圆锥曲线中的四点共圆问题的研究

圆锥曲线中的四点共圆问题的研究
圆锥曲线中的四点共圆问题的研究

圆锥曲线中的四点共圆问题的研究

定理 设两条直线00:()i i l y y k x x -=-(1,2i =)与二次曲线L :

2

2

0Ax By C x D y E ++++=(A B

≠)有四个交点,则这四个交点共圆的充

要条件是120k k +=

证明 由1l 、2l 组成的曲线即

01

0020

[()][()]0

y y k x x y y k x x ---?---=, 所以,经过它与L 的四个交点的二次曲线一定能表成(λ、μ不同时为0)以下形式

2

2

010020()[()][()]0Ax By C x D y E y y k x x y y k x x λμ+++++---?---= ①

必要性 若四个交点共圆,则存在λ,μ使方程①表示圆,故式①左边展开式含xy 项的系数12()0k k μ-+=.而0μ≠,否则①表示曲线,不表示圆,所以

120

k k +=

充分性 当120k k +=时,式①左边的展开式中不含xy 的项,取1μ=时,令式①左边的展开式中含2

x ,2

y 项的系数相等,即2

11A k B λλ-=+,得2

11k A B

λ+=

-

此时曲线①即220x y C x D y E '''++++= ②

的形式,这种形式表示的曲线有且仅有三种情形:一个圆,一个点,无轨迹,而

题中的四个交点在曲线②上,所以方程②表示圆。这就证得了四个交点共圆. 下面利用这个定理来解决圆锥曲线中四点共圆问题. 例1 设A 、B 是椭圆λ=+223y x 上的两点,点(1,3)N 是线段A B 的中点,线段A B 的垂直平分线与椭圆相交于C 、D 两点.

(Ⅰ)确定λ的取值范围,并求直线A B 的方程;

(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (2005年湖北卷)

解 (Ⅰ) 设点11(,)A x y ,22(,)B x y 在椭圆λ=+223y x 上,因为点(1,3)N 是线

段A B 的中点,所以

12

12

x x +=,

12

32

y y +=,即122x x +=,126

y y +=.

又λ=+2

12

13y x ,λ=+2

22

23y x ,两式相减,得

121212123()()()()

x x x x y y y y +-++-= 所以

121212

12

3()1y y x x x x y y -+=-

=--+

故直线A B 的方程为3(1)y x -=--,即4y x =-+

又由N (1,3)在椭圆内,得,1231322=+?>λ ∴λ的取值范围是(12,+∞).

(Ⅱ) 因为C D 是A B 的垂直平分线,

所以直线C D 的方程为31y x -=-,即2y x =+

因为110AB C D k k +=-+=,由定理,知A 、B 、C 、D 四点在同一个圆上. 例2 设A 、B 是双曲线12

2

2

=-

y

x 上的两点,

点(1,2)N 是线段A B 的中点, (Ⅰ)求直线A B 的方程;

(Ⅱ)如果线段A B 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、

C 、

D 四点是否在同一个圆上,为什么?(2002年广东卷)

解 (Ⅰ)设11(,)A x y ,22(,)B x y 在双曲线12

2

2

=-

y

x 上,因为点(1,2)N 是线段

A B

的中点,所以

12

12

x x +=,

12

2

2

y y +=,即122x x +=,124y y +=.

又12

2

12

1=-

y x ,12

2

22

2=-

y x ,两式相减,得

12121212()()

()()0

2

y y y y x x x x +-+--

=,

所以

121212

12

2()1y y x x x x y y -+=

=-+,

故直线A B 的方程为21y x -=-,即1y x =+ (Ⅱ) 因为C D 是A B 的垂直平分线,

所以直线C D 的方程为2(1)y x -=--,即3y x =-+

所以1(1)0AB C D k k +=+-=,由定理知A 、B 、C 、D 四点在同一个圆上. 例3 已知O 为坐标原点,F 为椭圆C :2

2

12

y

x +

=在y 轴正半轴上的焦点,过F

且斜率为

l 与C 交于A 、B 两点,点

P 满足OA OB OP ++ =0

(Ⅰ)证明:点P 在C 上;

