高等数学极限3篇
高等数学第3章第3节函数极限存在条件

§3 函数极限存在条件引 言在讨论数列极限存在条件时,我们曾向大家介绍过“单调有界定理”和“柯西收敛准则”.我们说数列是特殊的函数,那么对于函数是否也有类似的结果呢?或者说能否从函数值的变化趋势来判断其极限的存在性呢?这是本节的主要任务.本节的结论只对0x x →这种类型的函数极限进行论述,但其结论对其它类型的函数极限也是成立的. 首先介绍一个很主要的结果——海涅(Heine)定理(归结原则).一、归结原则定理1(Heine 定理) 设f 在00(;)U x δ'内有定义,0lim ()x x f x →存在⇔对任何含于00(;)U x δ'且以0x 为极限的数列{}n x ,极限lim ()n n f x →∞都存在且相等.注1.{}()n f x 是数列,lim ()n n f x →∞是数列的极限.所以这个定理把函数()f x 的极限归结为数列{}()n f x 的极限问题来讨论,所以称之为“归结原则”.由此,可由数列极限的性质来推断函数极限性质. 注2.从Heine 定理可以得到一个说明0lim ()x x f x →不存在的方法,即“若可找到一个数列{}n x ,0lim n n x x →∞=,使得lim ()n n f x →∞不存在;”或“找到两个都以0x 为极限的数列{}{},n n x x ''',使l i m (),l i m (n n n n f x f x →∞→∞'''都存在但不相等,则0lim ()x x f x →不存在. 例1 证明01lim sinx x→不存在. 注3.对于00,,,x x x x x x +-→→→+∞→-∞这四种类型的单侧极限,相应的归结原则可表示为更强的形式.如当0x x +→时有:定理2 设函数f 在0x 的某空心邻域00()U x +内有定义,0lim ()x x f x A +→= ⇔对任何以0x 为极限的递减数列{}00()n x U x +⊂,有lim ()n n f x A →∞=.二、单调有界定理相应于数列极限的单调有界定理,关于上述四类单侧极限也有相应的定理.现以0x x +→这种类型为例叙述如下:定理3 设f 为定义有00()U x +上的单调有界函数,则右极限0lim ()x x f x +→存在.注:定理3可更具体地叙述如下:f 为定义在00()U x +上的函数,若(1)f 在00()U x +上递增有下界,则0l i m ()x x f x +→存在,且0()lim ()inf ()x x x U x f x f x ++→∈=;(2)f 在00()U x +上递减有上界,则0lim ()x x f x +→存在,且00()lim ()sup ()x x x U x f x f x ++→∈=. 三 函数极限的Cauchy 收敛准则定理4(Cauchy 准则) 设函数f 在00(;)U x δ'内有定义,0lim ()x x f x →存在⇔任给0ε>,存在正数()δδ'<,使得对任何00,(;)x x U x δ'''∈有|()()|f x f x ε'''-<.注:按照Cauchy 准则,可以写出0lim ()x x f x →不存在的充要条件:存在0ε>,对任意(0)δ>,存在00,(;)x x U x δ'''∈使得|()()|f x f x ε'''-≥.例:用Cauchy 准则说明01lim sinx x→不存在. 综上所述:Heine 定理和Cauchy 准则是说明极限不存在的很方便的工具. 作业:p55. 1, 2, 4.。
高等数学第3章第1节函数极限的概念.

