数m 的取值范围是( )A .[3,6)B .[1,2)C .[2,4)D .(2,4] 【答案】C【解析】∵A ={x ∈Z|-1<x<5}={0,1,2,3,4},B ={x|x>},A∩B 有三个元素,∴1≤<2,即2≤m<4. 故答案为C6.设a ,b ∈R ,集合A 中含有0,b ,ba三个元素,集合B 中含有1,a ,a +b 三个元素,且集合A 与集合B 相等,则a +2b =( )A .1B .0C .﹣1D .不确定 【答案】A【解析】由题意可知a ≠0,则只能a +b =0,则有以下对应关系:01a b b a a b +=⎧⎪⎪=⎨⎪=⎪⎩①或01a b b a b a⎧⎪+=⎪=⎨⎪⎪=⎩②; 由①得a =﹣1,b =1,符合题意; ②无解;则a +2b =﹣1+2=1. 故选:A题型四 用列举法表示集合 7.集合M ={61aN a ∈+,且a Z ∈},用列举法表示集合M =______________ 【答案】{}0,1,2,5 【解析】61N a ∈+016a ∴<+≤,即15a -<≤ 又a Z ∈0a ∴=时,661N a =∈+;1a =时,631N a =∈+;2a =时,621N a =∈+; 3a =时,6312N a =∉+;4a =时,6615N a =∉+;5a =时,611N a =∈+ {}0,1,2,5M ∴=本题正确结果:{}0,1,2,5 8.根据要求写出下列集合.(1)已知{}25|50x x ax -∈--=,用列举法表示集合{}2|40x x x a --=. (2)已知集合16|8A N x N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法表示集合A .(3)已知方程组10240x y x y -+=⎧⎨+-=⎩,分别用描述法、列举法表示该集合.(4)已知集合B ={(x ,y )|2x +y -5=0,x ∈N ,y ∈N },用列举法表示该集合. (5)用适当的方法表示坐标平面内坐标轴上的点集.【答案】(1){2};(2){2,4,8,16};(3){(x ,y )|x =1,y =2},{(1,2)};(4){(0,5),(1,3),(2,1)};(5){(x ,y )|xy =0}. 【解析】(1){}25|50x x ax -∈--=,()()25550a ∴--⨯--=,解得4a =-,2440x x -+=的解为2x =,∴用列举法表示集合{}2|40x x x a --=为{}2;(2)168N x∈-,则8x -可取的值有1,2,4,8,16,x 的可能值有7,6,4,0,8-, x N ∈,7,6,4,0x ∴=,162,4,8,168x∴=-, {}2,4,8,16A ∴=;(3)方程组10240x y x y -+=⎧⎨+-=⎩的解为12x y =⎧⎨=⎩,∴用描述法表示该集合为(){},1,2x y x y ==,列举法表示该集合为(){}1,2;(4)当0x =时,5y =;当1x =时,3y =;当2x =时,1y =,∴用列举法表示该集合为()()(){}0,5,1,3,2,1;(5)坐标轴上的点满足0x =或0y =,即0xy =, 则该集合可表示为(){},0x y xy =.题型五 用描述法表示集合9.用列举法表示集合**{(,)|5,,}A x y x y x y =+=∈∈N N 是_____________________;用描述法表示“所有被4除余1的整数组成的集合”是_____________________. 【答案】()()()(){}1,42,33,24,1,,,{}41z x z x k k ∈=+∈,【解析】由题意{(1,4),(2,3),(3,2),(4,1)}A =,所有被4除余1的整数组成的集合为{|41,}x Z x k k Z ∈=+∈.故答案为:{(1,4),(2,3),(3,2),(4,1)};{|41,}x Z x k k Z ∈=+∈ 题型六 集合表示方法的综合应用10. (1)用列举法表示集合A =⎩⎨⎧⎭⎬⎫x|x ∈Z ,且86-x ∈N =________.(2)集合A ={x ∈R |kx 2-8x +16=0},若集合A 中只有一个元素,试求实数k 的值,并用列举法表示集合A .(1)解析 ∵x ∈Z 且86-x ∈N ,∴1≤6-x ≤8,-2≤x ≤5.当x =-2时,1∈N ;当x =-1时,87∉N ;当x=0时,43∉N ;当x =1时,85∉N ;当x =2时,2∈N ;当x =3时,83∉N ;当x =4时,4∈N ;当x =5时,8∈N .综上可知A ={-2,2,4,5}. 答案 {-2,2,4,5} 1.下列集合中,结果是空集的是( ) A .{x ∈R |x 2-1=0}B .{x |x >6或x <1} C .{(x ,y )|x 2+y 2=0}D .{x |x >6且x <1} 【答案】D【解析】A 选项:21{|10}x R x ±∈∈-=,不是空集;B 选项:7∃∈{x |x >6或x <1},不是空集;C 选项:(0,0)∈{(x ,y )|x 2+y 2=0},不是空集;D 选项:不存在既大于6又小于1的数, 即:{x |x >6且x <1}=∅. 