微积分的历史、方法及哲学思想

合集下载

微积分产生的背景

微积分产生的背景

微积分的创立者是牛顿和莱布尼兹严格微积分的奠基者是柯西和威尔斯特拉斯关于微积分的故事,曾经一度迷惑着我,今天有幸弄清其中原委,以消心中疑云。

微积分的萌芽可以追溯到古代的希腊、中国和印度,酝酿于17世纪的欧洲。

1.牛顿和莱布尼兹创立了微积分1.1 牛顿的“流数术”牛顿(I.Newton,1642-1727)1642年生于英格兰伍尔索普村的一个农民家庭。

1661年牛顿进入剑桥大学三一学院,受教于巴罗。

笛卡儿的《几何学》和沃利斯的《无穷算术》,这两部著作引导牛顿走上了创立微积分之路。

牛顿于1664年秋开始研究微积分问题,在家乡躲避瘟疫期间取得了突破性进展。

1666年牛顿将其前两年的研究成果整理成一篇总结性论文—《流数简论》,这也是历史上第一篇系统的微积分文献。

在简论中,牛顿以运动学为背景提出了微积分的基本问题,发明了“正流数术”(微分);从确定面积的变化率入手通过反微分计算面积,又建立了“反流数术”;并将面积计算与求切线问题的互逆关系作为一般规律明确地揭示出来,将其作为微积分普遍算法的基础论述了“微积分基本定理”。

这样,牛顿就以正、反流数术亦即微分和积分,将自古以来求解无穷小问题的各种方法和特殊技巧有机地统一起来。

正是在这种意义下,牛顿创立了微积分。

牛顿对于发表自己的科学著作持非常谨慎的态度。

1687年,牛顿出版了他的力学巨著《自然哲学的数学原理》,这部著作中包含他的微积分学说,也是牛顿微积分学说的最早的公开表述,因此该巨著成为数学史上划时代的著作。

而他的微积分论文直到18世纪初才在朋友的再三催促下相继发表。

1.2 莱布尼茨的微积分工作莱布尼茨(W.Leibniz,1646-1716)出生于德国莱比锡一个教授家庭,青少年时期受到良好的教育。

1672年至1676年,莱布尼茨作为梅因茨选帝侯的大使在巴黎工作。

这四年成为莱布尼茨科学生涯的最宝贵时间,微积分的创立等许多重大的成就都是在这一时期完成或奠定了基础。

微积分

微积分

与函数有关的概念
在一个变化过程中,发生变化的量叫变量,有些数值是不随变量而改变的,我们称它们为常量。 自变量,函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。 因变量(函数),随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一 值与其相对应。 函数值,在y是x的函数中,x确定一个值,Y就随之确定一个值,当x取a时,Y就随之确定为b, b就叫做a的函数值。 映射定义 设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任何一个元素a,在集合B 中都存在唯一的一个元素b与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对 应关系f)叫做集合A到集合B的映射(Mapping),记作f:A→B。其中,b称为a在映射f下的象,记作: b=f(a); a称为b关于映射f的原象。集合A中所有元素的象的集合记作f(A)。 则有:定义在非空数集之间的映射称为函数。(函数的自变量是一种特殊的原象,因变量是特 殊的象) 几何含义 函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量 的值就是图象与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。另外,把函数的 表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变 成了不等式,可以求自变量的范围。 函数的集合论(关系)定义 如果X到Y的二元关系f:X×Y,对于每个x∈X,都有唯一的y∈Y,使得<x,y>∈f,则称f为X到 Y的函数,记做:f:X→Y。 当X=X1×…×Xn时,称f为n元函数。 其特点: 前域和定义域重合 单值性:<x,y>∈f∧<x,y’>∈f →y=y’
• 导数(Derivative)是微积分中的重要基

微积分必知

微积分必知

必须了解的微积分微积分微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。

它是数学的一个基础学科。

内容主要包括极限、微分学、积分学及其应用。

微分学包括求导数的运算,是一套关于变化率的理论。

它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。

积分学,包括求积分的运算,为定义和计算面积、体积等提供一目录•1词目释义••2历史••3基本内容••折叠数学分析••折叠微积分••4一元微分••折叠定义••折叠几何意义••5多元微分••6积分相关••折叠一阶微分与高阶微分••7创立意义••8极限理论••9第二次危机••10常见符号••11相关评价••12优先权之争••13现代发展••14计算器对微积分的求解•1词目释义编辑从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代。

整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。

(1)运动中速度与距离的互求问题已知物体移动的距离表为以时间为变量的函数,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为以时间为变量的函数公式,求速度和距离。