第三章函数极限§1函数极限的概念引言在《数学分析》中,所讨论的极限基本上分两部分,第一部分是“数列的极限”,第二部分是“函数的极限”.二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例.通过数列极限的学习.应有一种基本的观念:“极限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”.例如,数列这种变量即是研究当时,的变化趋势.我们知道,从函数角度看,数列可视为一种特殊的函数,其定义域为,值域是,即; 或或.研究数列的极限,即是研究当自变量时,函数变化趋势.此处函数的自变量n只能取正整数!因此自变量的可能变化趋势只有一种,即.但是,如果代之正整数变量n而考虑一般的变量为,那么情况又如何呢?具体地说,此时自变量x可能的变化趋势是否了仅限于一种呢?为此,考虑下列函数:类似于数列,可考虑自变量时,的变化趋势;除此而外,也可考虑自变量时,的变化趋势;还可考虑自变量时,的变化趋势;还可考虑自变量时,的变化趋势,由此可见,函数的极限较之数列的极限要复杂得多,其根源在于自变量性质的变化.但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同.而在各类极限的性质、运算、证明方法上都类似于数列的极限.下面,我们就依次讨论这些极限.一、时函数的极限1.引言设函数定义在上,类似于数列情形,我们研究当自变量时,对应的函数值能否无限地接近于某个定数A.这种情形能否出现呢?回答是可能出现,但不是对所有的函数都具此性质.例如无限增大时,无限地接近于0;无限增大时,无限地接近于;无限增大时,与任何数都不能无限地接近.正因为如此,所以才有必要考虑时,的变化趋势.我们把象,这样当时,对应函数值无限地接近于某个定数A的函数称为“当时有极限A”.[问题]如何给出它的精确定义呢? 类似于数列,当时函数极限的精确定义如下.2.时函数极限的定义定义1设为定义在上的函数,A为实数.若对任给的,存在正数M,使得当时有, 则称函数当时以A为极限.记作或.3.几点注记(1)定义1中作用与数列极限中作用相同,衡量与A的接近程度,正数M的作用与数列极限定义中N相类似,表明充分大的程度;但这里所考虑的是比M大的所有实数,而不仅仅是正整数n.(2)的邻域描述:当时,(3)的几何意义:对,就有和两条直线,形成以A为中心线,以为宽的带形区域.“当时有”表示:在直线的右方,曲线全部落在这个带形区域内.如果给得小一点,即带形区域更窄一点,那么直线一般往右移;但无论带形区域如何窄,总存在正数M,使得曲线在的右边的全部落在这个更窄的带形区域内.(4)现记为定义在或上的函数,当或时,若函数值能无限地接近于常数A,则称当或时时以A为极限,分别记作,或,或.这两种函数极限的精确定义与定义1相仿,简写如下:当时,,当时,.(5)推论:设为定义在上的函数,则.4.利用=A的定义验证极限等式举例例1证明.例2证明1);2).二、时函数的极限1.引言上节讨论的函数当时的极限,是假定为定义在上的函数,这事实上是,即为定义在上,考虑时是否趋于某个定数A.本节假定为定义在点的某个空心邻域内的函数,.现在讨论当时,对应的函数值能否趋于某个定数A数列.先看下面几个例子:例1.(是定义在上的函数,当时,)例2.(是定义在上的函数,当时,)例3.(是定义在上的函数,当时,)由上述例子可见,对有些函数,当时,对应的函数值能趋于某个定数A;但对有些函数却无此性质.所以有必要来研究当时,的变化趋势.我们称上述的第一类函数为当时以A为极限,记作.和数列极限的描述性说法一样,这是一种描述性的说法.不是严格的数学定义.那么如何给出这类函数极限的精确定义呢?作如下分析:“当自变量越来越接近于时,函数值越来越接近于一个定数A”只要充分接近,函数值和A的相差就会相当小欲使相当小,只要充分接近就可以了.即对,当时,都有.此即.2.时函数极限的定义定义2设函数在点的某个空心邻域内有定义,A为定数,若对任给的,使得当时有,则称函数当趋于时以A为极限(或称A为时的极限),记作或(.3.说明如何用定义来验证这种类型的函数极限4.函数极限的定义的几点说明:(1)是结论,是条件,即由推出.(2)是表示函数与A的接近程度的.为了说明函数在的过程中,能够任意地接近于A,必须是任意的.这即的第一个特性——任意性,即是变量;但一经给定之后,暂时就把看作是不变的了.以便通过寻找,使得当时成立.这即的第二特性——暂时固定性.即在寻找的过程中是常量;另外,若是任意正数,则均为任意正数,均可扮演的角色.