故选:D2.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中说法正确的个数是()A.0B.1C.2D.3【答案】A【解析】因为N*是不含0的自然数,所以①错误;取a∉N,∉N,所以②错误;对于③,当a=b=0时,a+b取得最小值是0,而不是2,所以③错误;对于④,解集中只含有元素1,故④错误.故选:A3.下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O的距离等于1的点的全体;④正三角形的全体;.其中能构成集合的组数有()A.2组B.3组C.4组D.5组【答案】A【解析】①“接近于0的数的全体”的对象不确定,不能构成集合;②“比较小的正整数全体”的对象不确定,不能构成集合;③“平面上到点O的距离等于1的点的全体”的对象是确定的,能构成集合;④“正三角形的全体”的对象是确定的,能构成集合;⑤的近似值的全体的对象”不确定,不能构成集合;故③④正确.故选:A.4.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1π构成的集合,Q 是由元素π,1,|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是由满足不等式-1≤x ≤1的整数构成的集合,Q 是由方程x ()()1-1x x +=0的解构成的集合 【答案】AD【解析】由于A ,D 中P ,Q 的元素完全相同,所以P 与Q 表示同一个集合,而B ,C 中P ,Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选:AD. 5.下列各组中的M ,P 表示同一集合的是( ) A .M ={3,-1},P ={(3,-1)} B .M ={(3,1)},P ={(1,3)} C .M ={y |y =x -1},P ={t |t =x -1}D .集合M ={m |m +1≥5},P ={y |y =x 2+2x +5,x ∈R } 【答案】CD【解析】在A 中,M ={3,-1}是数集,P ={(3,-1)}是点集,二者不是同一集合,故错误;在B 中,M ={(3,1)},P ={(1,3)}表示的不是同一个点的集合,二者不是同一集合,故错误;在C 中,M ={y |y =x -1}={y |y ≥-1},P ={t |t =x -1}={t |t ≥-1},二者表示同一集合,故正确;在D 中,M ={m |m ≥4,m ∈R },即M 中元素为大于或等于4的所有实数,P ={y |y =(x +1)2+4},y =(x +1)2+4≥4,所以P 中元素也为大于或等于4的所有实数,故M ,P 表示同一集合,故正确. 故选:CD 6.定义集合运算(){}|,,AB z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合A B 所有元素之和为________【答案】18【解析】当0,2,0==∴=x y z 当1,2,6==∴=x y z 当0,3,0==∴=x y z 当1,3,12==∴=x y z 和为0+6+12=18 故答案为:187.下列命题正确的个数__ (1)很小的实数可以构成集合;(2)集合{y |y =x 2﹣1}与集合{(x ,y )|y =x 2﹣1}是同一个集合; (3)1,361,,||,0.5242-,这些数组成的集合有5个元素; (4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. 【答案】0【解析】解:对于(1)很小的实数不满足集合中元素的确定性,所以(1)不正确.对于(2)集合{y |y =x 2﹣1}表示的是函数y =x 2﹣1的值域,而集合{(x ,y )|y =x 2﹣1}表示的是y =x 2﹣1图象上的点,故(2)不正确;对于(3):因为3624=,10.52-=,不满足集合中的元素是互异的,故(3)不正确; 对于(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集及两个坐标轴上的点,故(4)不正确, 故答案为:0.8.设A 是由一些实数构成的集合,若a ∈A ,则11a - ∈A ,且1∉A , (1)若3∈A ,求A .(2)证明:若a ∈A ,则11A a -∈. 【答案】(1)123,,23A ⎧⎫=-⎨⎬⎩⎭;(2)证明见解析. 【解析】(1)因为3∈A , 所以11132A =-∈-, 所以12131()2A =∈--, 所以13213A =∈-, 所以123,,23A ⎧⎫=-⎨⎬⎩⎭. (2)因为a ∈A , 所以11A a∈-, 所以1111111a A a a a -==-∈---. 9.已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至多有一个元素,求a 的取值范围 【答案】(1)9,8⎛⎫+∞ ⎪⎝⎭;(2)当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭;(3){}90,8⎡⎫⋃+∞⎪⎢⎣⎭. 【解析】(1)若A 是空集,则方程ax 2﹣3x +2=0无解此时0,a ≠∆=9-8a <0即a 98> 所以a 的取值范围为9,8⎛⎫+∞ ⎪⎝⎭(2)若A 中只有一个元素则方程ax 2﹣3x +2=0有且只有一个实根当a =0时方程为一元一次方程,满足条件当a ≠0,此时∆=9﹣8a =0,解得:a 98=∴a =0或a 98= 当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭(3)若A 中至多只有一个元素,则A 为空集,或有且只有一个元素 由(1),(2)得满足条件的a 的取值范围是{}90,8⎡⎫⋃+∞⎪⎢⎣⎭.。
