数列专题讲义

数列专题讲义
数列专题讲义

数列专题讲义

★知识网络

★考点回顾

1.数列的概念,数列的通项公式与递推关系式,等差数列和等比数列的概念、有关公式和性质。

2.判断和证明数列是等差(等比)数列常有三种方法:

(1)定义法:对于n≥2的任意自然数,验证为同一常数。

(2)通项公式法:

①若,则为等差数列;

②若

,则为等比数列;

③中项公式法:验证

都成立。

3.在等差数列中,有关S n的最值问题——常用邻项变号法求解:

(1)当,d<0时,满足

的项数m使得取最大值.

(2)当,d>0时,满足

的项数m使得取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

4.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法、分组求和法、累加累积法、归纳猜想证明法等。

5.数列的综合应用:

⑴函数思想、方程思想、分类讨论等思想在解决数列综合问题时常常用到。

⑵数列与函数、数列与不等式的综合、用数列知识解决实际问题等内容。

6.注意事项:

(1)证明数列是等差或等比数列常用定义,即通过证明或而得。

⑵在解决等差数列或等比数列的相关问题时,“基本量法”是常用的

方法,但有时灵活地运用性质,可使运算简便。

⑶对于一般数列的问题常转化为等差、等比数列求解。

⑷注意一些特殊数列的求和方法。

⑸注意与之间关系的转化。如:

=,=.

⑹数列的综合题形式多样,解题思路灵活,但万变不离其宗,就是

离不开数列的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.

⑺解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的

表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.

⑻通过解题后的反思,找准自己的问题,总结成功的经验,吸取失

败的教训,增强解综合题的信心和勇气,提高分析问题和解决问题的能力.

★考点精练

考点一:等差、等比数列的概念与性质

例题1.已知等比数列分别是某等差数列的第5项、第3项、第2项,且(1)求;

(2)设,求数列

例题2.设数列的前n项和为S n,若是首项为1,各项均为正数且公比为q 的等比数列.

(1)求数列的通项公式;

(2)试比较的大小,并证明你的结论.

考点二:求数列的通项与求和

例题3.已知数列中各项为:

12、1122、111222、……、 ……

(1)证明这个数列中的每一项都是两个相邻整数的积.

(2)求这个数列前n项之和S n .

例题4.已知是数列{}的前n项和,并且=1,对任意正整数n,;设).(1)证明数列是等比数列,并求的通项公式;

(2)设的前n项和,求.

考点三:数列与不等式的联系

例题5.已知为锐角,且,函数,数

列{a n}的首项.

(1)求函数的表达式;

(2) 求证:;

(3)求证:

例题6.已知数列满足且

(1)求的表达式;

(2)求;

(3)若,试比较的大小,并说明理由.例题7.已知函数,数列满足, ; 数列

满足, .求证:

(1)

(2)

(3)若则当n≥2时,.

考点四:数列与函数、向量的联系

例题8.无穷数列的前n项和,并且≠.

(1)求p的值;

(2)求的通项公式;

(3)作函数,如果,证明:.

例题9.已知定义域为R的二次函数的最小值为0且有,直线被的图象截得的弦长为,数列满足

(1)求函数的表达式;

(2)求证;

(3)设,求数列的最值及相应的。

★巩固训练

一、选择题。(每小题5分,共60分)

1.在正整数100至500之间能被11整除的个数为( )

A.34 B.35 C.36 D.37

2.在数列{a n}中,a1=1,a n+1=a n2-1(n≥1),则a1+a2+a3+a4+a5等于( )

A.-1 B.1 C.0 D.2

3.{a n}是等差数列,且a1+a4+a7=45,a2+a5+a8=39,则a3+a6+a9的值是( )

A.24 B.27 C.30 D.33

4.等差数列{a n}中,已知a1=-6,a n=0,公差d∈N*,则n(n≥3)的最大值为( )

A.5 B.6 C.7 D.8

5.设a n=-n2+10n+11,则数列{a n}从首项到第几项的和最大( )A.第10项 B.第11项 C.第10项或11项 D.第12项6.已知等差数列{a n}的公差为正数,且a3·a7=-12,a4+a6=-4,则S20为( )

A.180 B.-180 C.90 D.-90

7.设函数f(x)满足f(n+1)=(n∈N*)且f(1)=2,则f(20)为( )

A.95 B.97 C.105 D.192

8.由公差为d的等差数列a1、a2、a3…重新组成的数列a1+a4,a2+a5,a3+a6…是( )

A.公差为d的等差数列 B.公差为2d的等差数列

C.公差为3d的等差数列 D.非等差数列

考查等差数列的性质.

9.已知三角形的三边构成等比数列,它们的公比为,则的取值范围是()

A. B. C. D.

10.数列的通项公式,若此数列满足(),则的取值范围是

A. B. C. D.

11.等差数列,的前项和分别为,,若,则=()

A. B. C. D.

12.三个数成等比数列,且,则的取值范围是()

A. B. C. D.

二、填空题。(每小题4分,共16分)

13.在数列{a n}中,a1=1,a n+1=(n∈N*),则是这个数列的第

_________项.

14.在等差数列{a n}中,已知S100=10,S10=100,则S110=_________.15.在-9和3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n=_______.

