第6章_统计量及其抽样分布.
贾俊平《统计学》课后习题及详解(统计量及其抽样分布)【圣才出品】

第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数? 答:(1)设是从总体中抽取的容量为的一个样本,如果由此样本构造一个函数,不依赖于任何未知参数,则称函数是一个统计量。
(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。
为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。
(3)统计量是样本的一个函数。
由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。
2.判断下列样本函数哪些是统计量?哪些不是统计量?12n X X X ,,…,X n 12()n T X X X ,,…,12()n T X X X ,,…,1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故、是统计量,、不是统计量。
3.什么是次序统计量?答:设是从总体中抽取的一个样本,称为第个次序统计量,它是样本满足如下条件的函数:每当样本得到一组观测值…,时,其由小到大的排序中,第个值就作为次序统计量的观测值,而称为次序统计量,其中和分别为最小和最大次序统计量。
4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。
统计量加工过程中一点信息都不损失的统计量通常称为充分统计量。
5.什么是自由度?答:统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的变量的个数。
统计学第六章抽样和抽样分布

2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
贾俊平《统计学》(第5版)课后习题-第6章 统计量及其抽样分布【圣才出品】

第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数?答:(1)设12n X X X ,,…,是从总体X 中抽取的容量为n 的一个样本,如果由此样本构造一个函数12()n T X X X ,,…,,不依赖于任何未知参数,则称函数12()n T X X X ,,…,是一个统计量。
(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。
为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。
(3)统计量是样本的一个函数。
由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。
2.判断下列样本函数哪些是统计量?哪些不是统计量?1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故1T 、2T 是统计量,3T 、4T 不是统计量。
3.什么是次序统计量?答:设12n X X X ,,…,是从总体X 中抽取的一个样本,()i X 称为第i 个次序统计量,它是样本12()n X X X ,,…,满足如下条件的函数:每当样本得到一组观测值12X X ,,…,n X 时,其由小到大的排序(1)(2)()()i n X X X X ≤≤≤≤≤……中,第i 个值()i X 就作为次序统计量()i X 的观测值,而(1)(2)()n X X X ,,…,称为次序统计量,其中(1)X 和()n X 分别为最小和最大次序统计量。
4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。
东华大学《概率论与数理统计》课件 第6章样本与抽样分布

X
的
n
一
个
样
本的
观察
值
,
则g( x1 , x2 , xn )是统计量g( X1 , X 2 , X n )的观察值.
例1 设总体X 服从两点分布b(1, p) ,其中p 是未知参数,
X1,
,
X
是
5
来自X的简
单
随机样本.试指出
X1
X
,
2
max
1 i 5
X
i
,
X5 2 p,
( X5 X1)2
哪些是统计量,哪些不是统计量,为什么?
从国产轿车中抽5辆进行耗 油量试验
样本容量为5 抽到哪5辆是随机的
对总体X在相同条件下,进行n次重复、独立观察,其结果依次记 为 X1,X2,…,Xn.这样得到的随机变量X1,X2,…,Xn.是来自总体的一个简单 随机样本,其特点是:
1. 代表性:X1,X2,…,Xn中每一个与所考察的总体X有相同的分布. 2. 独立性:X1,X2,…,Xn相互独立.
k同分布,
E(
X
k i
)
k
k 1, 2, , n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1 , A2 , , Ak ) P g(1, 2 , , k )
其中g为连续函数.
矩估计法的理论依据
2. 经验分布函数
设X1, X2,
,
X
是
n
总
体
F的
一
个Hale Waihona Puke 本,用S(
x
则称变量
t X Yn
所服从的分布为自由度为 n的 t 分布.
第6章 样本及中心极限定理6.3 抽样分布