也即的第三个特性——多值性;()(3 是表示与的接近程度,它相当于数列极限的定义中的N.它的第一个特性是相应性.即对给定的,都有一个与之对应,所以是依赖于而适当选取的,为此记之为;一般说来,越小,越小.但是,定义中是要求由推出即可,故若满足此要求,则等等比还小的正数均可满足要求,因此不是唯一的.这即的第二个特性——多值性.(4)在定义中,只要求函数在的某空心邻域内有定义,而一般不要求在处的函数值是否存在,或者取什么样的值.这是因为,对于函数极限我们所研究的是当趋于的过程中函数的变化趋势,与函数在该处的函数值无关.所以可以不考虑在点a的函数值是否存在,或取何值,因而限定“”.(5)定义中的不等式;.从而定义2,当时,都有,使得.(6)定义的几何意义.例1.设,证明.例2.证明1);2).例3.证明.例4.证明.练习:1)证明; 2)证明.三、单侧极限1.引言有些函数在其定义域上某些点左侧与右侧的解析式不同,如或函数在某些点仅在其一侧有定义,如.这时,如何讨论这类函数在上述各点处的极限呢?此时,不能再用前面的定义(讨论方法),而要从这些点的某一侧来讨论.如讨论在时的极限.要在的左右两侧分别讨论.即当而趋于0时,应按来考察函数值的变化趋势;当而趋于0时,应按来考察函数值的变化趋势;而对,只能在点的右侧,即而趋于0时来考察.为此,引进“单侧极限”的概念.2.单侧极限的定义定义3设函数在内有定义,A为定数.若对任给的,使得当时有, 则称数A为函数当趋于时的右极限,记作或或.类似可给出左极限定义(,,或或).注:右极限与左极限统称为单侧极限.3.例子例5讨论在的左、右极限.例6讨论函数在处的单侧极限.4.函数极限与的关系.定理3.1.注:1)利用此可验证函数极限的存在,如由定理3.1知:.还可说明某些函数极限不存在,如由例2知不存在.2),,可能毫无关系,如例2.作业:P47. 1(3), (5), 3,7。
高等数学第3章第4节两个重要的极限

§4 两个重要的极限一、证明0sin lim 1x xx→=证 如图:由OAC OAB OAB S S S ∆∆<<扇形可导出如下不等式(20π<<x ).除以,得到x x x cos 1sin 1<<,由此得 )1(sin cos xxx x <<在(1)式中用代替时,(1)式不变,故(1)式当02<<-x π时也成立,从而它对一切满足不等式20π<<x 的 都成立.由1cos lim 0=→x x及函数极限的迫敛性,即得1sin lim 0=→xx x . 函数xxy sin =的图象如下所示例1.求sin limx xx ππ→-.例2.求201cos lim x xx →-.注:利用归结原则,可求数列极限。
如求1sin1limlim sin 1n n n n nn→∞→∞=,直接利用0sin lim 1x x x →=是不严格的;但已知0sin lim1x x x →=,故取,(1,2,)n x n n π== ,则0()n x n →→∞,从而由归结原则1sinlim ()lim01n n n n f x n →∞→∞==. 例3.求0lim x tgxx→.二、证明e xxx =+∞→)11(lim 或. e =+→ααα10)1(lim 证 所求证的极限等价于同时成立以下两个极限e xx x =++∞→)11(lim (2)e xx x =+-∞→)11(lim (3)先利用数列极限e nn n =+∞→)11(lim证明(2)式成立.为此,作定义在上),1[+∞的两个阶梯函数如下:nn x f )111()(++=,,1)11()(++=n nx g,,易见f 增(第二章§3习题4)且有上界,g 减(第二章§3习题9)且有下界.故据上节习题2,)(lim x f x +∞→与)(lim x g x +∞→皆存在.于是,由归结原则(取}{}{n x n =)得到e n xf nn x =++=∞→+∞→)111(lim )(lim e nx g n n x =+=+∞→+∞→1)11(lim )(lim 另一方面,当时有nx n 1111111+<+<++以及1)11()11()111(++<+<++n x n nx n,即有)()11()(x g xx f x<+<,),1[+∞∈x .从而根据迫敛性,定理(2)式得证. 现证(3)式.为此作代换y x-=,则y y x y y x )111()11()11(-+=-=+-,且当-∞→x 时+∞→y ,从而有e y y x yy y y x x =-+=-=++∞→-+∞→-∞→)111(lim )11(lim )11(lim 以后还常用到e 的另一种极限形式:e =+→αα1)1(lim(4)事实上,令x1=α,则0→⇔∞→αx ,所以e xxx =+=+→∞→ααα10)1(lim )11(lim例1.求()10lim 12xx x →+.例2.求()10lim 1xx x →-.例3.求211lim(1)nn n n →∞+-.作业:p58. 1(2), (5), (8), (9), (10) , 2(1), (3), (5), (6), 3.。
