SPSS相关分析案例讲解
经典课件:spss19统计分析基础与案例分析应用第8章相关分析

1 选择菜单中分析→相关→双变量。如图8-4 2 选择参加计算相关系数的变量到【变量】框。 3 在 【相关系数】 框中选择计算哪种相关系
数。
.
4 在【显著性检验】 框中选择输出相关系数检 验的双侧检验的概率 值还是单侧检验的概率 值。
x2
x3
9
4
20
6
18
5.9
33
6.4
31
5
13
6.7
25
7.5
30
6
5
3.5
47
8
25
5
11
5.8
23
8.3
35
7
39
7.4
21
4.3
7
7
40
7.6
35
4.9
23
5
33
6.4
27
6.1
34
5.5
15
4.4
.
具体操作步骤: 1选择菜单图形 → 旧对话框→ 散点图,出现如图8-1的对话框。 2选择散点图的类型【简单散点图】。 3单击【定义】,出现如图8-2的对话框,把左侧“数学家的 年工资”指定到右侧【Y轴】中,把“研究工作时间”指定到 【X轴】中。 得到如图8-3的散点图,从散点图中可以看出,研究工作时间 与年工资具有较强的相关关系。
.
8.2.2 绘制散点图的基本操作
绘制散点图的基本操作步骤如下: 1选择菜单图形 → 旧对话框→ 散点图,出
现如下图的对话框。
.
2 选择散点图的类型。SPSS提供了5种类型 的散点图。
学会使用SPSS进行相关分析和重复测量ANOVA

学会使用SPSS进行相关分析和重复测量ANOVA相关分析和重复测量ANOVA是统计学中常用的分析方法之一。
本文将介绍如何使用SPSS软件进行相关分析和重复测量ANOVA的步骤和注意事项。
第一章:相关分析相关分析是用来研究两个或多个变量之间的关系的统计方法。
在相关分析中,我们可以计算变量之间的相关系数,来了解它们之间的相关性强度和方向。
1.1 数据准备在进行相关分析之前,首先需要确保数据的准备工作已经完成。
通过SPSS软件,我们可以导入数据集,并对数据进行预处理,包括数据的清洗和转换。
1.2 相关分析的基本步骤进行相关分析的基本步骤如下:1)打开SPSS软件并导入数据集;2)选择“分析”菜单中的“相关”选项;3)将要分析的变量移入“变量”框中;4)选择要计算的相关系数类型;5)点击“确定”按钮,进行数据处理和分析。
1.3 相关分析的结果解读在相关分析的结果中,我们关注的主要是相关系数的值和显著性水平。
相关系数的取值范围为-1到1,其中-1表示完全负相关,1表示完全正相关,0表示无相关性。
显著性水平则表明了相关系数的显著程度,一般取0.05作为显著性水平的界限。
第二章:重复测量ANOVA重复测量ANOVA是一种用于比较两个或更多相关样本组之间差异的统计方法。
在重复测量ANOVA中,我们可以通过比较不同因素或处理之间的差异来判断它们是否对研究对象产生了显著影响。
2.1 数据准备在进行重复测量ANOVA之前,同样需要进行数据的准备工作。
将数据导入SPSS软件,并进行必要的数据清洗和转换操作。
2.2 重复测量ANOVA的基本步骤进行重复测量ANOVA的基本步骤如下:1)打开SPSS软件并导入数据集;2)选择“分析”菜单中的“一元方差分析”选项;3)将要分析的变量移入“因子”框中;4)选择要比较的处理或因素;5)点击“确定”按钮,进行数据处理和分析。
2.3 重复测量ANOVA的结果解读在重复测量ANOVA的结果中,我们关注的主要是F值和显著性水平。
SPSS相关性和回归分析一元线性方程案例解析

将“居民总储蓄”和“居民总消费”两个变量移入“变量”框内,在“相关系数”栏目中选择“Pearson",(Pearson是一种简单相关系数分析和计算的方法,如果需要进行进一步分析,需要借助“多远线性回归”分析)在“显著性检验”中选择“双侧检验”并且勾选“标记显著性相关”点击确定,得到如下结果:
2:从anvoa b的检验结果来看(其实这是一个“回归模型的方差分析表)F的统计量为:29.057,P值显示为0.000,拒绝模型整体不显著的假设,证明模型整体是显著的
3:从“系数a”这个表可以看出“回归系数,回归系数的标准差,回归系数的T显著性检验等,回归系数常量为:2878.518,但是SIG为:0.452,常数项不显著,回归系数为:0.954,相对的sig为:0.000,具备显著性,由于在“anvoa b”表中提到了模型整体是“显著”的
SPSS-相关性和回归分析(一元线性方物和人都不是以个体存在的,它们都被复杂的关系链所围绕着,具有一定的相关性,也会具备一定的因果关系,(比如:父母和子女,不仅具备相关性,而且还具备因果关系,因为有了父亲和母亲,才有了儿子或女儿),但不是所有相关联的事物都具备因果关系。
所以一元线性方程为:居民总消费=2878.518+0.954*居民总储蓄
其中在“样本数据统计”中,随即误差一般叫“残差”:
从结果分析来看,可以简单的认为:居民总储蓄每增加1亿,那居民总消费将会增加0.954亿
提示:对于回归参数的估计,一般采用的是“最小二乘估计法”原则即为:“残差平方和最小“
点击“分析”--回归----线性”结果如下所示:
将“因变量”和“自变量”分别拖入框内(如上图所示)从上图可以看出:“自变量”指“居民总储蓄”, "因变量”是指“居民总消费”
典型相关分析SPSS例析

典型相关分析SPSS例析所解释。
将重叠应用到典型相关时,只要简单地将典型相关系数平方(2CR),就得到这对典型变量方差的共同比例,代表一个典型变量的方差可有另一个典型变量解释的比例,如果将此比例再乘以典型变量所能解释的本组变量总方差的比例,得到的就是一组变量的方差所能够被另一组变量的典型变量所能解释的比例,即为重叠系数。
例1:CRM(Customer Relationship Management)即客户关系管理案例,有三组变量,分别是公司规模变量两个(资本额,销售额),六个CRM实施程度变量( WEB网站,电子邮件,客服中心,DM 快讯广告Direct mail缩写,无线上网,简讯服务),三个CRM绩效维度(行销绩效,销售绩效,服务绩效)。
试对三组变量做典型相关分析。
数据的格式如上所示,以下对三组变量两两做典型相关分析。
首先对公司规模和CRM实施程度做典型相关分析SPSS并未提供典型相关分析的交互窗口,只能直接在synatx editor 窗口中呼叫SPSS的CANCORR程序来执行分析。
并且cancorr不能读取中文名称,需将变量改为英文名称。
打开文件后File-→ new --→synatx editor打开语法窗口输入语句INCLUDE'D:\spss19\Samples\English\Canonical correlation.sps'.CANCORR Set1=Capital Sales/Set2=Web Mail Call DM Mobile ShortM.小写字母也行,但是变量名字必须严格一致include'D:\spss19\Samples\English\Canonical correlation.sps'.cancorr set1=Capital Sales/set2=Web Mail Call DMMobile ShortM.注意第三行的“/”不能为“\”run all得到典型相关分析结果第一组变量间的简单相关系数第一对典型变量的典型相关系数为CR1=0.434,第二对典型变量的典型相关系数为CR2=0.298.此为检验相关系数是否显著的检验,原假设:相关系数为0.每行的检验都是对此行及以后各行所对应的典型相关系数的多元检验。
SPSS相关分析

【Test of Significance单选框组】 用于确定是进行相关系数的单侧(One-tailed)或双侧 (Two-tailed)检验,一般选双侧检验。 【Flag significant correlations】 用于确定是否在结果中用星号标记有统计学意义的相关系数, 一般选中。此时P<0.05的系数值旁会标记一个星号, P<0.01的则标记两个星号。 【Options钮】 Statistics复选框组 可选的描述统计量。它们是: Means and standard deviations每个变量的均数和标准 差 Cross-product deviations and covariances各对变量 的交叉积和以及协方差阵
在上面的结果中,变量间两两的相关系数是用方阵的形式给 出的。每一行和每一列的两个变量对应的格子中就是这两个 变量相关分析结果结果,共分为三列,分别是相关系数、P 值和样本数。由于这里只分析了两个变量,因此给出的是 2*2的方阵。由上表可见自身的相关系数均为1,而数学和 化学的相关系数为0.742,P<0.001,有非常显著的统计 学意义。
在实际中,因为研究目的不同,变量的类型不同, 采用的相关分析方法也不同。比较常用的相关分析 是二元定距变量的相关分析、二元定序变量的相关 分析、偏相关分析和距离分析。
3.2.3.1 二元定距变量的相关分析
二元变量的相关分析是指通过计算变量间两两相关 的相关系数,对两个或两个以上变量之间两两相关 的程度进行分析。根据所研究的变量类型不同,又 可以分为二元定距变量的相关分析和二元定序变量 的相关分析。
580.00
600.00 600.00
120.00
125.00 130.00
多元回归分析SPSS案例