(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、

P 、B 、Q 四点在同一圆上。(2011全国卷Ⅱ) 证 设1122(,),(,)A x y B x y ,则过F 且斜率为

-的直线l

的方程为1y =+,与2

2

12

y

x +

=联

立,得2410x --=,

所以122

x x +=

,1214

x x =-

由OA OB OP ++=

0得1212((),())P x x y y -+-+,

因为12()2

x x -+=-

,121212()[(1)(1)])21y y x x -+=-+++=

+-=-

所以(1)2

P -

-

,又2

2

(1)(12

2

--+

=

所以点P 在C 上。 (Ⅱ)将2

2

1112

y x +

=,2

2

2212

y x +

=两式相减,得

12121212()()

()()02

y y y y x x x x +-+-+

=,

所以

121212

12

2()y y x x x x y y -+=-

=-+

即AB k = 又

2

PQ PO k k ==

=

由=A B P Q k k -,得A 、P 、B 、Q 四点共圆。

次曲线上的四点共圆问题的完整结论

二次曲线上的四点共圆问题的完整结论 甘志国(该文已发表 数学通讯,2013(7下):40-41) 百年前,著名教材《坐标几何》(Loney 著)中曾提到椭圆上四点共圆的一个必要条件是 这四点的离心角之和为周角的整数倍(椭圆)0,0(122 22>>=+b a b y a x 上任一点A 的坐标可以表示为∈θθ)(sin cos,(b a R ),角θ就叫做点A 的离心角),证明方法十分巧妙,还要运用高次方程的韦达定理.这一条件是否充分,一直是悬案.在20世纪80年代编写《数学题解辞典(平面解析几何)》时,仍未解决.到20世纪年代初编写《中学数学范例点评》时,才证明了此条件的充分性.[1,2] 2011年高考全国大纲卷理科第21题,2005年高考湖北卷理科第21题(也即文科第22题)及2002年高考江苏、广东卷第20题都是关于二次曲线上四点共圆的问题(见文献[3,4]).笔者曾由2005年的这道高考题得出了二次曲线上四点共圆的一个简洁充要条件(其证明也很简洁但有技巧): 若两条直线)2,1)((:00=-=-i x x k y y l i i 与二次曲线22:0()ax by cx dy e a b Γ++++=≠有四个交点,则这四个交点共圆的充要条件是021=+k k . 文献[2]还用此结论证得了“椭圆上的四点共圆的充要条件是这四点的离心角之和为周角的整数倍”. 文献[5]用较长的篇幅得出了下面的两个结论(即原文末的命题7、8): 结论1 抛物线2 2y px =的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补. 结论 2 圆锥曲线221(0,)mx ny mn m n +=≠≠的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补. 请注意,文献[5]中所涉及的直线的斜率均存在,所以这两个结论均正确.但不够完整,本文将给出二次曲线上的四点共圆问题的完整结论,即文末的推论4. 定理1 若两条二次曲线22220()0ax by cx dy e a b a x b y c x d y e '''''++++=≠++++=,有四个交点,则这四个交点共圆. 证明 过这四个交点的二次曲线一定能表示成以下形式μλ,(不同时为0): 2222()()0ax by cx dy e a x b y c x d y e λμ'''''+++++++++= ① 式①左边的展开式中不含xy 的项,选1=μ时,再令式①左边的展开式中含2 2,y x 项