高等数学极限求解方法(共7篇)

高等数学极限求解方法(共7篇)以下是网友分享的关于高等数学极限求解方法的资料7篇,希望对您有所帮助,就爱阅读感谢您的支持。
高等数学求极限的方法篇1对于求解极限的方法可以归结为以下几类: (1)常用等价无穷小记住以下常用等价无穷小-例1 求极限limx →0x (1-cos x ) 【解】原式=x →0 =x →0=x →01==x →02例2 求下列极限1+cos x 2x() -1x (I)w =lim (II ) w =limx →0x →0ln(1+2x 3)4(2)等价无穷小的性质定理:有限个无穷小的代数和仍为无穷小. 定理:有界函数与无穷小的乘积是无穷小. 推论:常数与无穷小的乘积是无穷小. 推论:有限个无穷小的乘积也是无穷小.1【解】lim =0 , lim sin 为有界量,∴原式=0x →0x →0x【注】本题也可以利用常用的等价无穷小公式.(3)常用的极限sin x x sin x x lim =lim =1 lim =0 lim 极限不存在x →0x →0x →∞x →∞x sin x x sin x11x ln(1+x )lim(1+) =lim(1+x ) x =e lim =1x →∞x →0x →0x xlim =1 lim =1n →∞n →∞11例4 求w=lim(+2x ) xx →∞x(4)极限存在的两个准则(1)夹逼准则如果数列{x n },{y n }及{z n }满足下列条件:(1)y n ≤x n ≤z n (n =1, 2,3,...) ;(2)li m y n =lim z n =a , 那么数列{x n }的极限存在,且lim x n =a .n →∞n →∞n →∞(2)单调有界准则单调有界数列必有极限.(5)极限的定义(6)洛必达法则【解】(7)变量替换11方法2 w =lim(+2x ) x =e A ,而x →∞x01t1(t +2-1) x =1/t 0A =lim(+2x -1) −−−→lim −−→lim(1+2t ln 2) =1+l n 2, x →∞x t →0t →0t 故w =e 1+ln 2=2e(8)泰勒公式高等数学中极限的求解方法篇2龙源期刊网高等数学中极限的求解方法作者:曲波来源:《速读下旬》2014年第05期摘要:本文介绍了利用两个重要极限、无穷小量代换、洛比达法则、等求极限的方法,并结合具体的例子,指出了在解题过程中常遇见的一些问题。
高等数学第3章第1节函数极限的概念

第三章 函数极限§1 函数极限的概念引言在《数学分析》中,所讨论的极限基本上分两部分,第一部分是“数列的极限”,第二部分是“函数的极限”.二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例.通过数列极限的学习.应有一种基本的观念:“极限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”.例如,数列{}n a 这种变量即是研究当n →+∞时,{}n a 的变化趋势.我们知道,从函数角度看,数列{}n a 可视为一种特殊的函数f ,其定义域为N +,值域是{}n a ,即:()n f N R n a +→→; 或 (),n f n a n N +=∈或()n f n a =.研究数列{}n a 的极限,即是研究当自变量n →+∞时,函数()f n 变化趋势.此处函数()f n 的自变量n 只能取正整数!因此自变量的可能变化趋势只有一种,即n →+∞.但是,如果代之正整数变量n 而考虑一般的变量为x R ∈,那么情况又如何呢?具体地说,此时自变量x 可能的变化趋势是否了仅限于x →+∞一种呢?为此,考虑下列函数:1,0;()0,0.x f x x ≠⎧=⎨=⎩类似于数列,可考虑自变量x →+∞时,()f x 的变化趋势;除此而外,也可考虑自变量x →-∞时,()f x 的变化趋势;还可考虑自变量x →∞时,()f x 的变化趋势;还可考虑自变量x a →时,()f x 的变化趋势,由此可见,函数的极限较之数列的极限要复杂得多,其根源在于自变量性质的变化.