多元回归分析在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析;可以建立因变量y与各自变量x j j=1,2,3,…,n之间的多元线性回归模型:其中:b0是回归常数;b k k=1,2,3,…,n是回归参数;e是随机误差;多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量头;x2为4月上、中旬百束小谷草把累计落卵量块;x3为4月中旬降水量毫米,x4为4月中旬雨日天;预报一代粘虫幼虫发生量y头/m2;分级别数值列成表2-1;预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级;预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~毫米为1级,~毫米为2级,~毫米为3级,毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级;表2-1x1 x2 x3 x4 y年蛾量级别卵量级别降水量级别雨日级别幼虫密度级别1960 1022 4 112 1 1 2 1 10 1 1961 300 1 440 3 1 1 1 4 1 1962 699 3 67 1 1 1 1 9 1 1963 1876 4 675 4 4 7 4 55 4 1965 43 1 80 1 1 2 1 1 1 1966 422 2 20 1 0 1 0 1 3 1 1967 806 3 510 3 2 3 2 28 3 1976 115 1 240 2 1 2 1 7 1 1971 718 3 1460 4 4 4 2 45 4 1972 803 3 630 4 3 3 2 26 3 1973 572 2 280 2 2 4 2 16 2 1974 264 1 330 3 4 3 2 19 2数据保存在“”文件中;1准备分析数据在SPSS数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼虫密度”变量,并输入数据;再创建蛾量、卵量、降水量、雨日和幼虫密度的分级变量“x1”、“x2”、“x3”、“x4”和“y”,它们对应的分级数值可以在SPSS数据编辑窗口中通过计算产生;编辑后的数据显示如图2-1;图2-1或者打开已存在的数据文件“”;2启动线性回归过程单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图2-2所示的线性回归过程窗口;图2-2 线性回归对话窗口3 设置分析变量设置因变量:用鼠标选中左边变量列表中的“幼虫密度y”变量,然后点击“Dependent”栏左边的向右拉按钮,该变量就移到“Dependent”因变量显示栏里;设置自变量:将左边变量列表中的“蛾量x1”、“卵量x2”、“降水量x3”、“雨日x4”变量,选移到“IndependentS”自变量显示栏里;设置控制变量: 本例子中不使用控制变量,所以不选择任何变量;选择标签变量: 选择“年份”为标签变量;选择加权变量: 本例子没有加权变量,因此不作任何设置;4回归方式本例子中的4个预报因子变量是经过相关系数法选取出来的,在回归分析时不做筛选;因此在“Method”框中选中“Enter”选项,建立全回归模型;5设置输出统计量单击“Statistics”按钮,将打开如图2-3所示的对话框;该对话框用于设置相关参数;其中各项的意义分别为:图2-3 “Statistics”对话框①“Regression Coefficients”回归系数选项:“Estimates”输出回归系数和相关统计量;“Confidence interval”回归系数的95%置信区间;“Covariance matrix”回归系数的方差-协方差矩阵;本例子选择“Estimates”输出回归系数和相关统计量;②“Residuals”残差选项:“Durbin-Watson”Durbin-Watson检验;“Casewise diagnostic”输出满足选择条件的观测量的相关信息;选择该项,下面两项处于可选状态:“Outliers outside standard deviations”选择标准化残差的绝对值大于输入值的观测量;“All cases”选择所有观测量;本例子都不选;③其它输入选项“Model fit”输出相关系数、相关系数平方、调整系数、估计标准误、ANOVA表;“R squared change”输出由于加入和剔除变量而引起的复相关系数平方的变化;“Descriptives”输出变量矩阵、标准差和相关系数单侧显著性水平矩阵;“Part and partial correlation”相关系数和偏相关系数;“Collinearity diagnostics”显示单个变量和共线性分析的公差;本例子选择“Model