这类问题是研究运动时直接出现的,困难在于,所研究的速度和加速度是每时每刻都在变化的。

比如,计算物体在某时刻的瞬时速度,就不能像计算平均速度那样,用移动的距离去除运动的时间,因为在给定的瞬间,物体移动的距离和所用的时间是,而是无意义的。

但是,根据物理,每个运动的物体在它运动的每一时刻必有速度,这也是无疑的。

已知速度公式求移动距离的问题,也遇到同样的困难。

因为速度每时每刻都在变化,所以不能用运动的时间乘任意时刻的速度,来得到物体移动的距离。

(2)求曲线的切线问题这个问题本身是纯几何的,而且对于科学应用有巨大的重要性。

微积分发展简史

微积分发展简史

微积分发展简史一.微积分思想萌芽微积分的思想萌芽,部分可以追溯到古代。

在古代希腊、中国和印度数学家的著作中,已不乏用朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子。

在中国,公元前5世纪,战国时期名家的代表作《庄子?天下篇》中记载了惠施的一段话:"一尺之棰,日取其半,万世不竭",是我国较早出现的极限思想。

但把极限思想运用于实践,即利用极限思想解决实际问题的典范却是魏晋时期的数学家刘徽。

他的"割圆术"开创了圆周率研究的新纪元。

刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次加倍边数,则正多边形面积愈来愈接近圆面积。

用他的话说,就是:"割之弥细,所失弥少。

割之又割,以至于不可割,则与圆合体,而无所失矣。

"按照这种思想,他从圆的内接正六边形面积一直算到内接正192边形面积,得到圆周率的近似值3.14。

大约两个世纪之后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于3.1415926与3.1415927之间,这是我国古代最伟大的成就之一。

其次明确提出了下面的原理:"幂势既同,则积不容异。

"我们称之为"祖氏原理",即西方所谓的"卡瓦列利原理"。

并应用该原理成功地解决了刘徽未能解决的球体积问题。

欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题。

较为重要的当数安提芬(Antiphon,B.C420年左右)的"穷竭法"。

他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。

但他的方法并没有被数学家们所接受。

后来,安提芬的穷竭法在欧多克斯(Eudoxus,B.C409-B.C356)那里得到补充和完善。

之后,阿基米德(Archimedes,B.C287-B.C212)借助于穷竭法解决了一系列几何图形的面积、体积计算问题。

第7讲微积分发展史

第7讲微积分发展史

第7讲微积分发展史微积分是近代自然科学和工程技术中广泛应用的一种基本数学工具,它创立于17世纪后半叶的西欧,是适应当时社会生产发展和理论科学的需要而产生的,同时又深刻地影响着生产技术和自然科学的发展。

微积分堪称是人类智慧最伟大的成就之一。

一、微积分产生的背景微分和积分的思想早在古代就已经产生了。

公元前3世纪,古希腊数学家、力学家阿基米德的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲面的体积等问题中就隐含着近代积分的思想。

极限理论作为微积分的基础,也早在我国的古代就有非常详尽的论述,但当时人们习惯于研究常量和有限的对象,遇到无穷时往往束手无策。

生产力和科学技术的不断发展,为微积分的诞生创造了条件。

1492年哥伦布发现了新大陆,由此证实了大地是球形;1543年,哥白尼发表的《天体运行论》确立了“日心说”;开普勒在1609年提出了有关行星绕日运动的第一、第二定律,1618年他又提出了第三定律;1609年,伽利略用自制的望远镜观察了月亮、金星、木星等星球,把人们的视野引向遥远的地方。

这些科学家拓展了人们对世界的认识,引起了人类思想上的巨变。

16世纪,西欧出现资本主义的萌芽,产生了新的生产关系,社会生产力有了很大的发展。

从17世纪开始,随着社会的进步和生产力的发展,在航海、天文、矿山建设、军事技术等方面有许多课题需要解决,数学也开始进入了“变量数学”时代。

通过这些向数学提出了如下4个问题:(1)由距离和时间的关系求瞬时速度和瞬时加速度;反之,由速度求距离,由加速度求速度。

(2)确定物体运动方向(切线方向)或光学中曲线的切线问题。

(3)求最大、最小值问题。

(4)一般的求积(面积、体积)问题,曲线长问题,以及物体的质量、重心等问题。

在17世纪30年代创立的解析几何学里,可以用字母表示流动坐标,用代数方程刻画一般平面曲线,用代数演算代替对几何量的逻辑推导,从而把对几何图形性质的研究转化为对解析式的研究,使数与形紧密地结合起来。