必修一数学第一章集合与函数概念知识点总结
必修一数学第一章集合与函数概念知识点总结一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由HAPPY 的字母组成的集合{H,A,P ,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。
◆ 注意:常用数集及其记法: 非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1) 列举法:{a,b,c ……} 2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x ∈R|x-3>2} ,{x| x-3>2}3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn 图: 4、集合的分类:(1) 有限集 含有有限个元素的集合 (2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合 例:{x|x 2=-5}二、集合间的基本关系 1.“包含”关系—子集注意:有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。
反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A B 或B A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。
A ⊆A②真子集:如果A ⊆B,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A)③如果 A ⊆B, B ⊆C ,那么 A ⊆C④ 如果A ⊆B 同时 B ⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
高一上数学集合的概念
高一上数学集合的概念【实用版】目录1.集合的定义与表示方法2.集合的元素特性3.集合的分类4.集合的运算5.集合的应用正文1.集合的定义与表示方法集合是数学中的一个基本概念,它是由一些确定的、互不相同的元素所组成的整体。
集合可以用大写字母表示,例如 A、B 等。
集合的元素则用小写字母表示,例如 a、b 等。
集合的定义可以表述为:{a, b, c,...} 或者写作 A = {a, b, c,...}。
2.集合的元素特性集合的元素具有以下特性:(1)确定性:集合中的元素是确定的,不会随意改变。
(2)互异性:集合中的元素互不相同,没有重复的元素。
(3)无序性:集合中的元素没有固定的顺序。
3.集合的分类集合可以按照元素的性质进行分类,常见的分类有:(1)自然数集合:由 0 和正整数组成的集合,表示为 N。
(2)整数集合:由 0、正整数、负整数组成的集合,表示为 Z。
(3)有理数集合:由所有可以表示为两个整数比的数组成的集合,表示为 Q。
(4)实数集合:由所有有理数和无理数组成的集合,表示为 R。
4.集合的运算集合的运算包括并集、交集、补集、子集等。
(1)并集:两个集合的所有元素组成的集合,表示为 A ∪ B。
(2)交集:两个集合共有的元素组成的集合,表示为 A ∩ B。
(3)补集:一个集合的所有元素不属于另一个集合,表示为 A" 或C(A)。
(4)子集:一个集合的所有元素都属于另一个集合,表示为 A B。
5.集合的应用集合在数学中有广泛的应用,例如在数论、代数、几何等领域。
同时,集合的概念也被广泛应用到计算机科学、信息理论等领域。
1.1集合的概念第1课时集合的概念与几种常见的数集课件高一上学期数学人教A版(1)
说a属于集合A
合的
如果 a不是集合A 中的元
关系 不属于
素,就说a不属于集合A
记法
读法
a∈A
a属于集合A
a∉A
a不属于集合A
名师点睛
区别与联系
概 元素
念 集合
概念上的区别
研究对象
一些对象组成的整体
符号上的区别
英文小写字母a,b,c,…
英文大写字母A,B,C,…
联系
a∈A或
a∉A
思考辨析
1.如何准确理解符号“∈”和“∉”
个单词中,字母“o”虽然出现了两次,但如果归入集合中只能算作一个元素,
根据互异性,正确的说法应为good中的字母组成的集合中的元素有3个,分
别为g,o,d.
思考辨析
改变一个集合中元素的顺序,这个集合还是原来的集合吗
提示 是.
