高二上学期上海数学知识点
高二上期数学知识点有哪些

高二上期数学知识点有哪些高二上学期数学知识点有哪些高二上学期是数学学科中的重要阶段,学生需要掌握一系列的数学知识点。
本文将介绍高二上学期数学知识点的主要内容,以帮助同学们更好地学习和理解。
一、函数与方程1. 函数的定义与性质:包括函数的定义域、值域、奇偶性、周期性等基本性质。
2. 一次函数:求解一次函数的方程,确定一次函数的解析式,应用一次函数解决实际问题。
3. 二次函数:求解二次函数的方程,确定二次函数的解析式,应用二次函数解决实际问题。
4. 一元二次方程:求解一元二次方程的根,关注方程的判别式、根的性质等。
二、数列与数表1. 等差数列与等差数表:求解等差数列的通项公式和部分和公式,应用等差数列解决实际问题。
2. 等比数列与等比数表:求解等比数列的通项公式和部分和公式,应用等比数列解决实际问题。
3. 费波那契数列:了解费波那契数列的基本性质,并应用于实际问题。
三、三角函数1. 基础概念:了解正弦、余弦、正切等三角函数的定义,并掌握各函数之间的关系。
2. 常用公式:掌握三角函数的基本公式,如和差化积、倍角公式等。
3. 三角函数等式解:解三角函数的方程和不等式,注意特殊解和解的周期性。
四、平面向量1. 向量的定义与运算:了解向量的定义、零向量、数量积、向量投影等基本概念。
2. 向量的共线与垂直关系:判断向量的共线性和垂直性。
3. 向量的数量积与几何应用:求向量的数量积、夹角,并应用于图形的面积计算等问题。
五、解析几何1. 平面的方程与性质:了解平面的一般方程、点法式方程等,并应用于平面与直线的位置关系。
2. 空间直线的方程与性质:了解三维空间中直线的参数方程、对称方程等,并应用于直线与平面的位置关系。
3. 球的方程与性质:了解球的参数方程、球面方程等,并应用于球与平面的位置关系。
六、概率论1. 事件与概率:理解事件的定义、样本空间、事件间的运算等基本概念。
2. 随机变量与概率分布:了解离散型和连续型随机变量的概念、分布函数、密度函数等。
上海教材高中数学知识点总结(最全)

目录一、集合与常用逻辑二、不等式三、函数概念与性质四、基本初等函数五、函数图像与方程六、三角函数七、数列八、平面向量九、复数与推理证明十、直线与圆十一、曲线方程十二、矩阵、行列式、算法初步十三、立体几何十四、计数原理十五、概率与统计一、集合与常用逻辑1.集合概念元素:互异性、无序性2.集合运算全集U:如U=R 交集:}{BxAxxBA∈∈=且并集:}{BxAxxBA∈∈=⋃或补集:}{AxUxxACU∉∈=且3.集合关系空集A⊆φ子集BA⊆:任意BxAx∈⇒∈BABBABAABA⊆⇔=⊆⇔=注:数形结合---文氏图、数轴4.四种命题原命题:若p则q 逆命题:若q则p否命题:若p⌝则q⌝逆否命题:若q⌝则p⌝原命题⇔逆否命题否命题⇔逆命题5.充分必要条件p是q的充分条件:qP⇒p是q的必要条件:qP⇐p是q的充要条件:p⇔q6.复合命题的真值①q真(假)⇔“q⌝”假(真)②p、q同真⇔“p∧q”真③p、q都假⇔“p∨q”假7.全称命题、存在性命题的否定∀∈M, p(x)否定为: ∃∈M, )(Xp⌝∃∈M, p(x)否定为: ∀∈M, )(Xp⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则 02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα 注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x < ⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab b a ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2)或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T )4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab --∞递减,),2[+∞-a b 递增当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0 闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa 1=- m nmn a a=2.对数式 b N a =log N a b =⇔(a>0,a ≠1)N M MN a a a log log log +=N M NMa a alog log log -= Mn M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a a N a N a=log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e3.