16.等差数列{a n},{b n}的前n项和分别为S n、T n,若=,则

=_________.

三、解答题。(除22小题14外,其余各小题为12分,共74分)

17.已知函数

(1)求的反函数,并指出其定义域;

(2)若数列{a n}的前n项和S n对所有的大于1的自然数n都有,且a1 =1,求数列{a n}的通项公式;

(3)令

18.已知数列{a n}满足

(1)求证:{a n}为等比数列;

(2)记为数列{b n}的前n项和,那么:

①当a=2时,求T n;

②当时,是否存在正整数m,使得对于任意正整数n都有如果存在,求

出m的值;如果不存在,请说明理由.

19.已知数列{a n}的前n项和为S n,且

(1)求证:数列为等差数列;

(2)求满足的自然数n的集合.

20.已知数列为等差数列,其前n项和为

(1)若成立,并将其整合为一个等式;

(2)一般地,若存在正整数k,使,我们可将(I)中的结论作相应推广,试

写出推广后的结论,并推断它是否正确.

21.已知数列满足递推式,其中

(1)求;

(2)求数列的通项公式;

(3)求数列的前n项和.

22.已知等差数列,公差d大于0,且是方程的两个根,数列的前n项和为。

(1)求数列、的通项公式;

(2)记,求证:

数列求和的教学反思

数列求和的教学反思 数列求和的教学反思 由于数列的求和在求解的方法中比较多,学生难以一次性熟练掌握全部的方法并灵活运用,所以在《数列求和》的专题课的教学重点放在了数列求和的前三种重要方法: 1、公式法求和(即直接利用等差数列和等比数列的求和公式进行求和); 2、利用叠加法、叠乘法将已知数列转化为等差数列或等比数列再行求和; 3、对于数列的通项是由等差乘以等比数列构成的,用乘公比错位相减求和法。 从实际教学效果看教学内容安排得符合学生实际,由浅入深,比较合理,基本达到了这节课预期的教学目标及要求。结合自我感觉、工作室评课、学生反馈,这节课比较突出的有以下几个优点。 1、注重“三基”的训练与落实 数列部分中两种最基本最重要的数列就是等差数列和等比数列,很多数列问题包括数列求和都是围绕这两种特殊数列展开的,即使不能直接利用等差数列和等比数列公式求和,也可根据所给数列的

不同特点,合理恰当地选择不同方法转化为等差数列或等比数列再行求和。因此上课伊始做为本节课的知识必备,就要求学生强化等差数列和等比数列求和公式的记忆。其次本节课充分渗透了转化的数学思想方法,并且通过典型例题使学生体会并掌握根据所给求和数列的不同特点,分别采用叠加法或叠乘法将所给数列转化为等差数列或等比数列再行求和的基本技能。 2、例、习题的选配典型,有层次 一方面精选近年典型的高考试题、模拟题做为例、习题,使学生通过体会和掌握,达到举一反三的目的;另一方面结合学生实际,自行编纂或改编了一些题目,或在原题基础上降低了难度,设计出了层次,或在学生易错的地方设置了陷阱,提醒学生留意。同时所配的课堂练习也充分注意了题目的难易梯度,把握了层次性,由具体数字运算到字母运算,由直接给出数列各项到用分段函数形式抽象表述数列,由单一方法适用到能够一题多解等等。 3、对学生可能出现的问题有预见性,并能有针对性地对症下药进行设计 对于直接利用公式求和的等差数列或等比数列求和问题,预见到学生的关键问题应该出在搞不清

高中数学数列综合专项练习讲义

高中数学数列综合专项 练习讲义 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

专题数 列综合 考点精要 会求简单数列的通项公式和前n 项和. 热点分析 数列的通项和求和,历来是高考命题的常见考查内容.要重点掌握错位相减法,灵活运用裂项相消法,熟练使用等差和等比求和公式,掌握分组求和法. 知识梳理 1.数列的通项求数列通项公式的常用方法: (1)观察与归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变:分析符号、 数字、字母与项数n 在变化过程中的联系,初步归纳公式。 (2)公式法:等差数列与等比数列。 (3)利用n S 与n a 的关系求n a :则???≥-==-2111 n S S n S a n n n (注意:不能忘记讨论1=n ) (4)逐项作差求和法(累加法);已知)2)((1≥=--n n f a a n n ,且{f(n)}的和可求,则求n a 可用累加法 (5)逐项作商求积法(累积法);已知 )2)((1 ≥=-n n f a a n n ,且{f(n)}的和可求,求n a 用累乘法. (6)转化法 2几种特殊的求通项的方法 (一)1n n a ka b +=+型。 (1)当1k =时,{}1n n n a a b a +-=?是等差数列,1()n a bn a b =++ (2)当1k ≠时,设1()n n a m k a m ++=+,则{}n a m +构成等比数列,求出{}n a m +的通项,进一步求出{}n a 的通项。 例:已知{}n a 满足111,23n n a a a +==-,求{}n a 的通项公式。

