折流板尺寸计算

合集下载

换热设备第2讲-管板计算

换热设备第2讲-管板计算

管壳式换热器简图1-管子;2-封头;3-壳体;4-接管;5-管板;6-折流板管板的设计管板基本情况•••管板基本情况管板基本情况管板强度分析的三种基本假设•••管板结构简化模型1管板结构简化模型2管板结构简化模型3荷、放置在弹性基础上的受管孔均匀削弱的当量圆平板GB151《管壳式换热器》中管板设计的基本考虑••••黄克智院士和管板设计规范黄克智院士和管板设计规范••••黄克智院士和管板设计规范•••黄克智院士和管板设计规范•“全国科学大会奖”••黄克智院士和管板设计规范黄克智院士和管板设计规范••••••管板的设计思路-1• 1 管板的弹性分析变形协调条件管板内力与变形分析管板的设计思路-2• 2 危险工况的确定由于换热器运行时,不能保证管程与壳程压力同时作用,在计算管板应力或厚度时,要考虑以下四种危险工况:a) 只有壳程压力Pt,管程压力Pt=0,不考虑温差b) 只有壳程压力Ps,管程压力Pt=0,考虑温差,正温差比负温差危险,分别为管子与壳体的线膨胀系数分别为管子与壳体的平均壁温为换热器装配时的温度()()00θθαθθα−>−s s t t t αs αt θs θ0θ管板的设计思路-2• 2 危险工况的确定c) 只有管程压力Pt,壳程压力Ps=0,不考虑温差d) 只有管程压力Pt,壳程压力Ps=0,考虑温差,负温差比正温差危险,()()00θθαθθα−<−s s t t管板的设计思路-3 3 管板应力的校核径向应力随半径变化曲线管板的设计思路-4 3 管板应力的调整工程中实际做法-1借助压力容器设计软件管板设计的辅助软件管板的计算十分繁杂,尽管GB151提供了便于工程应用的计算式和图表,但手算工作量很大,为此,我国已开发了包括管壳式换热器在内的化工设备强度计算软件,SW6,包括了管板的设计与校核。

SW6-1998 V2.0 《过程设备强度计算软件包》及PVCAD《计算机辅助设计软件包》压力容器设计计算软件包•SW6《过程设备强度计算软件包》,以下简称SW6-98。

换热器讲义

换热器讲义

11.2.4 折流板和支持板最小厚度:根据换热器直径和换热管无支撑跨距查GB151 表34。

工程设计中应注意如下:(1)表34 值为卧式换热器折流板的最小厚度(2)立式换热器无腐蚀时,可适当减薄(3)需抽管束且重量较重时,应适当加厚(4)有振动时,应适当加厚11.3 支持板(1)当换热器不需要设置折流板,但换热管无支撑跨距大于GB151 表42 规定时,应设置支持板。

(2)浮头换热器浮头端宜设置加厚的圆环形支持板11.4 U 形换热器的尾部支持U 形换热器中,靠近弯管段起支撑作用的折流板,结构尺寸A+B+C 大于GB151 表42规定时,应在弯管部分加支撑。

11.5 折流杆:用与换热管垂直的四组圆钢所形成的“井”字将换热管固定住。

折流杆换热器使壳程流体沿着管束轴线纵向流动,从而彻底消除流体横向流动而产生的诱发振动。

并且折流杆会使流体不断地产生卡门漩涡以提高传热的效率。

同时由于没有横向流动,故壳程流体压降较底。

折流杆换热器的关键技术在于正确的传热工艺计算及制造组装技术。

折流杆的直径等于换热管的间隙;可视一组折流圈相当于一块折流板(或支板承)11.6 螺旋折流板由数块扇形板排列在有一定升角的螺旋线上,使流体在壳体内形成螺旋流,其特点为:(1)可以使流体达到近似于柱塞流的效果;(2)返混程度很低,几乎没有流动的死区;(3)传热效率提高的同时,又获得了较佳的压降;(4)传热系数与螺旋角关系密切,最佳的螺旋角为25°~40°;(5)为减少无支撑跨长避免振动可用二头或多头螺旋。

11.7 拉杆,定距管:(1)换热管外径≥19mm 时,采用拉杆定距管结构;(2)换热管外径≤14mm 时,采用拉杆与折流板点焊结构;(3)拉杆应尽量均匀布置在管束外边缘。