牛顿微积分

牛顿微积分

第二节牛顿的微积分一、牛顿传略1643年1月4日牛顿生于英国林肯郡的沃尔索普(Woo l sthorpe)村,父亲是一个农民,在牛顿出生前就死了.虽然母亲也希望他务农,但幼年的牛顿却在做机械模型和实验上显示了他的爱好和才能.例如,他做了一个玩具式的以老鼠为动力的磨和一架靠水推动的木钟.14岁时,由于生活所迫,牛顿停学务农,以后在舅父的帮助下又入学读书.1661年,不满19岁的牛顿考入剑桥大学的三一学院.1665年初,他在毕业前夕发现了二项式定理,同年获文学学士学位,并当了研究生.但不久便由于在伦敦流行鼠疫,剑桥大学关闭,牛顿只好回农村居住.在沃尔索普村的18个月里,牛顿发明了微积分,提出了万有引力定律,还研究了光的性质.牛顿一生的重大成就大都发韧于这期间.后来,他在追忆这段峥嵘的青春岁月时说:“当年我正值发明创造能力最强的年华,比以后任何时期更专心致志于数学和哲学(科学).”我们特别注意到,他于1666年10月写成的《流数后人加的)是世界上第一篇微积分论文,它标志着这一学科的诞生.虽然论文直到本世纪才公开发表,但当时有抄本流传,牛顿的不少朋友和同事都看到过.1667年,瘟疫过去,牛顿又回到剑桥大学.第二年,他制成世界上第一架反射望远镜.由于他在科学上的出色成就,他的老师巴罗认为他的学识已超过自己,便于1669年10月主动把数学教授的职位让给他,于是牛顿开始了他三十年的大学教授生活.他在1669年写成《运用无穷多项方程的分析学》(De Ana l ysi per Aequationes Numero Terminorum Infinitas,1711年发表),又于1671年写成《流数法和无穷级数(De Me-thodis Serierum et F l uxionum,1736年发表).这两篇论文同《流数简论》一起,奠定了微积分的理论基础.1672年,他当选为皇家学会会员,并第一次发表论文,内容是关于白色光的组成,引起广泛的兴趣和讨论.1675年,他将关于光的粒子说的论文送交皇家学会.1685年,他开始撰写《自然哲学的数学原理》(Phi l osophiaeNatura l is Principia Mathematiˉca).1687年,这部伟大著作刚刚写完,便由哈雷(E.Ha ll ey,1656—1742)出资发表,立即对整个欧洲产生了巨大影响.著名的牛顿力学三定律、万有引力定律及牛顿的微积分成果都载于此书.它成为科学史上的一个里程碑.1689年,牛顿代表剑桥大学进入议会.不久,牛顿的母亲病重,他彻夜不眠地守着她,但并没有能挽留母亲的生命.由于长简论》(The October 1666 Tract on F l uxions,题目是期的紧张工作及母亲病逝的精神打击,牛顿得了精神衰竭症,大约一年后才复原.1693年,牛顿写成他的最后一部微积分专著《曲线求积术》(De Ouadratura Curvarum).1696年,牛顿被任命为造币厂督办,三年后当了厂长.从1665年到1696年,牛顿纯粹是一个科学家,为科学事业做出了许多卓越贡献.这以后的三十一年中,他一方面在官场服务,另一方面作为英国科学界的领袖而发挥作用.1703年,牛顿开始担任皇家学会会长,1704年发表了他的名著《光学》(Op-ticks,《曲线求积术》作为《光学》的附录同时发表,获得巨大成功.1705年被女皇封为爵士,得到了一生的最高荣誉.但他的研究重心却逐渐由科学转移到神学,晚年写了大量关于神学的文字.1727年3月31日,牛顿病逝于英国的肯辛顿.纵观牛顿的一生,他在科学上的最重要成就有三个:发明微积分、建立经典力学体系、提出光的性质的理论.其中任何一项成就都足以使他列入世界上的大科学家行列.但牛顿并不认为自己发现了真理的海洋,他在逝世前不久给朋友写的信中说:“我不知道世人怎样看待我;但我自己觉得,我不过像在一个海滨玩耍的小孩,为时而拾到一片比寻常更为莹洁的卵石,时而拾到一片更为美丽的贝壳而雀跃欢欣,而对于我面前的真理的海洋,却茫然无知.”二、《流数简论》《流数简论》表明,牛顿微积分的来源是运动学.1666年,他在坐标系中通过速度分量来研究切线,既促使了流数法的产生,又提供了它的几何应用的关键.