fit”项;6绘图选项在主对话框单击“Plots”按钮,将打开如图2-4所示的对话框窗口;该对话框用于设置要绘制的图形的参数;图中的“X”和“Y”框用于选择X轴和Y轴相应的变量;图2-4“Plots”绘图对话框窗口左上框中各项的意义分别为:•“DEPENDNT”因变量;•“ZPRED”标准化预测值;•“ZRESID”标准化残差;•“DRESID”删除残差;•“ADJPRED”调节预测值;•“SRESID”学生氏化残差;•“SDRESID”学生氏化删除残差;“Standardized Residual Plots”设置各变量的标准化残差图形输出;其中共包含两个选项:“Histogram”用直方图显示标准化残差;“Normal probability plots”比较标准化残差与正态残差的分布示意图;“Produce all partial plot”偏残差图;对每一个自变量生成其残差对因变量残差的散点图;本例子不作绘图,不选择;7 保存分析数据的选项在主对话框里单击“Save”按钮,将打开如图2-5所示的对话框;图2-5 “Save”对话框①“Predicted Values”预测值栏选项:Unstandardized 非标准化预测值;就会在当前数据文件中新添加一个以字符“PRE_”开头命名的变量,存放根据回归模型拟合的预测值;Standardized 标准化预测值;Adjusted 调整后预测值;. of mean predictions 预测值的标准误;本例选中“Unstandardized”非标准化预测值;②“Distances”距离栏选项:Mahalanobis: 距离;Cook’s”: Cook距离;Leverage values: 杠杆值;③“Prediction Intervals”预测区间选项:Mean: 区间的中心位置;Individual: 观测量上限和下限的预测区间;在当前数据文件中新添加一个以字符“LICI_”开头命名的变量,存放预测区间下限值;以字符“UICI_”开头命名的变量,存放预测区间上限值;Confidence Interval:置信度;本例不选;④“Save to New File”保存为新文件:选中“Coefficient statistics”项将回归系数保存到指定的文件中;本例不选;⑤“Export model information to XML file”导出统计过程中的回归模型信息到指定文件;本例不选;⑥“Residuals” 保存残差选项:“Unstandardized”非标准化残差;“Standardized”标准化残差;“Studentized”学生氏化残差;“Deleted”删除残差;“Studentized deleted”学生氏化删除残差;本例不选;⑦“Influence Statistics” 统计量的影响;“DfBetas”删除一个特定的观测值所引起的回归系数的变化;“Standardized DfBetas”标准化的DfBeta值;“DiFit” 删除一个特定的观测值所引起的预测值的变化;“Standardized DiFit”标准化的DiFit值;“Covariance ratio”删除一个观测值后的协方差矩隈的行列式和带有全部观测值的协方差矩阵的行列式的比率;本例子不保存任何分析变量,不选择;8其它选项在主对话框里单击“Options”按钮,将打开如图2-6所示的对话框;图2-6 “Options”设置对话框①“Stepping Method Criteria”框用于进行逐步回归时内部数值的设定;其中各项为:“Use probability of F”如果一个变量的F值的概率小于所设置的进入值Entry,那么这个变量将被选入回归方程中;当变量的F值的概率大于设置的剔除值Removal,则该变量将从回归方程中被剔除;由此可见,设置“Use probability of F”时,应使进入值小于剔除值;“Ues F value”如果一个变量的F值大于所设置的进入值Entry,那么这个变量将被选入回归方程中;当变量的F值小于设置的剔除值Removal,则该变量将从回归方程中被剔除;同时,设置“Use F value”时,应使进入值大于剔除值;本例是全回归不设置;②“Include constant in equation”选择此项表示在回归方程中有常数项;本例选中“Include constant in equation”选项在回归方程中保留常数项;③“Missing Values”框用于设置对缺失值的处理方法;其中各项为:“Exclude cases listwise”剔除所有含有缺失值的观测值;“Exchude cases pairwise”仅剔除参与统计分析计算的变量中含有缺失值的观测量;“Replace with mean”用变量的均值取代缺失值;本例选中“Exclude cases listwise”;9提交执行在主对话框里单击“OK”,提交执行,结果将显示在输出窗口中;主要结果见表2-2至表2-4;10 结果分析主要结果:表2-2表2-2 是回归模型统计量:R 是相关系数;R Square 