对于大直径的换热器,在布管区内或靠近折流板缺口处应布置适当数量的拉杆,任何折流板应不少于3 个支承点。

(4)拉杆直径和数量根据GB151 表43,表4411.8 防冲与导流(1)管程设置防冲板条件:当管程采用轴向入口接管或换热管内流体流速超过3m/s 时,应设置防冲板,以减少流体的不均匀分布和对换热管端的冲蚀。

容器零部件计算软件说明

容器零部件计算软件说明
2. 绝压和表压: 绝压和表压包括: 2.1 绝压、表压、真空度的概念介绍。 2.2 用于设备条件不是绝压、表压而是真空度时换算为表压的计算,以及容器属于常压容器还是压力容器 的判断。判断依据:GB150.1-2011 的 1.5 条,NB/T 47003-2009 的 1.2 条。
-3-
-4-
四 常用数据菜单
1.5 定距管:根据折流板和拉杆的布置,计算出不同规格定距管的数量、长度、质量。
- 23 -
1.6 分程隔板:包括“分程隔板尺寸”、“ 分程隔板槽面积”、“ 分程隔板倒角”、“ 分程隔板 质量”。 1.6.1 分程隔板尺寸计算。
- 24 -
1.6.2 分程隔板槽面积计算,只适用于双管球形封头: 半球形封头计算包括不开孔半球形封头和开孔半球形封头计算,计算结果包括半球形封头容 积和质量以及“焊缝到切线的距离”,“壁厚轴线间距离(壳体与封头)”。“焊缝到切线的距 离”和“壁厚轴线间距离(壳体与封头)”的计算结果宜符合注意事项的提示数据。
- 15 -
6. 平盖: 平盖计算包括平面、凸面、凹面平盖计算。
- III -
一 软件的安装和卸载
1.1 运行环境 本软件能够在 windows xp 和 win7(32 位)下运行,win7(64 位)没有试过。
1.2 安装 双击“setup.exe”按提示点击下一步,即可完成安装。
1.3 卸载 开始——容器零部件计算软件——卸载容器零部件计算软件
-1-
二 软件简介
-8-
-9-
六 壳体菜单
壳体菜单包括“圆筒”、“椭圆封头”、“ 碟形封头”、“球冠形封头”、“ 半球形封头”、“平 盖”、“ 锥形封头”。 1. 圆筒: 圆筒计算包括不带复层筒体和带复层筒体计算,每种计算的计算基准均分为以内径为基准和 以外径为基准两种,计算结果包括筒体容积和质量。带复层筒体计算用于复合板、带堆焊层 或金属衬层、非金属衬层计算。

换热器的设计(1)

换热器的设计(1)

换热器的设计姓名:学号:目录1.设计方案简介 (1)1.1固定管板式换热器 (2)1.2浮头式换热器 (2)1.3U型管式换热器 (2)1.4填料函式换热器 (3)2.设计任务 (3)3.设计方案的确定 (3)3.1选择换热器的类型 (3)3.2流程安排 (4)3.3确定物性参数 (4)3.4估算传热面积 (4)3.4.1热流量 (4)3.4.2对数平均传热温度差 (4)3.4.3平均传热温差校正及壳程数 (5)3.4.4传热面积 (5)3.4.5冷却水的用量 (5)3.5工艺结构设计 (5)3.5.1管径和管内流速 (5)3.5.2管程数与换热管数 (5)3.5.3换热管排列原则 (6)3.5.4计算换热面积 (7)3.5.5壳程折流板选择 (7)3.5.6折流板间距 (8)3.5.7折流挡板数 (8)4.总传热系数K的计算 (8)4.1对流传热膜系数 (9)4.1.1管内传热膜系数 (9)4.1.2管外传热膜系数 (10)5. 换热管的核算 (11)5.1核算压强 (11)5.1.1管程压强 (11)5.1.2壳程压强降 (12)6.主体构建的设计与连接 (14)6.1管板 (14)6.1.1管板厚度 (14)6.2壳体管箱壳体和封头的设计 (14)6.2.1壁厚的确定 (15)6.2.2 壳程接管位置的最小尺寸 (15)6.2.3管箱接管位置的最小尺寸 (15)6.3折流板 (15)6.3.1折流板的作用 (15)6.4其他主要构件 (16)6.4.1膨胀节 (16)6.4.2拉杆和定距管 (17)6.4.3支承板 (17)6.4.4旁通挡板 (19)6.5换热器主要连接 (20)6.5.1管子与管板的连接 (20)6.5.2管板与壳体的连接结构 (20)6.5.3管板与分程隔板的连接 (21)6.5.4拉杆与管板的连接 (21)6.6支座 ................................................... 21i P1.设计方案简介换热器是广泛应用于化工、石油化工、动力、医药、冶金、制冷、轻工等行业的种通用设备。