第12讲 圆与圆锥曲线综合

第12讲 圆与圆锥曲线综合 【教学目标】 知识与技能 (1)能解决圆与圆锥曲线综合出现等有关问题; (2)促进学生形成系统化、结构化的知识结构。 过程与方法 (1)综合运用方程思想、函数思想、数形结合、等价转换等方法解决相关问题; (2)通过教学过程中的分析和解题后的反思,培养学生自觉领悟,自觉分析的意识。 情感态度与价值观 (1)培养学生坚忍不拔、勇于探究的意志品质。 (2)通过课堂中和谐、民主的师生关系,让学生在平等、尊重、信任、理解和宽容的氛围中受到激励和鼓舞,培养学生严谨的科学态度。 教学重点: 圆和圆锥曲线的综合问题 教学难点: 圆和圆锥曲线的综合问题 考点链接:能够对圆锥曲线的问题进行探究、分析 [典型例题] 例1 若已知曲线C 1方程为)0,0(18 2 2 ≥≥=-y x y x ,圆2C 的方程为(x-3)2+y 2=1,斜率 为k (k >0)直线l 与圆C 2相切,切点为A ,直线l 与曲线C 1相交于点B ,3=AB ,则直线AB 的斜率为( ) A .1 B . 21 C .3 3 D .3 例2 若椭圆的一个焦点与圆x 2+y 2-2x=0的圆心重合,且经过),(05,则椭圆的标准方程__________________. 例3 已知椭圆E :122 22=+b y a x (a >b >0)过点P (3,1),其左、右焦点分别为F 1,F 2, 且621-=?F F . (1)求椭圆E 的方程; (2)若M ,N 是直线x=5上的两个动点,且F 1M ⊥F 2N ,圆C 是以MN 为直径的圆,其面积为S ,求S 的最小值以及当S 取最小值时圆C 的方程.

高考圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧 一、常规七大题型: (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为 , ,代入方程,然 后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。 如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 典型例题 给定双曲线。过A (2,1)的直线与双曲线交于两点 及 ,求线段 的中点 P 的轨迹方程。 (2 构成的三角形问题,常用正、余弦定理搭桥。 ,为焦点,,。 (1 (2)求 的最值。 (3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。 典型例题 (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。 (4)圆锥曲线的相关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。 <1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

圆锥曲线问题常见方法

专题:解圆锥曲线问题常用方法(一) 【学习要点】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =当A 、P 、F 三点共线时,距离和最小。 (2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 距离和最小。 解:(1)(2,2) 连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+最小,此时AF

高考圆锥曲线压轴题型汇总

高考圆锥曲线压轴题型汇总

————————————————————————————————作者:————————————————————————————————日期:

高考圆锥曲线压轴题型总结 直线与圆锥曲线相交,一般采取设而不求,利用韦达定理,在这里我将这个问题分成了三种类型,其中第一种类型的变式比较多。而方程思想,函数思想在这里也用得多,两种思想可以提供简单的思路,简单的说就是只需考虑未知数个数和条件个数,。使用韦达定理时需注意成立的条件。 题型4有关定点,定值问题。将与之无关的参数提取出来,再对其系数进行处理。 (湖北卷)设A 、B 是椭圆 λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点. (Ⅰ)确定λ的取值范围,并求直线AB 的方程; (Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (I )解法1:依题意,可设直线AB 的方程为 λ=++-=2 23,3)1(y x x k y 代入,整理得 .0)3()3(2)3(222=--+--+λk x k k x k ① 设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根, 0])3(3)3([422>--+=?∴k k λ ② ) 3,1(.3) 3(2221N k k k x x 由且+-= +是线段AB 的中点,得 .3)3(,1222 1+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设则有),,(),,(2211y x B y x A .0))(())((33, 3212121212 2222121=+-++-??????=+=+y y y y x x x x y x y x λλ 依题意, . ) (3,2 12121y y x x k x x AB ++- =∴≠ . 04),1(3). ,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+?>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλΘ

专题直线与圆、圆锥曲线知识点

专题 直线与圆、圆锥曲线 一、直线与方程 1、倾斜角与斜率:1 21 2tan x x y y k --= =α 2、直线方程:⑴点斜式:()00x x k y y -=- ⑵斜截式:b kx y += ⑶两点式: 121121y y y y x x x x --=-- ⑷截距式:1x y a b += ⑸一般式:0=++C By Ax 3、对于直线: 222111:,:b x k y l b x k y l +=+=有:⑴???≠=?21 2 121//b b k k l l ; ⑵1l 和2l 相交12k k ?≠;⑶1l 和2l 重合???==?2 12 1b b k k ;⑷12121-=?⊥k k l l . 4、对于直线: 0:, 0:22221111=++=++C y B x A l C y B x A l 有:⑴???≠=?122 11 22121//C B C B B A B A l l ;⑵1l 和2l 相交1221B A B A ≠?; ⑶1l 和2l 重合?? ?==?1 2211 221C B C B B A B A ;⑷0212121=+?⊥B B A A l l . 5、两点间距离公式: ()()21221221y y x x P P -+-= 6、点到直线距离公式: 2 2 00B A C By Ax d +++= 7、两平行线间的距离公式: 1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2 2 21B A C C d +-= 二、圆与方程 1、圆的方程:⑴标准方程:()()2 2 2 r b y a x =-+-其中圆心为(,)a b ,半径为r . ⑵一般方程:02 2=++++F Ey Dx y x . 其中圆心为(,)22 D E - - ,半径为r = 2、直线与圆的位置关系 直线0=++C By Ax 与圆2 22)()(r b y a x =-+-的位置关系有三种:

解圆锥曲线问题常用方法

解圆锥曲线问题常用方法(二) 【学习要点】 解圆锥曲线问题常用以下方法: 4、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质。 如“2x+y ”,令2x+y=b ,则b 表示斜率为-2的直线在y 轴上的截距;如“x 2 +y 2 ”,令d y x =+22,则d 表示点P (x ,y )到原点的距离;又如“ 23+-x y ”,令2 3 +-x y =k ,则k 表示点P (x 、y )与点A (-2,3)这两点连线的斜率…… 5、参数法 (1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解。如x 轴上一动点P ,常设P (t ,0);直线x-2y+1=0上一动点P 。除设P (x 1,y 1)外,也可直接设P (2y,-1,y 1) (2)斜率为参数 当直线过某一定点P(x 0,y 0)时,常设此直线为y-y 0=k(x-x 0),即以k 为参数,再按命题要求依次列式求解等。 (3)角参数 当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题。 6、代入法 这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P 1,P 2求(或求证)目标Q ”,方法1是将条件P 1代入条件P 2,方法2可将条件P 2代入条件P 1,方法3可将目标Q 以待定的形式进行假设,代入P 1,P 2,这就是待定法。不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法。 【典型例题】 例1:已知P(a,b)是直线x+2y-1=0上任一点,求S=136422+-++b a b a 的最小值。 分析:由此根式结构联想到距离公式, 解:S=2 2 )3()2(-++b a 设Q(-2,3), 则S=|PQ|,它的最小值即Q 到此直线的距离 ∴S min 5 535 | 1322|= -?+- 点评:此题也可用代入消元的方法转化为二次函数的最小值问题(注:可令根式内为t 消元后,它是一个一元二次函数)

老师专属二次曲线上的四点共圆问题解题研究第二境界(下篇)

老师专属二次曲线上的四点共圆问题解题研究第二境界(下 篇) 老师们:四点共圆是一个经典问题,很多优秀老师都以此做为切入点发表研究文章。本文为您收集四点共圆问题的研究现状,尝试剖析作者的研究思路。四点共圆问题有两个研究方向:求证四个点共圆和推导四点共圆的充要条件。以下从三个角度来梳理研究思路。第一境界:掌握已有的解题技巧;第二境界:剖析背后的思维方法;第三境界:分享自己的研究成果。 纯几何角度在小编多方查证下:四点共圆问题在80,90年代还曾入选过《初级中学课本_几何》中。(那个时候小编还没出生!所以对于更早的课本有没有四点共圆问题小编就不知道了,在网上只找到了89年版的)以下是该书中涉及证明四个点共圆的定理:图1:对角互补图2:公共弦图3:外角等于内对角图4:相交弦定理?图5:切割线定理可以看出这些证明四点共圆的方法都是纯几何证法。在初中范围内,证明四点共圆的方法一般有7种[1]:1,圆的定义法:根据圆的定义“到定点的距离等于定长的集合为圆”。首先寻找圆心,之后去求出各点到圆心的长度。在高中遇到四点共圆问题时,很多学生和老师的思路也是如此。2,对角互补法:利用“如果一个四边形的对角互补,那么它内接于圆。”