牛顿把曲线f(x,y)=0看作动点的轨迹,动点的坐标x,y是时间的函数,而动点的水平速度分量和垂直速度和垂直速度为边的矩形对角线,所以曲线f(x,y)=0的切线斜率所以牛顿便在后来称它们为流数,实际上就是x和y对t的导数:而它们的比就是y对x的导数布尼茨发明的,我们这里采用它们是为了叙述方便.牛顿考虑的第一个问题是:给定x和y的关系f(x,y)=0,求的次数……令这些乘积的总和等于零.这个方程就给出速度(流数)之间的关系.若用子表示,则为它是牛顿用来计算流数之比(即求导)的基本法则.实际上,这个式子牛顿是用“无穷小”概念和他一年前发明的二项式定理来证明(1)式的.他认为,作非匀速运动的物体在无穷小时间间隔o中的运动情况同作匀速运动的物体在有限时间间隔中的情况相同,“因此,如果到某一时刻,它们已描绘的线段为x和y,那么到下一时刻所描绘的线段就是x+xo和y+yo.”牛顿用x+xo和y+yo代替f(x,y)=0中的x和y,于是有按二项式展开并略去o的二次以上(含二次)的项,得除以o后便得到(1)式.作为一个实例,可把y=x n写成f(x,y)=y-x n的形式,由(1)式推出的代数式).他对这一问题的研究导致了微积分基本定理的发现,即:其中A表示曲线y=f(x)下的面积.从《流数简论》可以看出,他是用如下方法推导这一重要定理的:设y表示曲线f(x)下的面积abc(图11.13),并把它看作垂平行移动,描绘出面积x和y,它们随时间而增加的速度是be和bc,”显然,be=1而bc=f(x).因此,牛顿认为面积y随时间的变化率是这显然等价于(2)式,就是说函数曲线下的面积的变化率等于曲线的纵坐标.他把求积问题看作求变化率的逆过程,即把y看作f(x)的积分(不定积分).牛顿的工作可以清楚地说明切线及面积的互逆关系.如果面积y=在解决了基本的微积分问题后,牛顿又进一步提出变量代换法,它变量z=1+x n,其流数比为这便是我们熟知的幂函数微分公式,它的现代形式为类似地,牛顿在积分中也采用了代换法,并在稍后的著作中总结出代换积分公式.这个问题将在下面讨论.《流数简论》中,牛顿还导出函数的积和商的微分法则.设y=u(x)·v(x),则由计算流数之比的基本法则得到至于函数和的微分,牛顿认为是显然的,没有作为公式列出.由于牛顿首次引入“流数”和“变化率”的概念,明确提出一般性的微积分算法,特别是提出微积分基本定理,所以说他“发明”了微积分.不过,他当时只是观察到这一重要定理,至于定理的证明则是在他的第二本微积分著作中才出现的.三、《运用无穷多项方程的分析学》(下简称《分析学》)在这本书中,牛顿假定曲线下的面积为z=ax m,其中m是有理数.他把x的无穷小增量叫x的瞬,用o表示.由曲线、x轴、y轴及x+o处纵坐标所围成的面积用z+oy表示(图11.14),其中oy是面积的瞬,于是有z+oy=a(x+o)m.根据二项式定理考虑到z=ax m,并用o去除等式两边,得略去仍然含o的项,得xy=max m-1.这就是相应于面积z的纵坐标y的表达式,或者说是面积z在点的变化率线为y=max m-1;反之,若曲线是y=max m-1,则它下面的面积是z=ax m.在这里,牛顿不仅给出了求变化率的普遍方法,而且证明了微积分基本定理.从计算角度来说,他实际上给出了两个基本的求导和积分公式(用现代符号表出)(ax m)′=max m-1;在证明了面积的导数是y值,并断言逆过程是正确的以后,牛顿给出下面的法则:若y值是若干项的和,则面积是由每一项得到的面积的和,用现在的话来说,就是函数之和的积分等于各函数的积分的和:∫[f1(x)+f2(x)+…+f n(x)]dx=∫f1(x)dx+∫f2(x)dx+…+∫f n(x)dx.他对如下的积分性质也有明确认识:∫af(x)dx =a∫f(x)dx.他利用上述知识得到各种曲线下的面积,解决了许多能表成和式的问题.在此基础上,牛顿提出了利用无穷级数进行逐项积分的方法.例如然后对这个无穷级数逐项积分,得他说,只要b是x的倍数,取最初几项就可以了.y=1-x2+x4-x6+x8- (1)y=x-2-x-4+x-6-x-8+ (2)他说,当x很小时,应该用(1)式,若x较大就必须用(2)式了.