固定管板式换热器设计说明书

固定管板式换热器设计说明书

摘要本设计是关于固定管板式换热器的结构设计,主要进行了换热器的工艺计算、换热器的结构和强度设计。

本设计的前半部分是工艺计算部分,按照GB150-2011以及GB151-2014等国家标准以及技术标准等根据给定的设计条件进行换热器的选型,校核传热系数,计算出实际换热面积。

设计的后半部分主要是关于结构和强度的设计,根据已选定的换热器型式进行设备内部各零部件(如接管、定距管折流板、折流板、管箱等)的设计,包括:材料的选择、具体的尺寸、确定具体的位置、管板厚度计算等。

本设计以本着安全可靠、经济性好、传热效率高以及保护环境为原则进行的设计,符合工厂中的实际应用。

关于固定管板换热器设计的各个环节,本设计书中均有详细说明。

关键词:固定管板;管壳式换热器;结构设计AbstractThe design is fixed with respect to the structural design of the tube plate heat exchanger, mainly for the process to calculate heat exchanger, heat exchanger structure and strength design.The first half of this design is part of the calculation process, in accordance with GB150-2011 GB151-2014 and other national standards and technical standards in accordance with a given design conditions of the heat exchanger selection, check the heat transfer coefficient, to calculate the actual heat area. The second half of the design is mainly on the structure and strength of design, internal equipment all parts have been selected according to the type of heat exchanger (such as receivership, spacer tube baffles, baffles, pipe boxes, etc.) Design including: choice of materials, specific dimensions, determine the specific location of the tube plate thickness calculation.On all aspects of the fixed tube sheet heat exchanger design, the design specification is described in detail.Key Words: fixed tube plate; shell and tube heat exchanger;Structural Design目录摘要 (Ⅰ)Abstract (Ⅱ)第1章设计任务、思想 (1)1.1 设计任务 (1)1.2 设计思想 (1)第2章换热器的工艺设计 (2)2.1换热器的工艺条件 (2)2.2估算设备尺寸 (2)2.2.1计算传热管数N T (2)2.2.2计算壳程直径D (3)第3章换热器零部件的结构设计 (4)3.1换热管 (4)3.1.1换热管的型号和尺寸 (4)3.1.2换热管的材料 (4)3.1.3换热管排列方式以及管心距 (4)3.2折流板 (5)3.2.1折流板的主要几何参数 (5)3.2.2折流板和壳体间隙 (6)3.2.3折流板厚度 (6)3.2.4折流板的管孔 (6)3.2.5材料的选取 (6)3.3拉杆、定距管 (6)3.3.1拉杆的结构形式 (7)3.3.2拉杆直径、数量和尺寸 (7)3.3.3拉杆的布置 (8)3.4防冲板 (8)3.5接管 (8)3.5.1接管(或接口)的一般要求 (8)3.5.2接管高度(伸出长度)确定 (8)3.6管箱 (9)3.7管板结构尺寸 (10)3.8封头 (11)3.9法兰结构类型 (12)3.10垫片的选取 (12)3.11鞍座的选取 (12)第4章换热器的机械结构设计 (14)4.1传热管与管板的连接 (14)4.2管板与壳体的连接 (14)4.3 管板与管箱的连接 (16)第5章换热器的强度设计与校核 (17)5.1壳体、管箱的壁厚计算 (17)5.1.1 壳体 (17)5.1.2 管箱 (18)第6章部分管件零部件的校核计算 (19)6.1壳程圆筒 (19)6.2 管箱圆筒 (19)6.3 换热管 (20)6.4 管板 (20)6.5 管箱法兰 (21)6.6 壳体法兰 (21)6.7 系数 (22)6.8 计算管板参数 (22)第7章换热器的制造、检验、安装与维护 (24)7.1换热器的制造、检验与验收 (24)7.1.1筒体 (24)7.1.2 换热管 (24)7.1.3管板 (25)7.1.4 折流板、支持板 (25)7.1.5 管束的组装 (25)7.1.6 换热器的组装 (25)7.1.7 压力试验 (25)7.2 换热器的安装、试车与维护 (25)7.2.1安装 (25)7.2.2 试车 (26)7.2.3 维护 (26)结束语 (27)参考文献 (28)致谢 (29)第1章设计任务、思想1.1 设计任务本设计的课题为固定管板式冷却器结构设计,设计包括结构设计和强度设计。