相关系数的平方,又称判定系数,判定线性回归的拟合程度:用来说明用自变量解释因变量变异的程度所占比例;Adjusted R Square 调整后的判定系数;Std. Error of the Estimate 估计标准误差;表2-3表2-3 回归模型的方差分析表,F值为,显著性概率是,表明回归极显著;表2-4分析:建立回归模型:根据多元回归模型:把表6-9中“非标准化回归系数”栏目中的“B”列系数代入上式得预报方程:预测值的标准差可用剩余均方估计:回归方程的显著性检验:从表6-8方差分析表中得知:F统计量为,系统自动检验的显著性水平为;F,4,11值为,F,4,11 值为,F,4,11 值为;因此回归方程相关非常显著;F值可在Excel中用FINV 函数获得;回代检验需要作预报效果的验证时,在主对话框图6-8里单击“Save”按钮,在打开如图3-6所示对话框里,选中“Predicted Values”预测值选项栏中的“Unstandardized”非标准化预测值选项;这样在过程运算时,就会在当前文件中新添加一个“PRE_1”命名的变量,该变量存放根据回归模型拟合的预测值;然后,在SPSS数据窗口计算“y”与“PRE_1”变量的差值图2-7,本例子把绝对差值大于视为不符合,反之则符合;结果符合的年数为15年,1年不符合,历史符合率为%;图2-7多元回归分析法可综合多个预报因子的作用,作出预报,在统计预报中是一种应用较为普遍的方法;在实际运用中,采取将预报因子和预报量按一定标准分为多级,用分级尺度代换较大的数字,更能揭示预报因子与预报量的关系,预报效果比采用数量值统计方法有明显的提高,在实际应用中具有一定的现实意义;。
统计学课SPSS数据分析实战案例
统计学课SPSS数据分析实战案例SPSS(统计分析系统)是一款常用的统计软件,被广泛应用于社会科学、商业、医学等领域的数据分析工作中。
通过这个案例,我们将运用SPSS软件进行数据分析,以展示统计学课的实战应用。
案例背景假设你是一位市场研究员,你的公司正在调查消费者对某产品的满意度。
你已经收集了一份随机抽样的数据集,包含了消费者的满意度评分以及他们的一些个人信息。
你的任务是对这些数据进行分析,以了解消费者满意度与个人信息之间是否存在关联。
数据集说明数据集包括了500个消费者的信息,具体变量如下:1. 变量1:满意度评分(连续变量,取值范围从1到10);2. 变量2:性别(分类变量,取值为男性和女性);3. 变量3:年龄(连续变量);4. 变量4:收入水平(分类变量,取值为低、中、高三个层次);5. 变量5:购买次数(连续变量,表示过去一年内购买该产品的次数)。
数据分析步骤以下是对这份数据集进行分析的步骤:1. 数据清洗和准备首先,我们需要检查数据集中是否存在缺失值或异常值,并进行数据清洗。
在SPSS中,我们可以使用数据查看和数据清洗的功能来完成这一步骤。
确保数据集中的每一列都没有缺失值,并且所有的异常值已经得到恰当的处理。
2. 描述性统计分析接下来,我们可以使用SPSS的描述性统计分析功能,对数据集进行描述性统计分析。
我们可以计算满意度评分、年龄和购买次数的平均值、标准差、最小值、最大值,并生成频数分布表和柱状图。
3. 相关性分析为了确定满意度评分与其他个人信息变量之间的关联性,我们可以使用SPSS的相关性分析功能。
通过计算满意度评分与性别、年龄、收入水平和购买次数之间的相关系数,我们可以评估它们之间的相关性。
4. 单因素方差分析我们可以使用SPSS进行单因素方差分析,以了解不同收入水平的消费者在满意度评分上是否存在显著差异。
通过观察方差分析表和显著性水平,我们可以得出初步结论。
5. 多元线性回归分析最后,我们可以使用SPSS的多元线性回归分析功能来建立一个回归模型,以预测满意度评分。
SPSS统计分析案例(我国城镇居民消费结构及趋势的统计分析)
SPSS统计分析案例专业:经济学姓名:000 学号:00000000一、我国城镇居民现状近年来,我国宏观经济形势发生了重大变化,经济发展速度加快,居民收入稳定增加,在国家连续出台住房、教育、医疗等各项改革措施和实施“刺激消费、扩大内需、拉动经济增长”经济政策的影响下,全国居民的消费支出也强劲增长,消费结构发生了显著变化,消费结构不合理现象得到了一定程度的改善。
本文通过相关数据分析总结出了我国城镇居民消费呈现富裕型、娱乐教育文化服务类消费攀升的趋势特点。
二、我国居民消费结构的横向分析第一,食品消费支出比重随收入增加呈现出明显的下降趋势,这与恩格尔定律的表述一致。
但最低收入户与最高收入恩格尔系数相差太过悬殊,城镇最低收入户刚刚解决了温饱问题,而最高收入户的生活水平按照恩格尔系数的评价标准早已达到了富裕型,甚至接近最富裕型。
第二,衣着消费支出比重随收入增加缓慢上升,到高收入户又有所下降,但各收入组支出比重相差不大。