可见他已意识到级数收敛和发散的区别,不过还没有提出收敛的概念.同《流数简论》相比,《分析学》的另一项理论进展表现在定积分上.牛顿把曲线下的面积看作无穷多个面积为无限小的面积之和,这种观念与现代是接近的.为了求某一个区间的确定的面积即定积分,牛顿提出如下方法:先求出原函数,再将上下限分别代入原函数而取其差.这就是著名的牛顿—莱布尼茨公式,是他与莱布尼茨各自独立发明的.若采用现代数学符号,该公式可表述为:若F(x)是f(x)在区间[a,b]中应用极广的定积分计算问题便转化为求原函数问题,所以它是十分重要的.《分析学》中还有其他一些出色的成果,例如,书中给出求高次方程近似根的方法(即牛顿法),导出正弦级数及余弦级数,等等.到此为止,牛顿已经建立起比较系统的微积分理论及算法.不过他在概念上仍有不清楚的地方.第一,他的无穷小增量o是不是0?牛顿认为不是.既然这样,运算中为什么可以略去含o的项呢?牛顿没有给出合乎逻辑的论证.第二,牛顿虽然提出变化率的概念,但没有提出一个普遍适用的定义,只是把它想象成“流动的”速度.牛顿自己也认为,他的工作主要是建立有效的计算方法,而不是澄清概念,他对这些方法仅仅作了“简略的说明而不是准确的论证.”牛顿的态度是实事求是的.四、《流数法和无穷级数》(下简称《流数法》)这是一部内容广泛的微积分专著,是牛顿在数学方面的代表作.在前两部书的基础上,牛顿提出了更加完整的理论.从书中可以看出,牛顿的流数概念已发展到成熟的阶段.他把随时间变化的量,即以时间为自变量的函数称为流量,以字母表的后几个字母v,x,y,z来表示;把流量的变化速度,即变化率称为流数,以表保留,并且仍用o表示.他在书中明确表述了他的流数法的理论依据,说:“流数法赖以建立的主要原理,乃是取自理论力学中的一个非常简单的原理,这就是:数学量,特别是外延量,都可以看成是由连续轨迹运动产生的;而且所有不管什么量,都可以认为是在同样方式下产生的.”又说:“本人是靠另一个同样清楚的原理来解决这个问题的,这就是假定一个量可以无限分割,或者可以(至少在理论上说)使之连续减小,直至……比任何一个指定的量都小.”牛顿在这里提出的“连续”思想及使一个量小到“比任何一个指定的量都小”的思想是极其深刻的,他正是在这种思想的主导下解决了如下两类基本问题.第一类:已知流量的关系求它们的流数之比,即已知y=f(x)或例如书中的问题1:如果流量x和y之间的关系是x3-ax2+axy-y3=0,求它们的流数之比.程中的x和y,得展开后利用x3-ax2+axy-y3=0这一事实再把余下的项除以o,得至此牛顿说:“我们已假定o是无限微小,它可以代表流动量的瞬,所以与它相乘的诸项相对于其他诸项来说等于没有.因此我把它们丢掉,而剩下从表面看,这种方法与《流数简论》中的方法一致.所不同的是,数.《简论》中求流数之比的基本法则也被牛顿赋予一般的意义.例如,假定y=x n,牛顿首先建立然后用二项式定理展开右边,消去y=x n,用o除两边,略去仍含o 的项,结果得当然,在对具体函数微分时,不必采用无穷小而可直接代入公式.第二类:已知一个含流数的方程,求流量,即积分.(x),则数简论》中,牛顿在具体积分中已经采用了这种方法,只是到这时才明确总结出公式.从《简论》及《流数法》两书来看,他推导此式的思路大致如下:由(2),(3)得由微积分基本定理,得牛顿在书中还推出分部积分公式,即∫uv′dx=uv-∫vu′dx.其中u和v都是x的函数.若求∫uv′dx有困难而求∫vu′dx 比较容易时,就可利用分部积分公式求积分.牛顿总结了他的积分研究成果,列成两个积分表,一个是“与直线图形有关的曲线一览表”,另一个是“与圆锥曲线有关的曲线一览表”.这两个表为积分工作提供了许多方便.至此,牛顿已建立起比较完整的微分和积分算法,他当时统称为流数法.他充分认识到这种方法的意义,说流数法(即微积分)是一种“普遍方法”,它“不仅可以用来画出任何曲线的切线……而且还可以用来解决其他关于曲度、面积、曲线的长度、重心的各种深奥问题.”《流数法》一书便充分体现了微积分的用途,下面略举几例.