立式热虹吸再沸器机械设计说明书

立式热虹吸再沸器机械设计说明书

大连理工大学本科课程设计立式热虹吸式再沸器机械设计说明书学院(系):化工机械与安全学院专业:过程装备与控制工程学生姓名:孔闯学号:2指导教师:由宏新、代玉强评阅教师:完成日期:大连理工大学Dalian University of Technolog纲要本课程设计主要任务是设计 1 台立式热虹吸式再沸器,作为丙烯 -丙烷精馏塔的提馏段加热设施。

在大三放学期的时候已经初步达成了再沸器的工艺部分的设计和核算,本次设计主要进行再沸器的机械部分的计算及校核,包含再沸器各部分的构造说明,筒体壁厚的计算,封头壁厚的计算,管箱法兰和管板的计算,筒体和封头开孔及补强等。

经过 3 周的工作,已达成了再沸器的机械参数的计算,手工绘制了再沸器的装置图1 张和管板零件图 1 张。

目录纲要................................................................................................................错误 !不决义书签。

1设计基础 ..............................................................................................错误 !不决义书签。

项目背景 .........................................................................错误! 不决义书签。

设计依照 .........................................................................错误! 不决义书签。

技术根源及受权 .............................................................错误! 不决义书签。

换热器设计的说明

换热器设计的说明

图10-7 管壳式换热器示意图折流板壳程流体入口壳程流体出口换热管管壳管程流体出口管程流体入口管壳式换热器设计的相关说明换热管规格常用换热管规格有ф19×2 mm 、ф25×2 mm(1Crl8Ni9Ti)、ф25×2.5 mm(碳钢10)。

标准管子的长度常用的有1.0m ,1.5m ,2.0m ,2.5m ,3.0m ,4.5m ,6.0m ,7.5m ,9.0m ,12.0m 等。

各组统一选用ф19×2 mm 的管子,管材的导热系数43.2W/(m·K) 流速的确定当流体不发生相变时,介质的流速高,换热强度大,从而可使换热面积减少、结构紧凑,成本降低,一般也可抑止污垢的产生。

但流速大也会带来一些不利的影响,诸如压降ΔP 增加,泵功率增大,且加剧了对传热面的冲刷。

热交换器常用流速的范围见表2-1。

推荐的管内流速0.6-1.2m/s 壳侧流速0.5-1 m/s总管数、管程数、壳程数的确定(1)单程管子根数的确定根据选定的流速u 和管子内径计算单根管子的流量ρπ⨯⨯='u d q i m241单程管子的根数mm q q n '=/1 应取整数,最后还应该按照实际布置的方便性进行调整。

(2)若按单程设计每根管子的长度 可根据估算的传热面积计算od n Al π=' (3)管程数的确定根据上面计算的长度,再选取合适的标准管子的长度 如选取管长为l ''m ,则 管程数l l m '''=管程数应取2的倍数,且不亦过大。

(4)换热器的管子数,1n m n ⨯= 壳体直径壳体内径应不小于管板直径,初步设计中,可以按下式确定 b n P D c t '+-=2)1(式中 D —— 壳体内径,mm P t 两管子中心的距离称为管心距(或管间距),在此用P t 表示,一般是管外径的1.25倍。