但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同.而在各类极限的性质、运算、证明方法上都类似于数列的极限.下面,我们就依次讨论这些极限.一、x →+∞时函数的极限1.引言设函数定义在[,)a +∞上,类似于数列情形,我们研究当自变量x →+∞时,对应的函数值能否无限地接近于某个定数A.这种情形能否出现呢?回答是可能出现,但不是对所有的函数都具此性质.例如 1(),f x x x=无限增大时,()f x 无限地接近于0;(),g x arctgx x =无限增大时,()f x 无限地接近于2π;(),h x x x =无限增大时,()f x 与任何数都不能无限地接近.正因为如此,所以才有必要考虑x →+∞时,()f x 的变化趋势.我们把象()f x ,()g x 这样当x →+∞时,对应函数值无限地接近于某个定数A的函数称为“当x →+∞时有极限A”.[问题]如何给出它的精确定义呢? 类似于数列,当x →+∞时函数极限的精确定义如下. 2. x →+∞时函数极限的定义定义1 设f 为定义在[,)a +∞上的函数,A为实数.若对任给的0ε>,存在正数M()a ≥,使得当x M >时有 |()|f x A ε-<, 则称函数f 当x →+∞时以A为极限.记作lim ()x f x A →+∞=或()()f x A x →→+∞.3.几点注记 (1)定义1中作用ε与数列极限中ε作用相同,衡量()f x 与A的接近程度,正数M的作用与数列极限定义中N相类似,表明x 充分大的程度;但这里所考虑的是比M大的所有实数x ,而不仅仅是正整数n . (2) lim ()x f x A →+∞=的邻域描述:,(),U ε∀∃+∞当()x U ∈+∞时,()(;).f x U A ε∈(3)lim ()x f x A →+∞=的几何意义:对ε∀,就有y A ε=+和y A ε=-两条直线,形成以A为中心线,以2ε为宽的带形区域.“当x M >时有|()|f x A ε-<”表示:在直线x M =的右方,曲线()y f x =全部落在这个带形区域内.如果ε给得小一点,即带形区域更窄一点,那么直线x M =一般往右移;但无论带形区域如何窄,总存在正数M,使得曲线()y f x =在x M =的右边的全部落在这个更窄的带形区域内. (4)现记f 为定义在()U -∞或()U ∞上的函数,当x →-∞或x →∞时,若函数值()f x 能无限地接近于常数A,则称f 当x →-∞或x →∞时时以A为极限,分别记作, lim ()x f x A →-∞=或()()f x A x →→-∞,lim ()x f x A →∞=或()()f x A x →→∞.这两种函数极限的精确定义与定义1相仿,简写如下:lim ()x f x A →-∞=0,0,M ε⇔∀>∃>当x M <-时,|()|f x A ε-<,lim ()x f x A →∞=0,0,M ε⇔∀>∃>当||x M >时,|()|f x A ε-<.(5)推论:设()f x 为定义在()U ∞上的函数,则lim ()x f x A →∞=⇔lim ()lim ()x x f x f x A →+∞→-∞==.4.利用lim ()x f x →+∞=A的定义验证极限等式举例例1 证明 1lim0x x→∞=. 例2 证明 1)lim 2x arctgx π→-∞=-;2)lim 2x arctgx π→+∞=.二、0x x →时函数的极限1.引言上节讨论的函数f 当x →+∞时的极限,是假定f 为定义在[,)a +∞上的函数,这事实上是()U +∞,即f 为定义在()U +∞上,考虑x →+∞时()f x 是否趋于某个定数A.本节假定f 为定义在点0x 的某个空心邻域()00U x 内的函数,.现在讨论当00()x x x x →≠时,对应的函数值能否趋于某个定数A数列. 先看下面几个例子:例1 ()1(0)f x x =≠.(()f x 是定义在0(0)U 上的函数,当0x →时,()1f x →)例2 24()2x f x x -=-.(()f x 是定义在0(2)U 上的函数,当2x →时,()4f x →)例3 1()f x x=.(()f x 是定义在0(0)U 上的函数,当0x →时,()?f x →) 由上述例子可见,对有些函数,当00()x x x x →≠时,对应的函数值()f x 能趋于某个定数A;但对有些函数却无此性质.