例1,在“问题3——极大值和极小值的确定”中,牛顿给出了通过解方程f′(x)=0来求f(x)极值的方法.他写道:“当一个量取极大值或极小值时,它的流数既不增加也不减少,因为如果增加,就说明它的流数还是较小的,并且即将变大;反之,如果减少,则情况恰好相反.所以求出它的流数,并且令这个流数等于0.”他用这种方法解出了九个问题.其中之一是求方程x3-ax2+axy-y3=0中x的最大值.他先求出x和y的流数之比,得即 3y2=ax.把上式代入原方程后,就很容易求得相应的x值和y值了.例2,已知曲线方程为x3-ax2+axy y3=0,AB和BD分别为曲线上D 点的横、纵坐标,求作过D点的切线(图11.15).牛顿先求得流数之间的关系由此得出因BD=y,所以牛顿说:“给定D点后,便可得出DB和AB,即y和x,BT的长度也就给定,由此可确定切线TD.”例3,在“问题12——曲线长度的确定”中,牛顿采用流数法计算弧长.设QR是给定曲线,RN⊥MN,牛顿分别记MN=s.NR=t,QR=v(图11.16),它们的流数分别为s,t,v,然后“想象直线NR向右移动到最接近的可能位置nr,由R向nr引垂线RS,则MN,NR和QR分别增加RS,Sr和Rr.”牛顿说:“因为RS,Sr和Rr相互之比是这些线段的流数之间的若换成现在通用的坐标x,y和弧长s,则牛顿的结果为只要对t积分,就可求出弧长s了.综上所述,《流数法》不仅在基本思想上比《分析学》有了发展,而且提供了更加有效的计算方法.但牛顿的基本方法仍是弃去无穷小,因而同《分析学》一样出现逻辑困难.他尝试建立没有无穷小的微积分,于是有《曲线求积术》(下简称《求积术》)之作.五、牛顿的极限理论牛顿的四部微积分专著中,《曲线求积术》是最后写成(1693)但最早出版(1704)的一部.在书中,导数概念已被引出,而且把考察对象由二个变量构成的方程转向关于一个变量的函数.牛顿的流数演算已相当熟练和灵活了,他算出许多复杂图形的面积.阿达玛(J.Hadamard,1865—1963)称赞说,该书“论述的有理函数积分法,几乎不亚于目前的水平.”值得注意的是,在《求积术》中,牛顿认为没有必要把无穷小量引入微积分.他在序言中明确指出:“数学的量并不是由非常小的部分组成的,而是用连续的运动来描述的.直线不是一部分一部分的连接,而是由点的连续运动画出的,因而是这样生成的;面是由线的运动,体是由面的运动,角是由边的旋转,时间段落是由连续的流动生成的.”在这种思想指导下,他放弃了无穷小的概念,代之以最初比和最后比的新概念.为了求函数y=x n的导数,牛顿让x“由流动”而成为x+o,于是x n变为的最后比等于1比nx n-1.所以量x的流数与量x n的流数之比等于1比nx n-1.”牛顿认为这个比即增量的最初比,可见最初比与最后比的实质是一样的,都表示y关于x的导数,或者说是y对于x的变化率.用现在的符号可写成y′=nx n-1.牛顿还对他的最后比作出下面的几何解释:如图11.17,假定bc移向BC,使得c和C重合,那么增量CE、Ec、Cc的最后比等于△CET的各边之比,即把这些增量看作初生量的最初比.”他说,“只有点C与c 完全重合了,直线CK才会与切线(CH)重合,而CE、Ec、Cc的最后比才能求出.”显然,他是把切线CH当作割线CK的极限位置.实际上,早在《自然哲学的数学原理》(下简称《原理》)一书中,牛顿就表述了明确的极限思想.他说:“消失量的最后比严格地说并不是最后量的比,而是这些量无限减小时它们的比所趋近的极限.它们与这个极限之差虽然可以比任何给定的差更小,但这些量在无限缩小之前既不能超过也不能达到它.”在这部最早发表的包含微积分成果的书(当然不是最早写成的)中,牛顿已经把微积分的大厦建筑在极限的基础之上,他用极限观点解释了微积分中的许多概念.例如,他认为表示定积分的曲边图形与“消失的平行四边形的终极和”相重合.牛顿指出,当这些平行四边形(相当于今天讲定积分几何意义时的长条矩形)的最大宽度无限减小时,就成为“消失的平行四边形”,而曲边图形就是所有这些消失图形的终极和了.牛顿在《原理》中阐发的极限思想,成为他撰写《求积术》的理论基础.当然,他还没有提出如同我们现在使用的严格的极限定义.。