四年级奥数思维训练专题-巧妙求和

四年级奥数思维训练专题-巧妙求和(一) 专题简析:若干个数排成一列称为数列.数列中的每一个数称为一项.其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数. 相邻两项的差都相等的数列称为等差数列,后项与前项的差称为公差. 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算. 项数=(52-4)÷6+1=9 答:这个数列共有9项. 试一试1:有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项? 例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少? 分析:这个等差数列的首项是3,公差是4,项数是100.要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算. 第100项=3+4×(100-1)=399

试一试2:求1,4,7,10……这个等差数列的第30项. 例3:有这样一个数列:1,2,3,4,…,99,100.请求出这个数列所有项的和. 分析:等差数列总和=(首项+末项)×项数÷2 1+2+3+…+99+100=(1+100)×100÷2=5050 试一试3:6+7+8+…+74+75 例4:求等差数列2,4,6,…,48,50的和. 分析:项数=(末项-首项)÷公差+1 =(50-2)÷2+1=25 首项=2,末项=50,项数=25 等差数列的和=(2+50)×25÷2=650 试一试4:9+18+27+36+…+261+270 巧妙求和(二) 专题简析:

数列求和讲义及练习题

数列求和 数列求和这类问题在初中、高中乃至大学的课本里都占有一定的比例,我们在小学学习数列求和问题的目的旨在发散思维,断炼学生观察事物的能力,通过观察,得以揭示出事物的发展和变化规律。 【知识要点】 数列:若干个数排成一列称为数列。 项:数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。特殊的数列——等差数列:数列中任意相邻两项的差相当 公差:等差数列中相邻两项的差称为公差。 在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 【例题讲解及思维拓展训练题】 例1:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少? 分析:这个等差数列的首项是3.公差是4,项数是100。要求第100项 列表分析找规律: 解:第100项=3+(100-1)×4=399. 总结:通项公式:第n项=首项+(项数-1)×公差 思维拓展训练一: 1.一等差数列,首项=3.公差= 2.项数=10,它的末项是多少? 2.求1,4,7,10……这个等差数列的第30项。

3.求等差数列2,6,10,14……的第100项。 例2:有一个数列:4,10,16,22,…,52.这个数列共有多少项? 分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52. 总结例1:要求一列数有多少项,可以先求出末项比首项多的公差的个数,再加1.解:项数=(52-4)÷6+1=9,即这个数列共有9项。 总结:项数公式:项数=(末项-首项)÷公差+1 思维拓展训练二: 1.等差数列中,首项=1.末项=39,公差= 2.这个等差数列共有多少项? 2.有一个等差数列:2,5,8,11.…,101.这个等差数列共有多少项? 3.已知等差数列11,16,21,26,…,1001.这个等差数列共有多少项?

数列求和专项训练题(学生)

数列求和的常用方法 第一类:公式法求和 利用下列常用求和公式求和是数列求和的最基本最重要的. 1、等差数列前n 和公式:()() 11122 n n n a a n n S na d +-= =+ 2、等比数列前n 和公式:1 11(1)(1)(1) 11n n n na q S a a q a q q q q =?? =--?=≠?--? 自然数方幂和公式: 3、11(1)2n n k S k n n ===+∑ 4、211 (1)(21) 6n n k S k n n n ===++∑ 5、32 1 1[(1)]2 n n k S k n n ===+∑ 【例】已知数列{}n a 满足*111,4,n n a a a n N +==+∈,求数列{}n a 的前n 项和 n S . 【练习】已知321 log log 3 x -= ,求23n x x x x +++???++???的前n 项和.

第二类:分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 若数列{}n c 的通项公式为n n n c a b =+,其中数列{}n a ,{}n b 分别是等差数列和等比数列,求和时一般用分组结合法。 【例】数列111111,2,3,4 ,,,24816 2n n 求数列的前n 项和. 【练习】数列{}n a 的通项公式221n n a n =+- 第三类:裂项法求和 这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 常用的通项分解(裂项)如:

(浙江专用)2020版高考数学 数列的综合应用讲义(含解析)

第2课时 数列的综合应用 题型一 数列和解析几何的综合问题 例1 (2004·浙江)已知△OBC 的三个顶点坐标分别为O (0,0),B (1,0),C (0,2),设P 1为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n ,P n +3为线段 P n P n +1的中点,令P n 的坐标为(x n ,y n ),a n =1 2 y n +y n +1+y n +2. (1)求a 1,a 2,a 3及a n 的值; (2)求证:y n +4=1-y n 4 ,n ∈N * ; (3)若记b n =y 4n +4-y 4n ,n ∈N * ,求证:{b n }是等比数列. (1)解 因为y 1=y 2=y 4=1,y 3=12,y 5=3 4, 所以a 1=a 2=a 3=2, 又由题意可知y n +3= y n +y n +1 2 , 所以a n +1=1 2y n +1+y n +2+y n +3 =12y n +1+y n +2+y n +y n +12 =1 2y n +y n +1+y n +2=a n , 所以{a n }为常数列, 所以a n =a 1=2,n ∈N * . (2)证明 将等式12y n +y n +1+y n +2=2两边除以2得14y n +y n +1+y n +2 2=1. 又因为y n +4= y n +1+y n +2 2 , 所以y n +4=1-y n 4,n ∈N * . (3)证明 因为b n +1=y 4n +8-y 4n +4 =? ????1- y 4n +44-? ?? ?? 1-y 4n 4 =-14(y 4n +4-y 4n )=-1 4b n , 又因为b 1=y 8-y 4=-1 4 ≠0,