指数与对数函数 y=a x与y=log ax定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分, 并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断) 注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy =αtan其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦”5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 67.基本公式同角1cos sin 22=+αα αααtan cos sin =和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α-叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(-增 ),0(π减 )2,2(-增注:Z k ∈9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sin C B A =+正弦定理:A asin =Bb sin =CcsinA R a sin 2= CB A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bccosA (求边)cosA=bca cb 2222-+(求角)面积公式:S △=21absinC注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+=求和:2)(1n n a a n S +=d n n na )1(211-+= 中项:2c a b +=(c b a ,,成等差)性质:若q p n m +=+,则q p n m a a a a +=+ 2、等比数列 定义:)0(1≠=+q q a a n n通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn 4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=共始点中点公式:⇔=+AD AC AB 2D 是BC 中点2. 向量数量积 b a ⋅=θcos ⋅⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:b a =⋅3.基本定理 2211e e aλλ+=(21,e e 不共线--基底) 平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x模:a =22y x +=+=+2)(夹角:=θcos ||||b a ba 注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -=模:22b a z += 2z z z =⋅复平面:复数z 对应的点),(b a2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法: dic bi a ++=))(())((di c di c di c bi a -+-+==…乘方:12-=i ,=n i r r k i i =+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立 注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+by ax一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件)平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+-点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外 7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|)双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0)顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b 双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -) 双曲线2c (c=22b a +) 2a 、2b:椭圆长轴、短轴长, 双曲线实轴、虚轴长 离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a b y ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴)开口(向右) 范围x ≥0 离心率e=1 焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式3赋值语句:变量=表达式4条件语句“IF—THEN—ELSE”语句“IF—THEN”语句IF 条件 THEN IF 条件 THEN 语句1 语句ELSE END IF 语句2END IF5循环语句当型循环语句直到型循环语句WHILE 条件 DO循环体循环体WEND LOOP UNTIL 条件当型“先判断后循环”直到型“先循环后判断”三.