几种特殊函数的积分

几种特殊函数的积分
几种特殊函数的积分

函数()(其中m和n为非负整数,及是实数)称为有理分式函数,时,叫真分式,时,叫假分式,一个假分式可化成一个多项式和一个真分式之和,如:,与没有公因子时,称为既约分式,一个既约有理真分式可分解成部分分式之和(最简分式之和),如:

定理如果在实数范围内能分解成一次因式和两次质因式的乘积:

则真分式可以分解成部分分式之和:

其中等都是常数。

关于有理分式函数的积分,可将其化为多项式及部分分式之和后再积分,从上面定理可看出,有理函数分解后可能出现三类函数:多项式、、。前两类积分很简单,第三类可做代换,则

上式中的第二个积分可用第三节中的递推公式。下面通过例题讲解如何将有理函数化为部分分式。

例1

解(1)化为真分式:

(2)(为待定常数)

(*)

令,令

由:

(也可用待定系数法计算,(*)式化为

比较等号两边同次幂的系数得)(3)

故:原式

例2

积分方法:用“万能代换”将其化为关于t 的有理函数的积分。

代入积分得

例3

解:令

万能代换是一般的方法,但不一定是最简单的方法,可根据题目选择较简的方法。请看:

例4

法一:

法二:

法三:

几种特殊类型函数的积分

几种特殊类型函数的积分 一、有理函数的不定积分 1.化有理函数为简单函数 两个多项式的商所表示的函数)(x R 称为有理函数,即 m m m m m n n n n n b x b x b x b x b a x a x a x a x a x Q x P x R ++++++++++= =------122110122110)()()( (1) 其中n 和m 是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且 0,000≠≠b a . 当(1)式的分子多项式的次数n 小于其分母多项式的次数m ,即m n <时,称为有理真分式;当m n ≥时,称为有理假分式. 对于任一假分式,我们总可以利用多项式的除法,将它化为一个多项式和一 个真分式之和的形式.例如 1 2)1(11222 4+++-=+++x x x x x x . 多项式的积分容易求得,下面只讨论真分式的积分问题. 设有理函数(1)式中m n <,如果多项式)(x Q 在实数范围内能分解成一次因式和二次质因式的乘积: μλβα)()()()()(220s rx x q px x b x a x b x Q ++++--= . 其中s r q p b a ,,,,,,, 为实数;042<-q p ,…,042<-s r ;,,,βα μλ,, 为正整数,那末根据代数理论可知,真分式) () (x Q x P 总可以分解成如下部分分式之和,即 β ααα)()()()() (1121b x B a x A a x A a x A x Q x P -++-++-+-=- λ ββ) ()(21 112q px x N x M b x B b x B ++++-++-+ - μλλλ)()(21121222s rx x S x R q px x N x M q px x N x M ++++ ++++++++++ - s rx x S x R s rx x S x R +++++++++ -2 122 2)(μμμ . (2)

几种特殊类型函数的积分

几种特殊类型函数的积分 一、有理函数的不定积分 1.化有理函数为简单函数 两个多项式的商所表示的函数)(x R 称为有理函数,即 m m m m m n n n n n b x b x b x b x b a x a x a x a x a x Q x P x R ++++++++++= =------122110122110)()()( (1) 其中n 和m 是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且 0,000≠≠b a . 当(1)式的分子多项式的次数n 小于其分母多项式的次数m ,即m n <时,称为有理真分式;当m n ≥时,称为有理假分式. 对于任一假分式,我们总可以利用多项式的除法,将它化为一个多项式和一 个真分式之和的形式.例如 1 2)1(112224 +++-=+++x x x x x x . 多项式的积分容易求得,下面只讨论真分式的积分问题. 设有理函数(1)式中m n <,如果多项式)(x Q 在实数围能分解成一次因式和二次质因式的乘积: μλβα)()()()()(220s rx x q px x b x a x b x Q ++++--= . 其中s r q p b a ,,,,,,, 为实数;042<-q p ,…,042<-s r ;,,,βα μλ,, 为正整数,那末根据代数理论可知,真分式) () (x Q x P 总可以分解成如下部分分式之和,即 β ααα)()()()() (1121b x B a x A a x A a x A x Q x P -++-++-+-=- λ ββ) ()(21 112q px x N x M b x B b x B ++++-++-+ -

几种特殊函数

数学高考密码押题卷 几种特殊函数 一.选择题 1.设二次函数2()2f x ax ax c =-+在区间[0,1]上单调递减,且()(0)f m f ≤,则实数m 的取值范围是( ) A.(,0]-∞ B.[2,)+∞ C.(,0][2,)-∞+∞∪ D.[0,2] 2.在1[,2]2 x ∈上,函数2()f x x Px q =++与33 ()22x g x x =+ 在同一点取得相同的最小值,那么()f x 在1 [,2]2 x ∈上的最大值是 ( ) A. 134 B.4 C.8 D.54 3.下列四类函数中,具有性质“对任意的0,0x y >>,函数f (x)满足()()()f x y f x f y +=”的是( ) A.幂函数 B.对数函数 C.指数函数 D.余弦函数 4.函数1 2 ()f x x -=的大致图像是( ) 5.已知函数3 ()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f = (A )5- (B )1- (C )3 (D )4 6.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是( ) (A )9 (B )10 (C )18 (D )20 7.若关于x 的方程 2|| 4x kx x =+有四个不同的实数解,则k 的取值范围为( ) A. (0,1) B. 1(,1)4 C.1 (,)4 +∞ D. (1,)+∞ 8.已知0x 是函数1()21x f x x =+ -的一个零点,若10(1,)x x ∈,20(,)x x ∈+∞,则( ) A.12()0,()0f x f x << B.12()0,()0f x f x <> C.12()0,()0f x f x >< D.12()0,()0f x f x >>