进行证明。找出四边形的一组对角,之后证明它们互补,进而得出四个点共圆。3,公共边法:利用“有相同边的两个三角形,且公共边的对应的角相等且在边的同一侧,那么这两个三角形内接于同一个圆”,进行证明。4,外角等于它的内对角法:找到一个角的外角和其内对角相等即可得证。其原理和对角互补法相似,不过多阐述。5,圆幂定理:圆幂定理即为相交弦定理,切割线定理和割线定理的统一形式。它的具体内容为:如果交点为P的两条相交直线与圆O 相交于A、B与C、D,则PA·PB=PC·PD。一般运用其逆定理证明四点共圆,很多高中老师都是运用圆幂定理去推导四点共圆的充要条件。6,证明四点组成的图形是矩形,等腰梯形等必有外接圆的图形[2]。7,托勒密定理:托勒密定理为“圆的凸内接四边形的对边乘积和等于对角线乘积”。运用托勒密定理的逆定理进行证明。以上即为初中(30年前)常见的证明四点共圆的方式。虽然说现在这些定理推论都不教了,但是遇到四点共圆问题还是要用这些东西。名义上是减负,但是不会这些去证明四点共圆问题反而让学生感到更加困难。那我们为什么要介绍四点共圆问题的纯几何方法呢?经过小编大量的阅读四点共圆方面的文章,发现很多老师的工作都是基于这些纯几何的定理推论。解析几何角度在高中知识点的范畴内,四点共圆问题很少有纯几何的题目(除了数学竞赛外[3])。作为圆锥曲线的一部分,圆的问题

解圆锥曲线问题常用方法及性质总结

解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+ 椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 椭圆与双曲线的对偶性质总结 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点.

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型 总论:常用的八种方法 1、定义法 2、韦达定理法 3、设而不求点差法 4、弦长公式法 5、数形结合法 6、参数法(点参数、K 参数、角参数) 7、代入法中的顺序 8、充分利用曲线系方程法 七种常规题型 (1)中点弦问题 (2)焦点三角形问题 (3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。 2.曲线的形状未知-----求轨迹方程 (6) 存在两点关于直线对称问题 (7)两线段垂直问题 常用的八种方法 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 20=+k b y a x 。(其中K 是直线AB 的斜率) (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 020 20=-k b y a x (其中K 是直线AB 的斜率) (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. (其中K 是直线AB 的斜率) 4、弦长公式法 弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 2 0++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·| |12a k △ ·+,若直接用结论,能减少配方、开方等运算过程。 5、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来

圆锥曲线问题通法通解

解圆锥曲线问题常用方法 【学习要点】 解圆锥曲线问题常用以下方法: 1、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质。 如“2x+y ”,令2x+y=b ,则b 表示斜率为-2的直线在y 轴上的截距;如“x 2+y 2 ”,令d y x =+22,则d 表示点P (x ,y )到原点的距离;又如“ 23+-x y ”,令2 3 +-x y =k ,则k 表示点P (x 、y )与点A (-2,3)这两点连线的斜率…… 2、参数法 (1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解。如x 轴上一动点P ,常设P (t ,0);直线x-2y+1=0上一动点P 。除设P (x 1,y 1)外,也可直接设P (2y,-1,y 1) (2)斜率为参数 当直线过某一定点P(x 0,y 0)时,常设此直线为y-y 0=k(x-x 0),即以k 为参数,再按命题要求依次列式求解等。 (3)角参数 当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题。 3、代入法 这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P 1,P 2求(或求证)目标Q ”,方法1是将条件P 1代入条件P 2,方法2可将条件P 2代入条件P 1,方法3可将目标Q 以待定的形式进行假设,代入P 1,P 2,这就是待定法。不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法。 【典型例题】 例1:已知P(a,b)是直线x+2y-1=0上任一点,求S=136422+-++b a b a 的最小值。 分析:由此根式结构联想到距离公式, 解:S=2 2)3()2(-++b a 设Q(-2,3), 则S=|PQ|,它的最小值即Q 到此直线的距离 ∴S min 5 5 35 | 1322|= -?+- 点评:此题也可用代入消元的方法转化为二次函数的最小值问题(注:可令根式内为t 消元后,它是一个一元二次函数)