牛顿与微积分的发展

牛顿与微积分的发展牛顿(1642~1727),英国数学家、物理学家、天文学家和自然哲学家。

牛顿在数学上最卓越的贡献是创建微积分。

传记作家理查德·威斯法说,伊萨克·牛顿是“塑造了人类才智诸领域的寥寥无几的超级天才之一,一个无法归结为我们用以理解同类的标准的人”,因为微积分仅仅是他对我们理解周围世界作出重大贡献的许多领域中的一个。

在17世纪60年代的短短几年里牛顿成功地将他17世纪的前辈们发展出的关于切线和面积的所有材料统一并推广成为我们今天的微积分教科书中展示的神奇的解决问题的工具。

牛顿于1661年入剑桥大学三一学院,受教于巴罗,同时钻研伽利略、开普勒、笛卡儿和沃利斯等人的著作。

牛顿在通过自学掌握了17世纪的全部成就后,从1664年后期到1666年后期花费了两年时间理出了他关于微积分的基本思想。

就数学思想的形成而言,笛卡儿的《几何学》和沃利斯的《无穷算术》对他影响最深,正是这两部著作引导牛顿走上了创立微积分之路。

他对微积分的研究大致可分三个阶段: 第一阶段是静态的无穷小量方法,象费尔马那样把变量看作是无穷小元素的集合; 第二阶段是变量流动生成法,认为变量是由点、线或面的连续运动产生的,因此他把变量称为“流”,变量的变化率称为“流数”; 第三阶段是牛顿称之为最初比和最后比的方法,这种方法又是牛顿对第一阶段无穷小量方法的彻底否定.第一阶段:1667年牛顿完成了他的第一篇微积分论文: 《运用无穷多次方程的分析学》,正式发表于1711年.这篇论文是牛顿第一阶段工作的具体体现.在这篇文章中他总结了前人各种求积方法.给出了求一个变量对另一个变量的瞬时变化率的普遍方法,而且证明了: 求积运算是求变化率的逆过程.这就揭示了微积分的基本性质,即得到现在成为微积分学基本定理的牛顿——莱布尼茨公式.这篇文章是牛顿创立微积分的标志.但其中还有不少含混的地方.第二阶段:牛顿第二阶段的工作,主要体现在1671年的《流数法和无穷级数》中,在这篇论文中牛顿主要解决了两个问题:(1) 已知变量的关系y = f(x),求它们流数比(牛顿用表示y的流数);(2) 已知一个含流数的方程,求变量之间的关系,这是问题(1)的逆问题,相当于求积分或解微分方程.当时牛顿把微积分叫做流数法,并明确指出流数法的普遍意义: 流数法“不仅可以用来做出任何曲线的切线,而且还可以用来处理其他关于曲度(即曲率)、面积、曲线的长度、重心等深奥的问题”.这个认识远远超过了费尔马等所有的前期微积分学者.牛顿的《流数法》写于1671年,直到1736年才发表。

微积分产生的背景及其对世界的卓越贡献

微积分产生的背景及其对世界的卓越贡献作者:鸿鹄文章来源:本站原创更新时间:2007-10-22微积分是17世纪下半叶自然科学中最伟大的发现,它的产生开创了数学发展史的新纪元。

20世纪最杰出数学家之一:冯. 诺伊曼(1903—1957)评价微积分时说: “微积分是近代数学中最伟大的成就,对它的重要性无论做怎样的估计都不会过分。

”再看恩格斯对微积分成就的评价:恩格斯(1820-1895)说:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了!”两位伟人都用了“最伟大、最高胜利”这些词,足以看出微积分的产生与发展,对人类、对世界的影响与贡献之大!从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贸等都得到大规模的发展,形成了一个新的经济时代。

而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展,生产实践的需要对自然科学提出了新的课题:迫切要求力学、天文学等基础科学的发展,而这些学科都是深深依赖于数学的,因而也推动了数学的发展。

微积分就是在这样一种背景下形成与发展起来的。

但微积分的发展历史曲折跌宕,撼人心灵。

因此它从另一个层面来看,也是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材。

数学这门科学之所以有其特殊的重要地位。

这不仅在于数学与自然科学、社会科学有着广泛而密切的联系,而且数学自身的发展水平也影响着人们的思维方式,影响着人文科学的进步。

数学的严密推理能培养人们去进行抽象思维、发扬理性主义的探索精神,激发人们对理想和美的追求。

在那个时代,如古希腊的文化,它能产生很难为后世超越的优美文学、极端理想化的哲学和理想化的建筑与雕塑,都是源于数学对人们思维的深刻影响。

这一历史事实告诉我们:一个时代的文化特征在很大程度上是与那个时代的数学活动密切相关的。

所以说,社会离不开数学,数学能促进社会的文明与进步。

实践证明,学习微积分对于学生的科学思维和文化素质的培养,所起的作用是极为明显,也是其它学科所不能比拟的。

微积分论文-3

微积分发展史的认识及应用姓名:张佳佳班级:数学1班学号:120701010027摘要微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。