衣着支出比重没有更多的递增且最高收入户的支出比重有所下降,这些都符合恩格尔定律关于衣着消费的引申。
随着收入的增加,衣着支出比重呈现先上升后下降的走势。
事实上,在当前的价格水平和服装业的发展水平下,城镇居民的穿着是有一定限度的,而且居民对衣着的需求也不是无限膨胀的,即使收入水平继续提高,也不需要将更大的比例用于购买服饰用品了。
第三,家庭设备用品及服务、交通通讯、娱乐教育文化服务和杂项商品与服务的支出比重呈逐组上升趋势,说明居民的生活水平随收入的增加而不断提高和改善。
第四,医疗保健支出比重随收入水平提高呈现一种两端高、中间低的走势。
这是因为医疗保健支出作为生活必须支出,不论页脚内容1居民生活水平高低,都要将一定比例的收入用于维持自身健康,而且由于医疗制度改革,加重了个人负担的同时,也减小了旧制度可能造成的不同行业、不同体制下居民医疗保健支出的差别,因而不同收入等级的居民在医疗保健支出比重上差别不大。
SPSS典型相关分析及结果解释
SPSS典型相关分析及结果解释SPSS 11.0 - 23.0典型相关分析1方法简介如果要研究一个变量和一组变量间的相关,则可以使用多元线性回归,方程的复相关系数就是我们要的东西,同时偏相关系数还可以描述固定其他因素时某个自变量和应变量间的关系。
但如果要研究两组变量的相关关系时,这些统计方法就无能为力了。
比如要研究居民生活环境与健康状况的关系,生活环境和健康状况都有一大堆变量,如何来做?难道说做出两两相关系数?显然并不现实,我们需要寻找到更加综合,更具有代表性的指标,典型相关(Canonical Correlation)分析就可以解决这个问题。
典型相关分析方法由Hotelling提出,他的基本思想和主成分分析非常相似,也是降维。
即根据变量间的相关关系,寻找一个或少数几个综合变量(实际观察变量的线性组合)对来替代原变量,从而将二组变量的关系集中到少数几对综合变量的关系上,提取时要求第一对综合变量间的相关性最大,第二对次之,依此类推。
这些综合变量被称为典型变量,或典则变量,第1对典型变量间的相关系数则被称为第1典型相关系数。
一般来说,只需要提取1~2对典型变量即可较为充分的概括样本信息。
可以证明,当两个变量组均只有一个变量时,典型相关系数即为简单相关系数;当一组变量只有一个变量时,典型相关系数即为复相关系数。
故可以认为典型相关系1数是简单相关系数、复相关系数的推广,或者说简单相关系数、复相关系数是典型相关系数的特例。
2引例及语法说明在SPSS中可以有两种方法来拟合典型相关分析,第一种是采用Manova过程来拟合,第二种是采用专门提供的宏程序来拟合,第二种方法在使用上非常简单,而输出的结果又非常详细,因此这里只对它进行介绍。
该程序名为Canonical correlation.sps,就放在SPSS的安装路径之中,调用方式如下:INCLUDE 'SPSS所在路径\Canonical correlation.sps'.CANCORR SET1=第一组变量的列表/SET2=第二组变量的列表.在程序中首先应当使用include命令读入典型相关分析的宏程序,然后使用cancorr名称调用,注意最后的“.”表示整个语句结束,不能遗漏。
spss软件聚类分析案例
spss软件聚类分析案例案例一:选择那些变量进行聚类?——采用“R型聚类”1、现在我们有4个变量用来对啤酒分类,是否有必要将4个变量都纳入作为分类变量呢?热量、钠含量、酒精含量这3个指标是要通过化验员的辛苦努力来测定,而且还有花费不少成本,如果都纳入分析的话,岂不太麻烦太浪费?所以,有必要对4个变量进行降维处理,这里采用spss R型聚类(变量聚类),对4个变量进行降维处理。
输出“相似性矩阵”有助于我们理解降维的过程。
2、4个分类变量量纲各自不同,这一次我们先确定用相似性来测度,度量标准选用pearson系数,聚类方法选最远元素,此时,涉及到相关,4个变量可不用标准化处理,将来的相似性矩阵里的数字为相关系数。
若果有某两个变量的相关系数接近1或-1,说明两个变量可互相替代。
只输出“树状图”就可以了,个人觉得冰柱图很复杂,看起来没有树状图清晰明了。
从proximity matrix表中可以看出热量和酒精含量两个变量相关系数0.903,最大,二者选其一即可,没有必要都作为聚类变量,导致成本增加。
至于热量和酒精含量选择哪一个作为典型指标来代替原来的两个变量,可以根据专业知识或测定的难易程度决定。
(与因子分析不同,是完全踢掉其中一个变量以达到降维的目的。
)这里选用酒精含量,至此,确定出用于聚类的变量为:酒精含量,钠含量,价格。
案例二:20中啤酒能分为几类?——采用“Q型聚类”现在开始对20中啤酒进行聚类。
开始不确定应该分为几类,暂时用一个3-5类范围来试探。
Q型聚类要求量纲相同,所以我们需要对数据标准化,这一回用欧式距离平方进行测度。