圆锥曲线 直与圆锥曲线的位置关系

直线与圆锥曲线位置关系 一、基础知识: (一)直线与椭圆位置关系 1、直线与椭圆位置关系:相交(两个公共点),相切(一个公共点),相离(无公共点) 2、直线与椭圆位置关系的判定步骤:通过方程根的个数进行判定, 下面以直线y kx m =+和椭圆:()22 2210x y a b a b +=>>为例 (1)联立直线与椭圆方程:222222 y kx m b x a y a b =+??+=? (2)确定主变量x (或y )并通过直线方程消去另一变量y (或x ),代入椭圆方程得到关于主变量的一元二次方程:() 2 22 2 22b x a kx m a b ++=,整理可得: ()22 222222220a k b x a kxm a m a b +++-= (3)通过计算判别式?的符号判断方程根的个数,从而判定直线与椭圆的位置关系 ① 0?>?方程有两个不同实根?直线与椭圆相交 ② 0?=?方程有两个相同实根?直线与椭圆相切 ③ 0?>为例: (1)联立直线与双曲线方程:22 2 2 22 y kx m b x a y a b =+?? -=?,消元代入后可得: ()()2 2222222220b a k x a kxm a m a b ---+= (2)与椭圆不同,在椭圆中,因为2 2 2 0a k b +>,所以消元后的方程一定是二次方程,但双曲线中,消元后的方程二次项系数为2 2 2 b a k -,有可能为零。所以要分情况进行讨论

圆锥曲线问题常用方法技巧归纳总结(有答案)

常见圆锥曲线问题解题方法技巧 【知识点回顾】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典例精讲】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42) (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =共线时,距离和最小。 (2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 解:(1)(2,2)

二次曲线上的四点共圆问题的完整结论

二次曲线上的四点共圆问题的完整结论 百年前,著名教材《坐标几何》(Loney 著)中曾提到椭圆上四点共圆的一个必要条件是 这四点的离心角之和为周角的整数倍(椭圆)0,0(122 22>>=+b a b y a x 上任一点A 的坐标可以表示为∈θθθ)(sin ,cos (b a R ),角θ就叫做点A 的离心角),证明方法十分巧妙,还要运用高次方程的韦达定理.这一条件是否充分,一直是悬案.在20世纪80年代编写《数学题解辞典(平面解析几何)》时,仍未解决.到20世纪年代初编写《中学数学例点评》时,才证明了此条件的充分性.[1,2] 2016年高考卷文科第20题,2011年高考全国大纲卷理科第21题,2005年高考卷理科第21题(也即文科第22题)及2002年高考、卷第20题都是关于二次曲线上四点共圆的问题(见文献[3,4]).笔者曾由2005年的这道高考题得出了二次曲线上四点共圆的一个简洁充要条件(其证明也很简洁但有技巧): 若两条直线)2,1)((:00=-=-i x x k y y l i i 与二次曲线22:0()ax by cx dy e a b Γ++++=≠有四个交点,则这四个交点共圆的充要条件是021=+k k . 文献[2]还用此结论证得了“椭圆上的四点共圆的充要条件是这四点的离心角之和为周角的整数倍”. 文献[5]用较长的篇幅得出了下面的两个结论(即原文末的命题7、8): 结论1 抛物线2 2y px =的接四边形同时接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补. 结论2 圆锥曲线221(0,)mx ny mn m n +=≠≠的接四边形同时接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补. 请注意,文献[5]中所涉及的直线的斜率均存在,所以这两个结论均正确.但不够完整,本文将给出二次曲线上的四点共圆问题的完整结论,即文末的推论4. 定理 1 若两条二次曲线 22220()0ax by cx dy e a b a x b y c x d y e '''''++++=≠++++=,有四个交点, 则这四个交点共圆. 证明 过这四个交点的二次曲线一定能表示成以下形式μλ,(不同时为0): 2222()()0ax by cx dy e a x b y c x d y e λμ'''''+++++++++= ① 式①左边的展开式中不含xy 的项,选1=μ时,再令式①左边的展开式中含22,y x 项