几种特殊函数的图象及性质

几种特殊函数的图象及性质 备课教师:刘彩伏 教学目标:1、理解正比例函数、反比例函数、一次函数、二次函数的概念,掌握用“待 定系数法”求这些函数的解析式的方法,能用描点法画出上述函数的图象并观 察出它们的性质。 2、能够根据二次函数解析式确定图象的顶点坐标、对称轴方程及与x 轴、y 轴 的交点,初步了解数形结合的观点,并初步学会用这些观点去分析问题的方 法。 教学重点:各种函数的概念及图象性质;“待定系数法”求函数的解析式。 教学难点:“待定系数法”求函数的解析式,用数形结合的观点分析问题的方法。 计划课时:4课时(第一课时结合图形复习各种函数概念和性质,其余三课时为题型分析 与训练) 教学过程: 一、基础知识复习 1、正比例函数 [定义]:函数y=kx(k 是常数,k ≠0)。 [图象]:经过(0,0),(1,k )两点的直线。 [性质]:k>0时,图象在一、三象限内,y 随x 的增大而增大;k<0时,图象在 二、四象限内,y 随x 的增大而减小。 2、反比例函数 [定义]:函数x k y =(k 是常数,k ≠0)。 [图象]:双曲线。 [性质]:k>0时,图象的两个分支在一、三象限内,在每一象限内,y 随x 的增大而减小;k<0时,图象的两个分支在二、四象限内,在每一象限内,y 随x 的增大而增大;两分支都无限接近但永远不能达到两坐标轴。 3、一次函数 [定义]:函数y=kx+b(k ,b 是常数,k ≠0)。(注意:当b=0时,就成为正比例函 数) [图象]:经过(0,b ),(k b -,0)两点的直线,与直线y=kx 平行。(k 叫做直线的斜率,b 叫做直线在y 轴上的截距) [性质]:

第五讲 几种特殊类型函数的积分

第五讲 几种特殊类型函数的积分 一、回顾上节内容 分部积分法 二、本节教学内容 1.简单有理函数的积分; 2.简单三角函数有函数的积分; 3.简单无理函数的积分。 [教学目的与要求] 1.掌握简单有理函数的积分; 2.掌握简单三角函数有函数的积分; 3.掌握简单无理函数的积分。 [教学重点难点] 简单有理函数、三角函数与无理函数积分 §4.4 几种特殊类型函数的积分 一、有理函数的不定积分 1.化有理函数为简单函数 两个多项式的商所表示的函数)(x R 称为有理函数,即 m m m m m n n n n n b x b x b x b x b a x a x a x a x a x Q x P x R ++++++++++= =------122110122110)()()( (1) 其中n 和m 是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且 0,000≠≠b a . 当(1)式的分子多项式的次数n 小于其分母多项式的次数m ,即m n <时,称为有理真分式;当m n ≥时,称为有理假分式. 对于任一假分式,我们总可以利用多项式的除法,将它化为一个多项式和一个真分式之和的形式.例如 1 2)1(112224+++-=+++x x x x x x . 多项式的积分容易求得,下面只讨论真分式的积分问题. 设有理函数(1)式中m n <,如果多项式)(x Q 在实数范围内能分解成一次因式和二次质因式的乘积:

μλβα)()()()()(220s rx x q px x b x a x b x Q ++++--= . 其中s r q p b a ,,,,,,, 为实数;042<-q p ,…,042<-s r ;,,,βα μλ,, 为正整数,那末根据代数理论可知,真分式) () (x Q x P 总可以分解成如下部分分式之和,即 β ααα)()()()() (1121b x B a x A a x A a x A x Q x P -++-++-+-=- λββ)()(21 112q px x N x M b x B b x B ++++ -++-+- μλλλ)()(21121222s rx x S x R q px x N x M q px x N x M ++++ ++++++++++ - s rx x S x R s rx x S x R +++++++++-2 122 2)(μμμ . (2) 其中i i i i i i S R N M B A ,,,,,,, 都是待定常数,并且这样分解时,这些常数是唯一的. 可见在实数范围内,任何有理真分式都可以分解成下面四类简单分式之和: (1)a x A - , (2) k a x A )(- (k 是正整数,2≥k ), (3) q px x B Ax +++2 (042 <-q p ), (4) k q px x B Ax ) (2 +++ (k 是正整数,04,22<-≥q p k ). 2. 有理函数的不定积分 求有理函数的不定积分归结为求四类简单分式的积分.下面讨论这四类简单分式的积分. (1)C a x A a x d a x A dx a x A +-=--=-??ln )(1, (2)C a x k A a x d a x A dx a x A k k k +-?--=--=---?? 1) (11)()()(,

相关文档
最新文档