最新整理初一数学教案七年级数学上规律探究——数列与循环专题复习讲义(浙教版).docx

最新整理初一数学教案七年级数学上规律探究——数列与循环专题复习讲义(浙教版) 专题:规律探究 重难点易错点解析 例题1 (1)已知一列数:1,4,7,10,13,16,…则该列数中第n个数与第n1个数的差是,这列数中第n个数是;(用含有n的代数式表示) (2)古希腊数学家把1,3,6,10,15,…叫做三角形数,则第16个三角形数与第15个三角形数的差是,第n个三角形数与第n1个三角形数的差是; (3)已知一组数:1,2,3,4,5,6,…则这组数中,第n个数是. 数列的规律 例题2 观察下面算式,用你所发现的规律得出32014的末位数字是. ,,,,… 循环中的规律 金题精讲 题一 QQ空间等级是用户资料和身份的象征,按照空间积分划分不同的等级.当用户在10级以上,每个等级与对应的积分有一定的关系.现在知道第10级的积分是90,第11级的积分是160,第12级的积分是250,第13级的积分是360,第14级的积分是490,…若某用户的空间积分为1000,则他的等级是第级,该

用户若要升入下一级,还需积分. 数列的规律 题二 下图是某年11月的日历,并且在日历中用一个长方形方框圈出任意的3×3个数.请根据图示,回答下列问题: (1)如果3×3的方框中,左下角与右上角“对角线”上的3个数字的和为42,这9个数的和为多少?这9个日期中最后一天是几号? (2)在这个月的日历中,能否用方框圈出总和为108的9个数?如果能,请求出这9个日期中的最大值;若不能,请推测下个月的日历中,能否用方框圈出,并推测圈出的9个日期中最后一天是周几. 日历中的数列与循环问题 题三 如图所示,电子跳蚤跳一步,可以从一个圆圈跳到相邻的圆圈,现有一只红跳蚤从标有“0”的圆圈开始按顺时针方向跳2050步,落在一个圆圈内;另一只黑跳蚤也从标有“0”的圆圈开始按逆时针方向跳2000步落在一个圆圈内,则这两个圆圈中两数的乘积是_________. 循环中的规律 题四 定义:a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是.已知,,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,……以此类推,a2014=. 循环中的规律 思维拓展

2015届高考数学总复习 基础知识名师讲义 第五章 第五节数列的求和 文

第五节 数列的求和 掌握等差数列、等比数列的前n 项和公式,能把某些不是等差和等比数列的求和问题转化为等差、等比数列来解决;掌握裂项求和的思想方法,掌握错位相减法求和的思想方法,并能灵活地运用这些方法解决相应问题. 知识梳理 一、直接用等差、等比数列的求和公式求和 1.等差数列{}a n 的前n 项和公式. S n =n (a 1+a n )2=na 1+n (n -1)2 d . 2.等比数列{}a n 的前n 项和公式. S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. (注意:公比含字母时一定要分类讨论) 二、错位相减法求和 例如{}a n 是等差数列,{}b n 是等比数列,求a 1b 1+a 2b 2+…+a n b n 的和就适用此法.做法是先将和的形式写出,再给式子两边同乘或同除以公比q ,然后将两式相减,相减后以“q n ”为同类项进行合并得到一个可求和的数列(注意合并后有两项不能构成等比数列中的项,不要遗漏掉). 三、分组求和 把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. 四、并项求和 例如求1002-992+982-972+…+22-12的和可用此法. 五、裂项相消法求和 把数列的通项拆成两项之差,正负相消,剩下首尾若干项. 1.特别是对于???? ??c a n a n +1,其中{}a n 是各项均不为0的等差数列,通常用裂项相消法,即

利用c a n a n +1=c d ??? ?1a n -1a n +1(其中d =a n +1-a n ). 2.常见的拆项. 1n (n +1)=1n -1n +1;1(2n -1)(2n +1)=12? ???12n -1-12n +1; 1n (n +1)(n +2)=12? ???1n (n +1)-1(n +1)(n +2); 六、公式法求和 ∑k =1n k =n (n +1)2;∑k =1n ()2k -1=n 2;∑k =1n k 2=n (n +1)(2n +1)6; ∑k =1n k 3=????n (n +1)22. 七、倒序相加法求和 如果一个数列{a n }多与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和就是用此法推导的. 八、其他求和法 如归纳猜想法、奇偶分拆法等. 基础自测 1.(2012·南阳一中考试)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( ) A .63 B .45 C .36 D .27 解析:由等差数列的性质知,S 3,S 6-S 3,S 9-S 6成等差数列,∴9,36-9,S 9-36成等差数列,即54=9+S 9-36.∴S 9=81.∴a 7+a 8+a 9=81-36=45.故选B. 答案:B 2.(2013·三亚质检)若数列{a n }的通项公式是a n =(-1)n (2n -1),则a 1+a 2+a 3+…+a 100=( ) A .-200 B .-100 C .200 D .100 解析:由题意知,a 1+a 2+a 3+…+a 100 =-1+3-5+7+…+(-1)100(2×100-1)