与圆锥曲线焦点三角形相关的圆专题

与圆锥曲线焦点三角形有关的圆专题 1.点P 是双曲线22 22 1x y a b -=右支上一点, 12,F F 分别为左、右焦点. 12PF F ?的内切圆与 x 轴相切于点G .若点G 为线段2OF 中点,则双曲线离心率为( ) A. 21+ B. 2 C. 2 D. 3?3 答案:B 解析: 12112212121212112,,2,+=2,,,C PF F D FG F G F E PF PF F D F E FG F G a FG F G c FG a c OG a PF F ?==∴-=-=-=∴=+∴=∴?∴∴设圆是焦点三角形的内切圆,与各边相切于点D 、G 、E,则PD=PE,F 又双曲线焦点三角形的内切圆与x 轴相切于顶点,c=2a,e=2 注:双曲线焦点三角形的内切圆与x 轴相切于顶点. 2.已知分别是双曲线 的左、右焦点,是双曲线左支上异于顶点的一动 点,圆 为 的内切圆,若 是其中的一个切点,则 A 3->x B 3-

3.已知双曲线()22 2210,0x y a b a b - = >>的左、右焦点分别为12,,F F P 为双曲线右支上一点 (异于右顶点), 12PF F ?的内切圆与x 轴切于点()2,0,过2F 作直线l 与双曲线交于,A B 两点,若使2 AB b =的直线l 恰有三条,则双曲线离心率的取值范围是( ) A. ()1,2 B. ()1,2 C. ( ) 2,+∞ D. ()2,+∞ 答案:C ()2 22222223,2,4, 8,22,2. b b a b a a c c a b c C a =<>=+>>>解析:如图,依题意双曲线的通径且所以=2,b 所以,所以答案为 4.设双曲线()22 22:10,0x y C a b a b -=>>的左,右焦点为12,,F F P 是双曲线C 上的一点, 1PF 与x 轴垂直, 12PF F ?的内切圆方程为()()2 2 111x y ++-=,则双曲线C 的方程为 ( ) A. 22123 x y -= B. 2212y x -= C. 2212x y -= D. 22 13y x -= 答案:D

圆锥曲线中的最值和范围问题方法

专题14 圆锥曲线中的最值和范围问题 ★★★高考在考什么 【考题回放】 1.已知双曲线122 22=-b y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直 线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(C ) A.( 1,2) B. (1,2) C.[2,)+∞ D.(2,+∞) 2. P 是双曲线 22 1916 x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为( B ) A. 6 B.7 C.8 D.9 3.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是( A ) A . 43 B .75 C .8 5 D .3 4.已知双曲线22 221,(0,0)x y a b a b -=>>的左、右焦点分别为F 1、F 2,点P 在双 曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为:(B ) (A) 4 3 (B) 5 3 (C)2 (D) 73 5.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 32 . 6.设椭圆方程为142 2 =+y x ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足OP uuu r (21=OA +u u u r )OB u u u r ,点N 的坐标为)21 ,21(,当l 绕点M 旋转时, 求(1)动点P 的轨迹方程;(2)||NP uuu r 的最小值与最大值. 【专家解答】(1)法1:直线l 过点M (0,1)设其斜率为k ,则l 的方程为y=kx+1. 记A (x 1,y 1),B (x 2,y 2),由题设可得点A 、B 的坐标 (x 1,y 1)、 (x 2,y 2)是方程组 ?? ? ??=++=141 2 2y x kx y 的解. 将①代入②并化简得(4+k 2)x 2+2kx -3=0, 所以??? ???? +=++-=+.48,42221221k y y k k x x 于是).44 ,4()2,2()(212 22121 k k k y y x x ++-=++=+= ① ②