固定管板式换热器设计-过程设备设计课程设计之欧阳与创编

固定管板式换热器设计-过程设备设计课程设计之欧阳与创编

目录1.换热器选型和工艺设计41.1设计条件41.2换热器选型41.3工艺设计41.3.1传热管根数的确定41.3.2传热管排列和分程方法51.3.3壳体内径52 换热器结构设计与强度校核62.1 管板设计62.1.1管板材料和选型62.1.2管板结构尺寸62.1.3管板质量计算72.2法兰与垫片72.2.1管箱法兰与管箱垫片72.3 接管82.3.1接管的外伸长度92.3.2 接管位置设计9欧阳与创编2.3.3 接管法兰112.4管箱设计112.4.1管箱结构形式选择122.4.2管箱最小长度122.5 换热管132.5.1 布管限定圆132.5.2 换热管与管板的连接132.6 拉杆与定距管142.6.1 拉杆的结构形式142.6.2 拉杆的直径、数量及布置152.6.3 定距管152.7防冲板152.7.1防冲板选型162.7.2防冲板尺寸162.8 折流板162.8.1 折流板的型式和尺寸172.8.2 折流板的布置172.8.3 折流板重量计算173.强度计算183.1壳体和管箱厚度计算183.1.1 壳体、管箱和换热管材料的选择18欧阳与创编3.1.2 圆筒壳体厚度的计算193.1.3 管箱厚度计算203.2 开孔补强计算213.2.1 壳体上开孔补强计算223.3 水压试验223.4支座223.4.1支反力计算如下:233.4.2 鞍座的型号及尺寸244焊接工艺设计254.1.壳体与焊接254.1 .1壳体焊接顺序254.1.2 壳体的纵环焊缝264.2 换热管与管板的焊接264.2.1 焊接工艺264.2.2 法兰与短节的焊接274.2.3管板与壳体、封头的焊接274.2.4接管与壳体焊接27总结28参考文献28欧阳与创编欧阳与创编 1.换热器选型和工艺设计1.1设计条件1.2换热器选型 管程定性温度壳程定性温度管壳程温差故初步选择不带膨胀节的固定管板式换热器(双管程)。

根据介质特性初步选择换热管材料为20号碳钢,壳体材料为Q245R1.3工艺设计1.3.1传热管根数的确定 已知换热管外径,内径,换热面积S=90,管程数为2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

折流板尺寸的计算需要结合实际情况,这里为您提供一个大概的计算方法,请您根据实际情况进行调整。

首先,我们需要确定折流板的数量和位置。

通常,折流板之间的距离应不小于管子直径,以避免流体短路。

确定好折流板的位置后,我们就可以进行尺寸计算了。

折流板的主要作用是增加流体方向上的摩擦力,防止流体短路,同时可以改变流体的流向,使流体在管子中的流动更均匀。

因此,折流板的厚度和宽度都应当适当。

折流板的厚度应当尽可能薄,通常为0.5~2mm;宽度则应当足够大,通常为管子直径的1/4~1/2。

接下来,我们需要确定折流板的长度。

长度取决于流动状态和所需的流量分布。

通常,折流板的长度应该大于管子直径,以便流体在折流板处形成稳定的涡旋。

同时,折流板应该尽可能地使流体在管子中的流动方向改变90度或者接近90度。

确定了长度之后,我们就可以根据流量和管子尺寸来计算折流板的宽度了。

通常,折流板的宽度应该与管子内径相当,以保证流体的流动更加均匀。

最后,我们需要考虑折流板的数量和排列方式。

通常,折流板的数量应该根据管子的直径和所需的流量分布来确定。

如果折流板的数量过多,可能会对流体产生阻力,增加流动的能耗;如果折流板的数量过少,可能会使流体流动不均匀。

在确定了以上所有参数之后,我们就可以进行初步的模拟计算了。

可以使用一些简单的公式或者软件来模拟流体在折流板处的流动情况,以便进一步优化折流板的尺寸。

综上所述,折流板的尺寸计算需要考虑多个因素,包括折流板的厚度、宽度、长度、数量、排列方式以及流体性质等。

通过合理的计算和模拟,我们可以得到最佳的折流板尺寸,从而优化流体的流动情况,提高流体输送效率。

请注意,以上内容仅作参考,实际计算可能因实际情况而异。

如有需要,建议您咨询专业人士。

相关文档
最新文档