(完整word版)数列求和方法(带例题和练习题)

数列的求和 数列求和主要思路: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 11123(1) 2 n n k S k n n n == =+++++=+∑L … 4、 222221 1 123(1)(21)6n n k S k n n n n ===++++=++∑L 5、 2 3 3 3 3 3 1 (1)1232n n k n n S k n =+?? ===++++=????∑L 公式法求和注意事项 (1)弄准求和项数n 的值; (2)等比数列公比q 未知时,运用前n 项和公式要分类。 例1.求和2 2 1-++++n x x x Λ(0,2≠≥x n ) 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:1 32)12(7531--+???++++=n n x n x x x S 例3.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 三、倒序相加法 如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的 例4.求ο ο ο ο ο 89sin 88sin 3sin 2sin 1sin 2 2 2 2 2++???+++的值 例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002. 例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +???++=求的值.

数列专题复习教案设计

年级 数学 科辅导讲义(第 讲) 学生 授课教师: 授课时间: 数列专题复习 题型一:等差、等比数列的基本运算 例1、已知数列}{n a 是等比数列,且4622a a a =,则=53a a ( ) A .1 B .2 C .4 D .8 例2、在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11= ( ) A.58 B.88 C.143 D.176 变式 1、等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为 ( ) A.1 B.2 C.3 D.4

2、若等比数列{}n a 满足2412 a a = ,则2 135a a a = . 3、已知{}n a 为等差数列,且13248,12,a a a a +=+=(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值。 题型二:求数列的通项公式 ⑴.已知关系式)(1n f a a n n +=+,可利用迭加法(累加法) 例1:已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; 变式 已知数列{}n a 满足122a =,12n n a a n +-=,求数列{}n a 的通项公式. (2).已知关系式)(1n f a a n n ?=+,可利用迭乘法(累积法) 例2、已知数列{}n a 满足:111 (2),21 n n a n n a a n --=≥=+,求求数列{}n a 的通项公式; 变式 已知数列{}n a 满足n n a n a 2 1=+,11=a ,求数列{}n a 的通项公式。

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

数学专题讲义---数列(完整资料)

一. 等差、等比数列的基本理论 ⑴等差、等比数列: ⑵判定一个数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数). ⑶判定一个数列是不是等比数列有以下三种方法: ①1(2,)n n a a q n q -=≥为非零常数 ②112-+?=n n n a a a (2≥n ,011≠-+n n n a a a ) ③n n cq a =(q c ,为非零常数). ⑷数列{n a }的前n 项和n S 与其通项n a 之间的关系:???≥-===-)2()1(111n s s n a s a n n n 例1. 在等差数列{}n a 中,972S =。求249?a a a ++= 解:法一:因为9119(91)9936722 S a d a d -=+=+=

所以148a d += 249113123(4)3824a a a a d a d ∴++=+=+=?= 法二:因为91289...72S a a a a =++++= 而19285...2a a a a a +=+== 所以 5972a = 58a ∴= 249533824a a a a ∴++==?= 例2. 在等比数列{}n a 中,11a =,634S S =。求4?a = 解:因为634S S = 所以公比1q ≠(事实上,若1q =,则6166S a ==,3133S a ==此时显然不满足题设条件634S S =) 于是有 6311(1)(1)411a q a q q q --=-- 6314(1)q q ?-=- 又6331(1)(1)q q q -=+- 314q ∴+= 33q ∴= 341133a a q ∴==?= 例3. 在等差数列{}n a 中,535a a =。求95 ?S S = 解:法一:19551513319(91)999(4)992595(51)5(2)555 52a d S a a a d S a d a a a d -+ +====?=?=-++ 法二:因为95539,5S a S a == 所以95553399959555 S a a S a a ==?=?= 例4. 设数列{}n a 满足11a =,12n n a a +=, n *∈N 。求5?a =,8?S = 解:因为12n n a a +=