自主诊断
1.下列说法中正确的是( C )
A.与定点A,B等距离的点不能构成集合
对集合中元素的特性的理解
(1)确定性是集合中元素的基本特征,没有确定性就不能构成集合.例如“课
本中的难题”“聪明的孩子”,其中“难题”“聪明”因界定的标准模糊,故都不能
组成集合.
(2)互异性是判断能否组成集合的另一标准,也是最容易被忽视的性质.例
如:good中的字母组成的集合中的元素是g,o,o,d,这句话是不对的,因为在这
.
①某市2024年入学的全体高一年级新生;
②在平面直角坐标系中,到定点(0,0)的距离等于1的所有点;
③影响力比较大的中国数学家;
④不等式3x-10<0的所有正整数解.
解析 对于①,“某市2024年入学的全体高一年级新生”,研究对象是明确的,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一(上)数学【概念、定义集合】
有理数
1、大于0的数叫做正数(positive).
2、小于0的数叫做负数(negative).
3、可以写成分数形式的数叫做有理数(rational number)
4、只有符号不同的两个数叫做互为相反数(opposite number).
5、数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value).
6、有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加.
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去
较小的绝对值。互为相反数的两个数相加得0.
(3)一个数同0相加,仍得这个数.
7、有理数减法法则:减去一个数,等于加上这个数的相反数.
8、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,
都得0..
9、乘积是1的两个数互为倒数.
10、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.(两数相除,同号得
正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0.)
11、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).在an中,a叫做
底数(base number),n叫做指数(exponent),当an看作a的n次方的结果时,也可读作a
的n次幂.
12、有理数混合运算的运算顺序:
(1)先乘方,再乘除,最后加减.
(2)同级运算,从左到右进行.
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号的顺序依次进行.
13、把一个大于10的数表示成a×10n的形式(a是整数数位只有一位的数,n是正整数),
使用的是科学计数法.
整式的加减
14、数或字母的积叫做单项式(monomial)单项式中的数字因数叫做这个单项式的系数
(coefficient),一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a
monomial)
15、几个单项式的和叫做多项式(polynomial).其中,每个单项式叫做多项式的项(term),
不含字母的项叫做常数项(constant term)多项式里次数最高项的次数,叫做这个多项式的
次数(degree of a polynomial).
16、所含字母相同,并且相同字母的指数也相同的项叫做同类项。
17、把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合
并前各同类项系数的和,且字母部分不变。
一元一次方程
18、含有未知数的等式叫做方程(equation).
19、只含一个未知数(元),并且未知数的次数都是1的方程叫做一元一次方程(linear equation
with one unknown).
20、使方程中等号左右两边相等的未知数的值,叫做方程的解(solution)。
21、等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b 那么a±c=b±c
22、等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a=b 那么ac=bc 如果a=b(c≠0)那么ac = bc
23、把等式一边的某项变号后移到另一边,叫做移项。
图形认识初步
24、我们把从实物抽象出的各种图形统称为几何图形(geometric figure).
25、各部分不在同一平面内的几何图形是立体图形(solid figure).
26、各部分都在同一平面内的几何图形是平面图形(plane figure)
27、将一些由平面图形围成的立体图形的表面适当剪开,得到的平面图形称为相应立体图形
的展开图(net).
28、长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。几何体简称为体(solid).
29、包围着体的是面(surface).
30、夜空流星划过天空时留下一道明亮的光线。节日的焰火画出的曲线组成优美的图案,这
些都给我们线(line)的形象.
31、天上的星星、世界地图上的城市等都给我们以点(point)的形象.
32、经过两点有一条直线,并且只有一条直线。【简述为:两点确定一条直线。
33、当两条不同的直线有一个公共点时,这两条直线相交(intersection),这个公共点叫做
它们的交点(point of intersection).
34、在线段上且到线段的两端距离相等的点叫做这条线段的中点(center).
35、两点的所有连线中,线段最短。【简述为:两点之间,线段最短.
36、连接两点间线段的长度,叫做这两点的距离(distance).
37、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,
每一份叫做1分的角,记作1′;把一分的角60等分,每一份叫做1秒的角,记作1″.
38、从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线(angular
bisector)
39、如果两个角的和等于90°,就说这两个角互为余角(complementary angle).
40、如果两个角的和等于180°,就说这两个角互为补角(supplementary angle).
41、等角的补角相等.
42、等角的余角相等.