所以有必要来研究当00()x x x x →≠时,()f x 的变化趋势.我们称上述的第一类函数()f x 为当0x x →时以A为极限,记作0lim ()x x f x A →=.和数列极限的描述性说法一样,这是一种描述性的说法.不是严格的数学定义.那么如何给出这类函数极限的精确定义呢?作如下分析:“当自变量x 越来越接近于0x 时,函数值()f x 越来越接近于一个定数A”→只要x 充分接近0x ,函数值()f x 和A的相差就会相当小→欲使|()|f x A -相当小,只要x 充分接近0x 就可以了.即对0,0εδ∀>∃>,当00||x x δ<-<时,都有|()|f x A ε-<.此即0lim ()x x f x A →=.2.00()x x x x →≠时函数极限的εδ-定义 定义2 设函数()f x 在点0x 的某个空心邻域()00;Ux δ'内有定义,A为定数,若对任给的0,()0εδδ'∀>∃<>,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数f 当 x 趋于0x 时以A为极限(或称A为0x x →时()f x 的极限),记作0lim ()x x f x A →=或(0()()f x A x x →→.3.说明如何用εδ-定义来验证这种类型的函数极限 4. 函数极限的εδ-定义的几点说明:(1)|()|f x A ε-<是结论,00||x x δ<-<是条件,即由00||x x δ<-<推出.(2)ε是表示函数()f x 与A的接近程度的.为了说明函数()f x 在0x x →的过程中,能够任意地接近于A,ε必须是任意的.这即ε的第一个特性——任意性,即ε是变量;但ε一经给定之后,暂时就把ε看作是不变的了.以便通过ε寻找δ,使得当00||x x δ<-<时|()|f x A ε-<成立.这即ε的第二特性——暂时固定性.即在寻找δ的过程中ε是常量;另外,若ε是任意正数,则2,2εε 均为任意正数,均可扮演ε的角色.也即ε的第三个特性——多值性;(|()|f x A ε-<|()|f x A ε⇔-≤) (3) δ是表示x 与0x 的接近程度,它相当于数列极限的N ε-定义中的N.它的第一个特性是相应性.即对给定的0ε>,都有一个δ与之对应,所以δ是依赖于ε而适当选取的,为此记之为0(;)x δε;一般说来,ε越小,δ越小.但是,定义中是要求由00||x x δ<-<推出|()|f x A ε-<即可,故若δ满足此要求,则,23δδ等等比δ还小的正数均可满足要求,因此δ不是唯一的.这即δ的第二个特性——多值性.(4)在定义中,只要求函数f 在0x 的某空心邻域内有定义,而一般不要求f 在0x 处的函数值是否存在,或者取什么样的值.这是因为,对于函数极限我们所研究的是当x 趋于0x 的过程中函数的变化趋势,与函数在该处的函数值无关.所以可以不考虑f 在点a 的函数值是否存在,或取何值,因而限定“00||x x <-”.(5)定义中的不等式00||x x δ<-<00(,)x U x δ⇔∈;|()|()(;)f x A f x U A εε-<⇔∈.从而定义2⇔0,0εδ∀>∃>,当00(,)x U x δ∈时,都有()(;)f x U Aε∈⇔0,0εδ∀>∃>,使得()00(,)(;)f U x U A δε⊂. (6)εδ-定义的几何意义.例1.设24()2x f x x -=-,证明2lim ()4x f x →=.例2.证明 1)00lim sin sin x x x x →=;2)00lim cos cos x x x x →=.例3.证明 22112lim 213x x x x →-=--.例4.证明 0x x →=0(||1)x <.练习:1)证明 311lim31x x x →-=-; 2)证明 65lim 6x x x→+∞+=. 三、单侧极限1.引言有些函数在其定义域上某些点左侧与右侧的解析式不同,如21,0(),0x x f x x x ⎧≥=⎨<⎩或函数在某些点仅在其一侧有定义,如2()0f x x ≥.这时,如何讨论这类函数在上述各点处的极限呢?此时,不能再用前面的定义(讨论方法),而要从这些点的某一侧来讨论.如讨论1()f x 在0x →时的极限.要在0x =的左右两侧分别讨论.即当0x >而趋于0时,应按21()f x x =来考察函数值的变化趋势;当0x <而趋于0时,应按1()f x x =来考察函数值的变化趋势;而对2()f x ,只能在点0x =的右侧,即0x >而趋于0时来考察.