2020届高三第一轮复习讲义【22】-数列综合1

2020届高三第一轮复习讲义【22】-数列综合1(参数范围问题) 一、同步知识梳理 1、数列求单调性; 令()n f a n =,若()()01>-+n f n f ,则{}n a 递增;()()01<-+n f n f ,递减; 同理,已知0>n a ,令()n f a n =,若()()11>+n f n f ,则{}n a 递增;()() 11<+n f n f ,递减; 2、数列凸凹性; 若221+++≥ n n n a a a ,则{}n a 称之为上凸数列;若2 2 1+++≤n n n a a a ,则{}n a 称之为下凸数列; 上凸数列满足:()* +-∈<<≥≥≥≤≤≤≤N k n k a a a a a a n k k k ,11121ΛΛ,则k a 为最大值; 下凸数列满足:( ) * +-∈<<≤≤≤≥≥≥≥N k n k a a a a a a n k k k ,11121ΛΛ,则k a 为最小值; 3、数列周期性; 对于数列{}n a ,如果存在一个常数T (*T N ∈),使得对任意的正整数0n n >,恒有n T n a a +=成立,则称数列{}n a 是从第0n 项起的周期为T 的周期数列。若01n =,则称数列{}n a 为纯周期数列,若02n ≥,则称数列{}n a 为混周期数列,T 的最小值称为最小正周期,简称周期。周期数列主要有以下性质: ①周期数列是无穷数列,其值域是有限集; ②周期数列必有最小正周期(这一点与周期函数不同); ③如果T 是数列{}n a 的周期,则对于任意的*k N ∈,kT 也是数列{}n a 的周期; ④如果T 是数列{}n a 的最小正周期,M 是数列{}n a 的任一周期,则必有|T M ,即M kT =,*k N ∈; ⑤已知数列{}n a 满足n t n a a +=(,*n t N ∈,t 为常数),,n n S T 分别为{}n a 的前n 项的和与积,若n qt r =+,0r t ≤<, ,*q r N ∈,则n t r S qS S =+,()q n t r T T T =; 常见形式:可参照函数周期性进行类比! 例如:) (1 1)(x f a x f - =+,则()x f 是以a T 3=为周期的周期函数. 则数列:n k n a a 1 1-=+,则{}n a 是以k T 3=为周期的周期数列;

高中数学讲义微专题55 数列中的不等关系

第55炼 数列中的不等关系 一、基础知识: 1、在数列中涉及到的不等关系通常与数列的最值有关,而要求的数列中的最值项,要依靠数列的单调性,所以判断数列的单调性往往是此类问题的入手点 2、如何判断数列的单调性: (1)函数角度:从通项公式入手,将其视为关于n 的函数,然后通过函数的单调性来判断数列的单调性。由于n N * ∈ ,所以如果需要用到导数,首先要构造一个与通项公式形式相同,但定义域为()0,+∞ 的函数,得到函数的单调性后再结合n N * ∈得到数列的单调性 (2)相邻项比较:在通项公式不便于直接分析单调性时,可考虑进行相邻项的比较得出数列的单调性,通常的手段就是作差(与0比较,从而转化为判断符号问题)或作商(与1比较,但要求是正项数列) 3、用数列的眼光去看待有特征的一列数:在解数列题目时,不要狭隘的认为只有题目中的 {}{},n n a b 是数列,实质上只要是有规律的一排数,都可以视为数列,都可以运用数列的知识 来进行处理。比如:含n 的表达式就可以看作是一个数列的通项公式;某数列的前n 项和n S 也可看做数列{}12:,,,n n S S S S L 等等。 4、对于某数列的前n 项和{}12:,,,n n S S S S L ,在判断其单调性时可以考虑从解析式出发,用函数的观点解决。也可以考虑相邻项比较。在相邻项比较的过程中可发现:1n n n a S S -=-,所以{}n S 的增减由所加项n a 的符号确定。进而把问题转化成为判断n a 的符号问题 二、典型例题 例1:已知数列{}1,1n a a =,前n 项和n S 满足()130n n nS n S +-+= (1)求{}n a 的通项公式 (2)设2n n n n c a λ?? =- ??? ,若数列{}n c 是单调递减数列,求实数λ的取值范围 解:(1)()113 30n n n n S n nS n S S n +++-+=? =

数列求和与综合(讲义)

数列求和与综合(讲义) 知识点睛 一、数列求和 1. 公式法: (1)等差数列前n 项和公式; (2)等比数列前n 项和公式. 2. 错位相减法: 适用于形如{}n n a b ?的数列,其中{}n a 是公差为d 的等差数列,{}n b 是公比q ≠1的等比数列. 方法: 设1122n n n S a b a b a b =+++… ① 则12231 n n n qS a b a b a b +=+++… ② ①-②得:11231(1)()n n n n q S a b d b b b a b +-=++++-…,转化为公式法求和. 3. 裂项相消法: 把数列的通项拆分为两项之差,使之在求和时产生前后相互抵消的项的求和方法.常见类型有: (1) 1111 ()()n n k k n n k =-++; (2) 21 111()4122121 n n n =---+; (31 k =; (4)1 log (1)log (1)log a a a n n n +=+-. 4. 其他方法: (1)分解法:分解为基本数列求和,比如数列{}n n a b +,其中{}n a 是等差数列,{}n b 是等比数列. (2)分组法:分为若干组整体求和,经常分为偶数项之和与奇数项之和, 比如通项公式为(1)n n a n =-的数列{}n a . (3)倒序相加法:把求和式倒序后两和式相加,适用于具有对称性质的数列求和. 二、 数列综合 1. 已知n S 求n a 的三个步骤: (1)先利用11a S =,求出1a ;

(2)用1n -替换n S 中的n 得到一个新的关系式, 利用1(2)n n n a S S n -=-≥求出当2n ≥时n a 的表达式; (3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式, 如果符合,则可以把数列的通项公式合写; 如果不符合,则应该分1n =与2n ≥两段来写,即 11 1 2n n n a n a S S n -=?=?-?≥, ,. 2. 非等差或等比数列的转化: (1 )转化为1{} n a 2 {}n a 、1{}n n a a +-等形式的等差、等比数列; (2)形如1=(010)n n a pa q p q ++≠≠,,的数列,转化为等比数列,设1+=()n n a p a λλ++,可解得= 1 q p λ-,则数列{}n a λ+为等比数列; (3)形如11=(010)n n n a pa qp p q +++≠≠,,的数列,转化为等差数列,两端同时除以1n p +,即得11n n n n a a q p p ++-=,则数列{}n n a p 为等差数列. 精讲精练 1. 在数列{}n a 中,1(1)n a n n = +,若它的前n 项和为2 014 2 015 , 则项数n 为( ) A .2 013 B .2 014 C .2 015 D .2 016