2、主要通过树状图和冰柱图来理解类别。
最终是分为4类还是3类,这是个复杂的过程,需要专业知识和最初的目的来识别。
我这里试着确定分为4类。
选择“保存”,则在数据区域内会自动生成聚类结果。
案例三:用于聚类的变量对聚类过程、结果又贡献么,有用么?——采用“单因素方差分析”1、聚类分析除了对类别的确定需讨论外,还有一个比较关键的问题就是分类变量到底对聚类有没有作用有没有贡献,如果有个别变量对分类没有作用的话,应该剔除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS相关分析案例讲解 相关分析 一、两个变量的相关分析:Bivariate 1.相关系数的含义 相关分析就是研究变量间密切程度的一种常用统计方法。相关系数就是描述相关关系强弱程度与方向的统计量,通常用r表示。 ①相关系数的取值范围在-1与+1之间,即:–1≤r≤ 1。 ②计算结果,若r为正,则表明两变量为正相关;若r为负,则表明两变量为负相关。 ③相关系数r的数值越接近于1(–1或+1),表示相关系数越强;越接近于0,表示相关系数越弱。如果r=1或–1,则表示两个现象完全直线性相关。如果=0,则表示两个现象完全不相关(不就是直线相关)。 ④3.0r,称为微弱相关、5.03.0r,称为低度相关、8.05.0r,称为
显著(中度)相关、18.0r,称为高度相关 ⑤r值很小,说明X与Y之间没有线性相关关系,但并不意味着X与Y之间没有其它关系,如很强的非线性关系。 ⑥直线相关系数一般只适用与测定变量间的线性相关关系,若要衡量非线性相关时,一般应采用相关指数R。 2.常用的简单相关系数 (1)皮尔逊(Pearson)相关系数 皮尔逊相关系数亦称积矩相关系数,1890年由英国统计学家卡尔•皮尔逊提出。定距变量之间的相关关系测量常用Pearson系数法。计算公式如下:
niniiiniiiyyxxyyxxr11221)()(
))(( (1)
(1)式就是样本的相关系数。计算皮尔逊相关系数的数据要求:变量都就是服从正态分布,相互独立的连续数据;两个变量在散点图上有线性相关趋势;样本容量30n。 (2)斯皮尔曼(Spearman)等级相关系数 SPSS相关分析案例讲解 Spearman相关系数又称秩相关系数,就是用来测度两个定序数据之间的线性相关程度的指标。 当两组变量值以等级次序表示时,可以用斯皮尔曼等级相关系数反映变量间的关系密切程度。它就是根据数据的秩而不就是原始数据来计算相关系数的,其计算过程包括:对连续数据的排秩、对离散数据的排序,利用每对数据等级的差额及差额平方,通过公式计算得到相关系数。其计算公式为:
16122nn
drR (2)
(2)式中,Rr为等级相关系数;d为每对数据等级之差;n为样本容量。 斯皮尔曼等级相关对数据条件的要求没有积差相关系数严格,只要两个变量的观测值就是成对的等级评定资料,或者就是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究。 (3)肯德尔(Kendall)等级相关系数 肯德尔(Kendall)等级相关系数就是在考虑了结点(秩次相同)的条件下,测度两组定序数据或等级数据线性相关程度的指标。它利用排序数据的秩,通过计算不一致数据对在总数据对中的比例,来反映变量间的线性关系的。其计算公式如下:
141nn
irK (3)
(3)式中,Kr就是肯德尔等级相关系数;i就是不一致数据对数;n为样本容量。 计算肯德尔等级相关系数的数据要求与计算斯皮尔曼等级相关系数的数据要求相同。 3.相关系数的显著性检验 通常,我们用样本相关系数r作为总体相关系数ρ的估计值,而r仅说明样本数据的X与Y的相关程度。有时候,由于样本数据太少或其它偶然因素,使得样本相关系数r值很大,而总体的X与Y并不存在真正的线性关系。因而有必要通过样本资料来对X与Y之间就是否存在真正的线性相关进行检验,即检验总体相关系数ρ就是否为零(即原假设就是:总体中两个变量间的相关系数为0)。SPSS的相SPSS相关分析案例讲解 关分析过程给出了该假设成立的概率(输出结果中的Sig、)。 样本简单相关系数的检验方法为: 当原假设0H:0,50n时,检验统计量为:
211rnrZ
(4)
当原假设0H:0,50n时,检验统计量为:
212rnrt
2ndf (5)
式中,r为简单相关系数;n为观测值个数(或样本容量)。 4.背景材料 设有10个厂家,序号为1,2,…,10,各厂的投入成本记为x,所得产出记为y。各厂家的投入与产出如表7-18-1所示,根据这些数据,可以认为投入与产出之间存在相关性不? 表1 10个厂家的投入产出 单位:万元 厂家 1 2 3 4 5 6 7 8 9 10 投入 产出 20 30 40 60 20 40 30 60 10 30 10 40 20 40 20 50 20 30 30 70