算法案例1、求两个数的最大公约数辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n+a n-1x n-1+….+a1x+a0的求值秦九韶算法: v1=a n x+a n-1 v2=v1x+a n-2v3=v2x+a n-3 v n=v n-1x+a0注:递推公式v0=a n v k=v k-1X+a n-k(k=1,2,…n) 求f(x)值,乘法、加法均最多n次3、进位制间的转换k进制数转换为十进制数:11111.........)(.....akakakakaaaa nnnnnn+⨯++⨯+⨯=---十进制数转换成k进制数:“除k取余法”例1辗转相除法求得123和48最大公约数为3 例2已知f(x)=2x5-5x4-4x3+3x2-6x+7,秦九韶算法求f(5)123=2×48+27 v0=248=1×27+21 v1=2×5-5=527=1×21+6 v2=5×5-4=2121=3×6+3 v3=21×5+3=1086=2×3+0 v4=108×5-6=534v5=534×5+7=2677十三、立体几何1.三视图正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度 平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件:①不共线的三点 ②一条直线和这直线外一点③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。
高二上学期数学知识点归纳总结大全

高二上学期数学知识点归纳总结大全1500字高二上学期数学知识点归纳总结大全一、函数与方程1.函数与方程的概念和性质2.一次函数及其图像、性质与应用3.二次函数及其图像、性质与应用4.含有两个未知数的方程与一次方程组5.高次函数及其特性与应用6.绝对值函数及其图像与性质7.二次函数的图像与性质8.组合函数及其性质与应用二、数列与数列的应用1.数列的概念与性质2.数列的通项公式与求和公式3.等差数列4.等比数列5.等差数列与等比数列的联系与应用6.递推数列三、几何1.平面几何基本概念和性质2.平面内直线和角的概念及其性质3.平行线、垂线与角4.平面内的等腰三角形、等边三角形、直角三角形和等腰直角三角形的性质5.圆的基本概念和性质6.圆内角、弧及弧度制7.扇形和扇形的面积8.圆锥曲线的基本概念和性质9.空间直线的位置关系与正交投影10.空间中的平面及其性质四、三角函数与三角方程1.角的概念与角度制2.三角函数的概念、性质与图像3.合角与二倍角公式4.诱导公式和旁选公式5.三角函数的图像与性质6.三角恒等变换与三角方程解题方法7.三角函数的应用五、平面解析几何1.平面直角坐标系2.平面解析几何的基本思想和基本定理3.平面直角坐标系中的直线方程4.平面直角坐标系中的圆方程5.曲线的方程六、统计与概率1.统计量的概念和计算方法2.频率分布、累计频率和频率直方图3.正态分布的概念和性质4.离散型随机变量的概念和性质5.随机事件、概率的概念和计算方法6.条件概率与事件间的独立性7.排列与组合的概念与计算方法8.概率统计中的应用问题以上是高二上学期数学知识点归纳总结的大致内容,包括了函数与方程、数列与数列的应用、几何、三角函数与三角方程、平面解析几何、统计与概率等知识点。
希望能对你的学习有所帮助!。
沪教版高二数学上册知识点

沪教版高二数学上册知识点因为高二开始努力,所以前面的知识肯定有一定的欠缺,这就要求自己要制定一定的计划,更要比别人付出更多的努力,相信付出的汗水不会白白流淌的,收获总是自己的。
小编高二频道为你整理了《高二上册数学知识点总结》,助你金榜题名!沪教版高二数学上册知识点总结一、变量间的相关关系1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.二、两个变量的线性相关1.从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.三、解题方法1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.3.由相关系数r判断时|r|越趋近于1相关性越强.沪教版高二数学上册知识点总结圆与圆的位置关系1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.沪教版高二数学上册知识点总结1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:它是判定两个平面相交的方法.它说明两个平面的交线与两个平面公共点之间的关系:交线公共点.它可以判断点在直线上,即证若干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行。