数列求和专题训练 方法归纳

数列求和专题 方法归纳 方法1:分组转化法求和 1.已知{a n }的前n 项是3+2-1,6+4-1,9+8-1,12+16-1,…,3n +2n -1,则S n = ________. 2.等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2an -2+n ,求 b 1+b 2+b 3+…+b 10的值. 方法2裂项相消法求和 3.设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N * ),则数列? ???????? ?1a n 前 10项的和为______. 4. S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. ①求{a n }的通项公式; ②设b n = 1 a n a n +1 ,求数列{b n }的前n 项和. 5.若已知数列的前四项是 112 +2,122+4,132+6,1 42+8 ,则数列的前n 项和为________. 6.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项 公式; (2)设b n =1 a n a n +1 ,求数列{b n }的前n 项和T n . 7.已知数列{a n }各项均为正数,且a 1=1,a n +1a n +a n +1-a n =0(n ∈N *). (1)设 b n =1 a n ,求证:数列{ b n }是等差数列;(2)求数列?????? ??? ?a n n +1的前n 项和S n . 方法3:错位相减法求和 8.已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列(b n >0),且a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.(1)求数列{a n }与{b n }的通项公式;(2)记T n 为数列{a n b n }的前n 项和,求 T n . 9.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).

三种常用的数列求和方法-高考文科数学分类专题突破训练

考查角度2三种常用的数列求和方法 分组转化法求和 已知等差数列{a n}满足a2=2,a1+a4=5. {a n}的通项公式; (2)若数列{b n}满足b1=3,b2=6,{b n-a n}为等比数列,求数列{b n}的前n T n. 利用已知条件求出等差数列{a n}的通项公式;(2)因为{b n n,所以数列{b n}的前n项和T n可以看成数列{b n-a n} {a n}的前n项和的总和. 设等差数列{a n}的公差为d, {a n}满足a2=2,a1+a4=5, ∴解得a1=d=1, ∴a n=1+(n-1)×1=n. (2)设等比数列{b n-a n}的公比为q,∵b1=3,b2=6, ∴b1-a1=3-1=2,b2-a2=6-2=4, ∴q=2. ∴b n-a n=2×2n-1=2n, ∴b n=n+2n, ∴数列{b n}的前n项和 T n=(1+2+3+…+n)+(2+22+…+2n)=+- -=+2n+1-2. 从求和数列的通项入手,将其转化为等差数列与等比 ,再利用等差数列与等比数列的求和公式进行分组求和. 错位相减法求和 已知{a n}的前n项和S n=4n-n2+4. {a n}的通项公式; (2)求数列-的前n项和T n. 由{a n}的前n项和求出数列{a n}的通项公式;(2)利用错 (当n=1时要单独考虑). 当n≥2时,a n=S n-S n-1=4n-n2-[4(n-1)-(n-1)2]=5-2n; 1时,a1=S1=7. ∴a n= - (2)令b n=-,

当n=1时,T1=b1=-=0; 当n≥2时,b n=-= - , ∴T n=0++++…+ -+ - , T n=+++…+ - +, 两式相减得T n=1+++…+ --= - - -=2-, ∴T n=4- - (n≥2 . 当n=1时,满足上式. 综上所述,T n=4- - . 用错位相减法求和时,应注意: ,特别是等比数列的公比为负数的情形; (2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式; (3)在应用错位相减法求和时,若等比数列的公比未知,应分公比等于1和不等于1两种情况求解. 分类透析三a n=型的裂项相消法求和 已知数列{a n}为单调递增数列,S n为其前n项和,2S n=+n. (1)求{a n}的通项公式. (2)若b n=,T n为数列{b n}的前n项和,证明:T n<. 由递推公式2S n=+n求出{a n}的通项公式;(2)先用裂项相消法求和,再进行适当放缩证明. 当n=1时,2S1=2a1=+1,即(a1-1)2=0,解得a1=1. 又{a n}为单调递增数列,所以a n≥1. 由2S n=+n得2S n+1=+n+1, 所以2S n+1-2S n=-+1, 整理得2a n+1=-+1,所以=(a n+1-1)2. 所以a n=a n+1-1,即a n+1-a n=1, 所以{a n}是以1为首项,1为公差的等差数列,所以a n=n.