5.操作步骤 5-1 绘制散点图的步骤 (1)选择菜单命令“Graphs”→“Legacy Dialogs”→“Scatter/Dot”,打开Scatter/Dot对话框,如图1所示。
图1 选择散点图窗口 (2)选择散点图类型。SPSS提供了五种类型的散点图。 SPSS相关分析案例讲解 (3)根据所选择的散点图类型,单击“Define”按钮设置散点图。不同类型的散点图的设置略有差别。 ①简单散点图(Simple Scatter) 简单散点图的设置窗口如图2所示。
图2 简单散点图的设置窗口 从对话框左侧的变量列表中指定某个变量为散点图的纵坐标与横坐标,分别选入Y-Axis与X-Axis框中。这两项就是必选项。 可以把作为分组的变量指定到Set Markers by框中,根据该变量取值的不同对同一个散点图中的各点标以不同的颜色(或形状)。该项可以省略。 把标记变量指定到Label Cases by框中,表示将标记变量的各变量值标记在散点图的旁边。该项可以省略。 从左侧变量列表框中选择变量到Panel by框中作为分类变量,可以使该变量作为行(Rows)或列(Columns)将数据分成不同的组,便于比较。该项可以省略。 选择Use Chart Specifications From选项,可以选择散点图的文件模板,单击“File”可以选择指定的文件。 SPSS相关分析案例讲解 单击“Title”按钮可以对散点图的标题进行设置,单击“Options”按钮可以对缺失值以及就是否显示数据的标注进行设置。 ②重叠散点图(Overlay Scatter) 重叠散点图能同时生成多对相关变量间统计关系的散点图,首先根据分类变量的不同取值对原始数据进行分类,然后对各分类数据做简单散点图。重叠散点图的设置窗口如图7-18-3所示。
图3 重叠散点图的设置窗口 从左侧框中选择一对变量进入Pairs框中,其中前一个为图的纵坐标变量
(Y-Variable),后一个作为图的横轴变量(X-Variable),可以通过点击按钮进行横纵轴变量的调换。 其她设置与同简单散点图都相同。 ③矩阵散点图(Matrix Scatter) 矩阵散点图以方形矩阵的形式在多个坐标轴上分别显示多对变量间的统计关系。矩阵散点图的关键就是弄清各矩阵单元中的横纵变量。矩阵散点图的设置窗口如图4所示。 SPSS相关分析案例讲解 图4 矩阵散点图的设置窗口 把参与绘图的若干变量指定到Matrix Variables框中。选择变量的先后顺序决定了矩阵对角线上变量的排列顺序。 其她设置也与简单散点图相同。 ④三维散点图(3-D Scatter) 三维散点图生成三个相关变量的三维散点图,由三个坐标轴对应变量的数据决定,它以立体图的形式展现三对变量间的统计关系。设置窗口如图5所示。 SPSS相关分析案例讲解 图5 三维散点图设置窗口 从左侧的变量列表中指定三个变量分别选入Y-Axis、X-Axis、Z-Axis框中。其她设置均与简单散点图相同。 ⑤单点散点图(Sample Dot) 单点散点图生成单个变量的散点图,显示数值型变量的每一个观测值,这些值都堆积在X轴附近,由于没有指定Y轴,所以数据点的Y坐标没有特殊的含义。设置窗口如图6所示。 SPSS相关分析案例讲解 图6 单点散点图设置窗口 从左侧变量列表中选择一个变量选入X-Axis Variable框中。其她设置与简单散点图相同。 5-2 计算简单相关系数的操作步骤 通过散点图可以初步判断变量就是否具有线性趋势。对具有线性趋势的变量计算相应的简单相关系数的步骤如下: (1)选择菜单命令“Analyze”→“Correlate”→“Bivariate”,打开两变量相关分析的对话框,如图7所示。 SPSS相关分析案例讲解 图7 两变量相关分析窗口 (2)选入需要进行相关分析的变量进入Variables框,至少需要选入两个,如选入“投入”、“产出”变量。 (3)在Correlation Coefficients复选框中选择需要计算的相关系数。主要有:Pearson复选框:选择进行积距相关分析,即最常用的参数相关分析;Kendall's tau-b复选框:计算Kendall's等级相关系数;Spearman复选框:计算Spearman相关系数,即最常用的非参数相关分析(秩相关)。 (4)Test of Significance单选框用于确定就是进行相关系数的单侧(One-tailed)或双侧(Two-tailed)检验,系统默认双侧检验。 (5)Flag significant correlations用于确定就是否在结果中用星号标记有统计学意义的相关系数,一般选中。此时P<0、05的系数值旁会标记一个星号,P<0、01的则标记两个星号。 (6)单击Options按钮,弹出Options对话框,选择需要计算的描述统计量与统计分析,如图8所示。