高二上数学知识点归纳大全

高二上数学知识点归纳大全高二上学期的数学学习内容相对较多,包括了很多基础知识和一些拓展内容。
下面是高二上学期数学的知识点归纳。
一、函数与方程1. 一次函数:定义、特征、图像、性质2. 二次函数:定义、特征、图像、性质、根、判别式、最值3. 指数函数与对数函数:定义、特征、图像、性质、基本性质、指数方程与对数方程4. 三角函数基础:正弦、余弦、正切、基本性质、周期性质、图像5. 方程与不等式:一元一次方程、一元一次不等式、二次方程、二次不等式、绝对值方程与不等式、分式方程与不等式二、图形的性质与变换1. 平面直角坐标系:定义、坐标、轴、象限2. 点与坐标:点的概念、坐标与点的关系3. 直线与斜率:直线方程、斜率的概念、斜率的计算、斜率的性质4. 圆与椭圆:常见圆的性质、圆方程、椭圆方程5. 图形的变换:平移、旋转、对称、放缩三、三角函数与解三角形1. 三角函数的基本关系式:同角三角函数的基本关系式、三角函数的化简2. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像与性质3. 正弦定理与余弦定理:正弦定理的概念、正弦定理的应用、余弦定理的概念、余弦定理的应用4. 解三角形:解直角三角形、解任意三角形四、数列与数列的运算1. 数列的概念与表示:数列的定义、通项公式、前n项和公式2. 等差数列与等比数列:等差数列的概念、通项公式、前n项和公式、等差数列的性质、等比数列的概念、通项公式、前n项和公式、等比数列的性质3. 数列的应用:算术平均数、几何平均数、算术-几何平均不等式五、概率与统计1. 随机事件与概率:随机事件的概念、概率的定义与性质、事件间的关系、概率的计算2. 排列与组合:排列的概念、排列的计算、组合的概念、组合的计算、二项式定理3. 统计图表与数据分析:频率分布表、直方图、折线图、散点图、样本调查与统计分析以上是高二上学期数学的知识点归纳大全。
这些知识点是高中数学学习的基础,对于深入学习数学和解决实际问题都具有重要意义。
高二上学期数学知识点复习

高二上学期数学知识点复习1.高二上学期数学知识点复习篇一空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面2.高二上学期数学知识点复习篇二复合函数定义域若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。
求函数的定义域主要应考虑以下几点:⑴当为整式或奇次根式时,R的值域;⑵当为偶次根式时,被开方数不小于0(即≥0);⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
⑹分段函数的定义域是各段上自变量的取值集合的并集。
⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
⑼对数函数的真数必须大于零,底数大于零且不等于1。
⑽三角函数中的切割函数要注意对角变量的限制。
3.高二上学期数学知识点复习篇三概率性质与公式(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.4.高二上学期数学知识点复习篇四分层抽样先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
高二上册数学知识点大全

高二上册数学知识点大全在高二上册的数学学习中,我们将会涉及到许多重要的知识点。
下面将为大家整理一个高二上册数学知识点的大全,以供参考。
一、集合与函数1. 集合的概念和表示方法2. 集合的运算:并集、交集、差集、补集3. 常用数集:自然数集、整数集、有理数集、实数集4. 函数的概念与性质5. 基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数二、二次函数与一元二次方程1. 二次函数的概念与性质2. 二次函数图像的性质与变换3. 解一元二次方程的方法:配方法、因式分解、求根公式4. 二次函数与一元二次方程的应用:最值问题、图像问题、实际问题三、立体几何1. 空间几何体的概念与性质:点、直线、平面、多面体、棱柱、棱锥、棱台、圆锥、圆柱、球等2. 空间几何体的展开图与表达3. 空间几何体的体积与表面积计算四、概率与统计1. 随机事件与样本空间2. 概率的基本性质与计算方法3. 条件概率与乘法定理4. 排列与组合的计算方法5. 古典概型、几何概型与统计概型6. 统计数据的收集与整理:频数表、频率表、频率分布直方图等五、三角函数与解三角形1. 三角函数的定义、性质与基本关系式2. 三角函数的图像与变换3. 三角函数的计算:特殊角的正弦、余弦、正切值、任意角的正弦、余弦、正切值4. 解三角形的基本思路与方法:正弦定理、余弦定理、正切定理5. 三角函数与解三角形的应用六、导数与函数的应用1. 函数的极限与连续性2. 函数的导数与导数的性质3. 常用函数的导数计算方法与性质:常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数、复合函数等4. 函数的最值与单调性5. 函数图像的性质与变换6. 函数的应用:切线与法线、函数的最值问题、函数的模型建立七、数列与级数1. 数列的概念与性质2. 等差数列与等比数列的计算方法与性质3. 数列的求和公式与应用4. 级数的概念与性质5. 等差级数与等比级数的求和公式与应用以上是高二上册数学知识点的一个大致整理。