它是数学的一个基础学科。

内容主要包括极限、微分学、积分学及其应用。

微分学包括求解导数的运算,是一套关于变化率的理论。

它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。

积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了行星运动三定律。

此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。

并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。

关键词微积分;应用;微分;积分;物理,几何引言微积分的产生是数学上的伟大创造。

它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。

如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。

如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。

微积分堪称是人类智慧最伟大的成就之一。

从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。

通过研究微积分在物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。

微积分的发展历史表明了人的认识是从生动的直观开始,进而达到抽象思维,也就是从感性认识到理性认识的过程。

人类对客观世界的规律性的认识具有相对性,受到时代的局限。

随着人类认识的深入,认识将一步一步地由低级到高级、不全面到比较全面地发展,人类对自然的探索永远不会有终点。

数学史第七章巨人的杰作——微积分的创立讲义

第七章
巨人的杰作——微积分的创立
7.3 科学巨人—— 7.4 多才多艺的数学大师莱布尼茨
7.3 科学巨人——牛顿
牛顿
Isaac Newton
数学家 物理学家 天文学家 自然哲学家 英国皇家学会会员
艾萨克·牛顿简介
艾萨克·牛顿(1642--1727)出生于英格兰林肯郡的一 个小镇乌尔斯索普。他出生之前,他的父亲就已去世 。在牛we顿lco3m岁e时to ,us他e th的es母e P亲ow改e嫁rPo给in一t te个mp牧lat师es,, N把ew牛顿托 付给了Co他nt的ent祖de母sig抚n,养10。ye8a年rs后ex,per牧ien师ce病故,牛顿的母亲 又回到了乌尔斯索普。牛顿自幼沉默寡言,性格倔强, 这种习性可能来自他的家庭环境。
主要贡献
微积分的创立 二项式定理
运动的三个基本定 律(牛顿三定律):
光学、哲学、 天文学
数学其他方面
微积分的创立
牛顿关于微积分问题的研究起始于1664年,当时 笛卡儿的《几何学》和沃利斯的《无穷算术》对他的 影响最大。他对笛卡尔求曲线切线的方法产生了浓厚 的兴趣并试图寻找更好、跟一般的方法。
1666年10月他写的第一篇关于微积分的论文《 论数短论》,其中首次提出了流数的概念,所谓流数 就是速度,在变速运动中速度是路程对事件的微商, 至于速度的变化状况就要用速度的微商来反映,即加 速度是速度的微商。
艾萨克·牛顿简介 牛顿墓碑铭文:此地安葬的是艾撒克·牛顿勋爵,他 用近乎神圣的心智和独具特色的数学原则,探索出行 星的运动和形状、彗星的轨迹、海洋的潮汐、光线的 不同谱调和由此而产生的其他学者以前所未能想像到 的颜色的特性。以他在研究自然、古物和圣经中的勤 奋、聪明和虔诚,他依据自己的哲学证明了至尊上帝 的万能,并以其个人的方式表述了福音书的简明至理。 人们为此欣喜:人类历史上曾出现如此辉煌的荣耀。 他生于1642年12月25日,卒于1727年3月20日。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分的历史、方法及哲学思想
微积分的历史、方法及哲学思想摘要:微积分是1门重要的学科,本文首先对微积分的思想萌芽进行了概括,其中包括中国在内的许多古代的思想中就包含了原始的微积分的思想,微积分的主要发展是在欧洲,在107世纪的欧洲由于自然科学发展的需要,微积分
开始了快速的发展,后来牛顿和莱布尼茨完成了在微积分工作中最重要的工作,使得当时的许多问题得到了圆满的解决.由于当时微积分的基础并不完善,引发了许多的问题.后来柯西等人完善了微积分的基础,使得微积分进1步的完善,并且引发了许多新的分支.其次是对微积分计算中的1些方法进行了简单的总结,我分别对导数和积分进行了
描述并且用1些简单的例题进行了说明.由于微分和导数相似所以就没有进行描述
了.最后是我对其中蕴涵的哲学思想进行的理解.关键词微积分;导数;积分;哲学思想.
The History、Method and Philosophy of Calculus Abstract Calculus is a very important subject. The dissertation begins with an introduction of the sprouting of Calculus idea. In the 17th century in Europe, Calculus got a quick development of nature science. Afterwards, Newton and Leibniz finished the more important part of Calculus, which made many questions solved successfully at that time. As the basis of Calculus was not perfect, a lot of questions appeared. Neat, Cauchy and some others improved it and made it much better, so they brought about a plenty of new branches. In the second part, it comes to a simple conclusion of some methods to the counting of calculus. The author makes a description of derivative and integral and illustrates them with some simple examples. Owing to calculus is so similar with derivative, the author didn’t depict them. Finally, the author makes a deep understanding of the philosophy contained in it.
Key Words: Calculus, Derivative, Integral, Philosophy.
目录
前言…………………………………………………………………………………………(3) 1 微积分的发展史…………………………………………………………………………(4) 1.1 微积分思想萌芽‥……………………………………………‥‥……………(4) 1.2 107世纪微积分的酝酿…………………………………………………………(4) 1.3 微积分的创立—牛顿和莱布尼茨的工作…………………………‥…………(6) 1.4 108世纪微积分的发展…………………………………………………………(8) 1.5 微积分中注入严密性‥…………………………………………………………(9) 1.6 微积分的应用与新分支的形成…………………………………………………(9) 2 微积分的计算方
法.................................................................................(9) 2.1 导数..........................................................................................(10) 2.2 积分.......................................................................................(13) 3 微积分中的哲学思想..............................................................................(17) 4 结论 (19)
5 .............................................................................................(19) 6 参考文献 (19)
【包括:毕业、、任务书】
【说明:中有些数学符号是编辑器编辑而成,网页上无法显示或者显示格式错误,给您带来不便请谅解。

】。

相关文档
最新文档