专题训练-常见数列的求和

专题训练-常见数列的求和 德阳二中 谢超强 在前面,我们学习了如何求等差数列和等比数列的前n 项和。下面介绍既非等差数列又 非等比数列的某些数列前n 项和的求法。 一、分组求和法 某些数列,通过适当的分组,可得出两个或几个等差数列或等比数列,从而可利用等差数列或等比数列的求和公式分别求和,得出原数列的和。 例1:求数列3 11,912 ,2713,…,)3 1n n +(,…的前n 项和。 解:n S =311+912+271 3+…+)3 1n n +( =(1+2+3+…+n )+)3 1 2719131(n ++++ = 3 11) 311(312 )1(--++n n n =)3 1 1(21)1(21n n n -++ 二、聚合法 有的数列表示形式较复杂,每一项是若干个数的和,这时常采用聚合法,先对其第n 项求和,然后将通项化简,从而改变原数列的形式,再采用分组求和。 例2:求数列 ,2 221,,221,21,11 2 2 -+++++++n 的前n 项和。 解:∵122 1212 22112 -=--=++++=-n n n n a ∴n n a a a a S ++++= 321 =)12()12()12()12(3 2 1 -++-+-+-n =n n -++++)2222(3 2 1 = 222 1) 21(21--=---+n n n n 三、裂项相消法 这种方法是先把数列的第n 项n a 分裂为几项的代数和,从而改变数列的形式,以便可以进行消项处理,进而达到解决问题的目的。 例3.求数列 ,) 1(6,,436,326,216+????n n 的前n 项和。

高三第一轮复习讲义【24】-数列综合3

2018届高三第一轮复习讲义【24】-数列综合3(简单的参数取整问题) 一、同步知识梳理 1、2个连续正整数的乘积一定是偶数; 2、奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数,偶数?偶数=偶数,奇数?偶数=偶数,奇数?奇数=奇数; 3、若正整数n k >,则1+≥n k ,同理:若n k <,则1-≤n k ; 4、若p 、q 、r 分别为三个正整数,且r q p <<,1≥-p q ,2≥-p r ; 5、奇数的平方都可以表示成18+m 的兴衰,偶数的平方可以表示成m 8或48+m 的形式; 6、若有限个整数之积为奇数,则其中每个整数都是奇数;若有限个整数之积为偶数,则这些整数中至少有一个是偶数;两个整数的和与差具有相同的奇偶性;偶数的平方根若是整数,它必为偶数。 7、平方数的个位数字只可能是0,1,4,5,6,9; 8、偶数的平方数是4的倍数,奇数的平方数被8除余1 9、任何四个连续整数的乘积加1,必定是一个平方数。 10、1°0,1122==→+=n m n m ;2°1,2222==→+=n m n m ;以此类推…… 同理,3的指数也如此:1,2633==→+=y x y x 。 11、()( )1 2 111-++++-=-n n a a a a a ; 12、()() 121212 2+-=-n n n ; 13、质素:有且只有2个素因数,1和身;合数:除了1和本身之外还有第三个因素; 14、被2整除,末尾是2的倍数; 15、被3整除,数字之和是3的倍数; 16、被5整除,末尾数字是0或者5,或者最后2位数字组合为(00,25,50,75); 17、被7整除,①割尾法: 若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。 ②末三法: 这个数的末三位数与末三位以前的数字所组成的数之差(反过来也行)能被7、11、13整除。这个数就能被7、11、13整除。

数列专题讲义二

第2讲 数列求和及数列的简单应用 典型真题: 1.[2019·浙江卷] 设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√ a n 2 b n ,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *. 2.[2019·天津卷] 设{a n }是等差数列,{b n }是等比数列,已知 a 1=4, b 1=6,b 2=2a 2-2,b 3=2a 3+4. (1)求{a n }和{b n }的通项公式. (2)设数列{c n }满足c 1=1,c n ={1,2k 1,且 a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{ b n }满足b 1=1,数列 {(b n+1-b n )a n }的前n 项和为2n 2+n. (1)求q 的值; (2)求数列{b n }的通项公式. 策略 解决数列解答题 1.解决已知某几个基本量求等差、等比数列的通项公式和前n 项和的问题:

关键一:通过列方程(组)求关键量a1和d(或q). 关键二:利用通项公式和前n项和公式求解. 2.解决数列的递推问题: 关键一:利用a n={S1,n=1, 得出关于a n与a n+1(或a n-1)的递推式. S n-S n-1,n≥2, 关键二:观察递推式的形式,采用不同方法求a n. 3.解决数列求和问题 关键一:利用等差数列、等比数列的前n项和公式. 关键二:利用分组求和法、错位相减法、裂项相消法. 4.(1)等差数列的判断方法:定义法、等差中项法、利用通项公式判断、利用前n项和公式判断. (2)等比数列的判断方法: =q(q是常数且q≠0),则数列{a n}是等比数列. (a)定义法:若a n+1 a n (b)等比中项法:若a n+1 2=a n a n+2(n∈N*),则数列{a n}是等比数列. (c)通项公式法:若a n=pq n(p,q为常数且p,q≠0),则数列{a n}是等比数列. 5.解决关于数列的不等式证明问题常用放缩法,解决数列的最值问题常用基本不等式法. 解答1等差、等比数列基本量的计算 1 已知{a n}是递增的等比数列,a5=48,4a2,3a3,2a4成等差数列. (1)求数列{a n}的通项公式; (2)设数列{b n}满足b1=a2,b n+1=b n+a n,求数列{b n}的前n项和S n.

相关文档
最新文档