为此,引进“单侧极限”的概念. 2.单侧极限的定义定义3 设函数f 在00(;)U x δ+'内有定义,A为定数.若对任给的0,()0εδδ'∀>∃<>,使得当00x x x δ<<+时有|()|f x A ε-<, 则称数A为函数f 当x 趋于0x 时的右极限,记作lim ()x x f x A +→=或0()()f x A x x +→→或0(0)f x A +=.类似可给出左极限定义(00(;)U x δ-,00x x x δ-<<,0lim ()x x f x A -→=或0()()f x A x x -→→或0(0)f x A -=).注:右极限与左极限统称为单侧极限. 3.例子例5 讨论sgn x 在0x =的左、右极限.例6 1±处的单侧极限.4.函数极限0lim ()x x f x →与00lim (),lim ()x x x x f x f x +-→→的关系.定理3.1 0lim ()lim ()lim ()x x x x x x f x A f x f x A +-→→→=⇔==.注:1)利用此可验证函数极限的存在,如由定理3.1知:10lim ()0x f x →=.还可说明某些函数极限不存在,如由例2知0lim sgn x x →不存在.2)0(0)f x +,0(0)f x -,0()f x 可能毫无关系,如例2.作业:P47. 1(3), (5), 3, 7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学极限
【高等数学极限】第一篇:极限的定义和性质
一、前言
极限是高等数学中极为重要的概念,在微积分中占据着核心地位。
它是许多数学定理和公式的基础,也是数学中最抽象的概念之一。
因此,对于学习高数的同学来说,理解极限的定义和性质,掌握其基本的计算方法和运用技巧,是非常必要的。
二、极限的定义
在高等数学中,极限的定义是相对复杂的。
在此我们可以从直观的角度出发,来理解何为极限。
设有一个函数f(x),当x趋近于某一点a时,f(x)的值越来越接近于一个常数L,如果说L存在,则称L为函数f(x)当x趋近于a时的极限,记为:
lim{ x→a } f(x)=L
读作“x趋近于a时f(x)的极限等于L”。
其中,“lim”表示极限的符号,x→a表示x趋近于a,f(x)为被极限运算的函数,L为极限。
三、极限的性质
1.极限的唯一性:如果函数f(x)当x趋近于a时的极限L存在,那么L是唯一的。
2.收敛性:如果函数f(x)当x趋近于a时的极限L存在,那么称函数f(x)是收敛于L的。
3.无界性:如果函数f(x)当x趋近于a时的极限不存在
或无穷大,那么称函数f(x)是无界的。
4.夹逼定理:设函数g(x)≤f(x)≤h(x),且lim{ x→a } g(x)=lim{ x→a } h(x)=L,那么函数f(x)当x趋近于a时的极限也存在且为L。
5.四则运算法则:如果函数f(x)和g(x)分别在点a附近有极限L和M,则:
(1)lim{ x→a } (f(x)+g(x))=L+M
(2)lim{ x→a } (f(x)-g(x))=L-M
(3)lim{ x→a } g(x)f(x)=LM
(4)如果M≠0,那么lim{ x→a } f(x)/g(x)=L/M
四、常用极限
1.常数函数的极限:lim{ x→a } c=c (c为常数)
2.多项式函数的极限:lim{ x→a }
(a0+a1x+a2x²+...+anxⁿ)=aⁿ
3.指数函数的极限:lim{ x→0 } (1+x)⁽¹/ˣ⁾=e
4.三角函数的极限:
(1)lim{ x→0 } sinx/x=1
(2)lim{ x→0 } cosx-1/x=0
(3)lim{ x→0 } (1+1/x)⁽x/π⁾=e²
五、极限的计算方法
1.代入法:直接将x的值代入函数中计算出函数值,得
到极限。
2.消项法:在绝大部分情况下,当分子、分母同时含有
相同数量的同类可约因子时,可以将它们约去。
3.化简法:将函数化简为求导或定积分的形式,通过计
算来求出极限。
4.泰勒展开法:将函数在某个点附近展开成泰勒级数,
并截取前n项来计算极限。
其中,n的取值应根据函数的特点
来确定。
六、结语
极限是高等数学中非常基础和重要的内容,理解其定义
和性质,熟练掌握其计算方法和运用技巧,是学好高数的基础。
希望大家在学习高数的过程中,认真思考,多动脑筋,勤加练习,一起进步!。