最新上海数学高二知识点总结

数列:1.数列的有关概念:(1)数列:按照一定次序排列的一列数。
数列是有序的。
数列是定义在自然数 N*或它的有限子集{1,2,3,…,n }上的函数。
(2)通项公式:数列的第n 项a n 与n 之间的函数关系用一个公式来表示, 这个公式即是该数列的2通项公式。
如:a n = 2 n -1。
(3)递推公式:已知数列{a n }的第1项(或前几项),且任一项 a n 与他的前一项a n -1 (或前几项) 可以用一个公式来表示,这个公式即是该数列的递推公式。
如:a 1 =1卫2 =2, a n 二 a n 」a n,(n ■ 2)。
2 •数列的表示方法:(1)列举法:如1, 3, 5, 7, 9,…(2)图象法:用(n, a n )孤立点表示。
4. 数列{a n }及前n 项和之间的关系(3)解析法:用通项公式表示(4) 递推法:用递推公式表示。
3 •数列的分类:按项数丿'有穷数列无穷数列按单调性[常数列 :a递增数列 」递减数列 摆动数列二 2a n = 2n T, a n = 2 a n = -n亠 1a n = (「1)n 2 nS n - a 1a 2 ■ a3 ■ 111 ' a na n = S 1,(ni) |Sn - S n _1,( n— 2)(三)不等式1、a「b 0 = a b ;a「b=0:= a 二b ;a「b :0= a :: b •2、不等式的性质:① a • b := b a ;② a b,b - c= a c ;③ a b= a c b c ;④ a b, c 0= ac bc,a b,c :: 0= ac :: be :⑤ a b, c d 二a c b d ;⑥ a b 0, c d 0= ac bd ;⑦ a b 0= a n b n n:F】,n 1 ;⑧ a>b〉0 二> V b (n 壬N,n>1 ).小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二上学期上海数学知识点
高二上学期数学课程是学生们学习数学的重要阶段,是为了为
高考做准备的关键时期。
上海地区的高二数学课程安排紧凑,内
容丰富,要求学生掌握多种数学知识点。
在本文中,将介绍高二
上学期上海数学知识点的主要内容,以帮助学生更好地备考。
一、函数与方程
在高二上学期,学生将进一步学习函数与方程的相关知识。
其中,一次函数、二次函数、指数函数和对数函数是重点内容。
学
生需要掌握它们的定义、性质、图像以及解题方法。
此外,高二
上学期还会涉及到函数的复合、反函数以及函数的应用等内容。
二、解析几何
解析几何在高二上学期也是一个重要的数学知识点。
学生需要
了解平面直角坐标系和空间直角坐标系的性质,掌握直线、圆、
椭圆、抛物线和双曲线的方程与性质,以及各种曲线之间的关系。
此外,学生还需要学会使用向量进行几何证明和计算,并能解决
与直线、圆、曲线等相关的几何问题。
三、三角函数
三角函数作为高中数学的重要内容,在高二上学期也会进行深入的学习。
学生需要掌握正弦函数、余弦函数、正切函数等的定义、性质和图像。
同时,学生还需要学会利用三角函数解决三角方程、证明三角恒等式等问题。
此外,高二上学期还会涉及到三角函数的应用,如解决直角三角形和斜三角形的相关问题。
四、数列与序列
数列与序列是数学中重要的概念之一,在高二上学期也是需要学生掌握的知识点。
学生需要了解数列、等差数列、等比数列和函数数列的概念与性质,并能进行相关的计算及解题。
此外,高二上学期还会涉及到数列极限的概念,学生需要了解极限的基本性质并能进行数列极限的计算。
五、概率与统计
概率与统计是高二上学期数学课程的最后一个重点内容。
学生需要了解基本的概率理论,包括随机事件、样本空间、事件间的关系等概念。
同时,学生还需要学会计算概率和解决相关的概率问题。
在统计学方面,学生需要了解统计样本、统计参数、频率分布以及统计推断等概念,并学会运用统计方法解决实际问题。
六、综合题与应用题
在高二上学期的数学考试中,综合题和应用题是常见的题型。
学生需要掌握各个知识点的综合运用,并能灵活运用所学知识解决实际问题。
为了更好地应对这类题目,学生需要注重理论与实践的结合,多进行练习,熟悉各类题型的解题思路。
总结:
高二上学期上海数学知识点涵盖了函数与方程、解析几何、三角函数、数列与序列、概率与统计等多个内容。
学生需要掌握各个知识点的定义、性质、图像以及解题方法,并能够在综合题和应用题中灵活运用所学知识。
通过努力学习和多进行练习,学生可以在高二上学期的数学课程中取得良好的成绩,并为高考做好充分的准备。