圆锥曲线的特殊性质

1命题12.椭圆两个共轭直径上的正方形之和等于两个对称轴上的正方形之和.命题13.双曲线两个共轭直径上的正方形之差等于两个对称轴上的正方形之差.命题31.椭圆或双曲线的两条共轭直径所构成的平行四边形(以其交角为内角)等于两条对称轴所构成的矩形. 2我探究的这一特性是在抛物线、椭圆和双曲线上讨论的——过圆锥曲线的焦点,做一条弦与圆锥曲线相交,则由焦点分割弦得到的两段线段长度的倒数之和,与圆锥曲线离心率和焦点到相应准线的距离相乘的倒数的两倍;但是对于双曲线,当这两个交点分别位于两支上面的时候,之和应该改为之差。这样说来可能比较抽象,那么用数学表达式来说明一下。设m和n是焦点分割弦形成的线段的长度,e代表圆锥曲线的离心率,p代表焦点到相应准线的距离,则有112mnep+=恒成立,对于交点位于两支上的弦,满足112mnep?=的关系。换句话说,焦点分割弦得到的线段长度的倒数之和或者之差是一个定值,只与圆锥曲线有关系,而与点在圆锥曲线的位置没有关系。这给我们什么启示呢 3用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。 首先注意到复数恒等式:,两边取模,运用三角不等式得 。 等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。因此托勒密定理得证。 1.第二定义的统一性圆的准线在∞,0=e. 2.极坐标方程的统一性3.曲线上一点光学性质的统一性椭圆:点光源在一个焦点上,光线通过另一个焦点。双曲线:点光源在一个焦点上,反射光线与另一焦点到反射点的连线在同一条直线上。抛物线:点光源在焦点上,反射光线相互平行且垂直于准线。具体应用:探照灯4.一般弦长公式具有统一性5.过焦点弦长公式具有统一性6.过曲线上一点切线方程的统一性7.直径所对周角之斜率乘积的统一性8.焦点弦端点切线的交点轨迹的统一性9.过焦点且和焦点弦垂直的的直线和焦点弦端点切线的关系统一性10.过非等轴双曲线曲线上一点做互相垂直弦共有的性质11.过曲线上一点做倾斜角互补直线所成弦而具有共有的性质12.内部焦点弦被焦点分成两个焦半径倒数和为定值13.圆锥曲线内部外部点代入方程后不等式符号的统一性14.过同一焦点两任意焦点弦AB和CD,AC和BD交点轨迹统一15.任意一弦BA延长交准线于E,则FE平分BFA外角16.任意一弦BA延长交准线于E,则FE平分BFA外角,又任意一弦AN延长交准线于Q,则FQ平分BFA外角后得到EFQ是直角17.过一个焦点交圆锥曲线于MN,做MN的垂直平分线交轴与P则离心率等于2PF/MN 18.二次曲线和二次曲线交于两点AB,联立两方程消X得0)(=YH,消Y得0)(=XG则AB为端点的圆的方程就是0)()(=+YHXG(必须先保证X和Y系数相同)19.若有弦AB,AB中点为),(00.yxP 则弦AB方程为0)2,2(),(00=???yyxxfyxf 20.圆锥曲线通径长统一为定值ep2 21.利用统一的圆锥曲线方程中判别式可以判断曲线类型22.F是焦点,E是F对应准线L和轴交点AD垂直L,BC垂直L 则有BD、AC同时平分线段EF(一组关系)23.F是焦点,E是F对应准线L和轴交点AB是过焦点F的弦,BC平行FE,N是线段 EF的中点,则BC

圆锥曲线与方程知识点详细

椭圆 1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆122 22=+b y a x )0(>>b a 与坐标轴的四个 交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 22 1=,b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值范围是)10(<

相关文档
最新文档