对于任一实数 x当 n 充分大 时, 经验分布函
数的任一个观察值 Fn ( x ) 与总体分布函数 F ( x )
只有微小的差别 , 从而在实际上可当作 F ( x ) 来
使用 .
二、常见分布
统计量的分布称为抽样分布.
1. 2分布 设 X 1 ,X 2 ,, X n 是来自总体 N(0, 的样本, 1)
(4) 样本k 阶(原点)矩
1 n k Ak X i , k 1, 2, ; n i 1
1 n k 其观察值 k x i , k 1, 2, . n i 1
(5) 样本k 阶中心矩
1 n Bk ( X i X )k , k 2, 3, ; n i 1
k k 所以 X 1k , X 2 ,, X n 独立且与X k 同分布, k E ( X n ) k . E( X ) E( X )
故有
k 1
k 2
再根据第五章辛钦定理知
辛钦定理
1 n k P X i k , n i 1
k 1, 2, ;
由第五章关于依概率收敛的序列的性质知
0,
k , n
x x(1) , x( k ) x x( k 1) , x x(n ) .
1,
格里汶科定理
格里汶科定理
对于任一实数 x , 当 n 时, Fn ( x ) 以概率 1
一致收敛于分布函数 F ( x ) , 即
P lim sup Fn ( x ) F ( x ) 0 1. n x
3. 经验分布函数
总体分布函数 F ( x ) 相应的统计量称为经验
分布函数 . 经验分布函数的做法如下:
《概率论与数理统计》第六章

既然总体是随机变量X,自然就有其概率分布。
我们把X的分布称为总体分布。
总体的特性是由总体分布来刻画的。因此,常 把总体和总体分布视为同义语。
第六章 样本及抽样分布 ‹#›
例2
在例1中,假定物体真实长度为(未知)。一般 说来,测量值X就是总体,取 附近值的概率要大一 些,而离 越远的值被取到的概率就越小。
k=1,2,…
第六章 样本及抽样分布 ‹#›
它反映了总体k 阶矩的信息
样本k阶中心矩
Bk
1 n
n i 1
(Xi
X )k
它反映了总体k 阶 中心矩的信息
第六章 样本及抽样分布 ‹#›
统计量的观察值
1 n
x n i1 xi;
s2
1 n 1
n i1
(xi
x )2
s
1 n 1
n i1
(xi
x
)2
第六章 样本及抽样分布 ‹#›
实际上,我们真正关心的并不一定是总体或个
体本身,而真正关心的是总体或个体的某项数量指 标。
如:某电子产品的使用寿命,某天的最高气温, 加工出来的某零件的长度等数量指标。因此,有时也
将总体理解为那些研究对象的某项数量指标的全
体。
第六章 样本及抽样分布 ‹#›
为评价某种产品质量的好坏,通常的做法是: 从全部产品中随机(任意)地抽取一些样品进行观测(检
样本X1,X2,…,Xn 既被看成数值,又被看成随机变量, 这就是所谓的样本的二重性。
随机样本
例 4 (例2续) 在前面测量物体长度的例子中,如果我们 在完全相同的条件下,独立地测量了n 次,把这 n 次测 量结果,即样本记为
X1,X2,…,Xn .
概率论第六章样本及抽样分布
本相互独立,记
1 n1 X Xi n1 i 1 1 n2 Y Yi n2 i 1
则有 ⑴
2 1 2 2 2 1 2 2
1 n1 S12 ( X k X )2 n1 1 k 1 1 n2 2 S2 (Yk Y ) 2 n2 1 k 1
S / ~ F (n1 1, n2 1) S /
⑵ 当 时
2 1 2 2 2
X Y ( 1 2 ) ~ N (0,1) 1 1 n1 n2
(n1 1) S12
2 1
2 (n2 1) S2
2 2
~ 2 (n1 n2 2)
X Y ( 1 2 ) ~ t (n1 n2 2) 1 1 S n1 n2
2
又因为
(n 1)S 2
2
~ (n 1)
2
X n1 X n
故 Y
(n 1) S 2
n n 1 ~ t (n 1) /(n 1)
2
X n1 X n Y S
n ~ t (n 1) n 1
例4
设总体X , Y 相互独立 X ~ N (0,32 ) , Y ~ N (0,32 ) ,
2
X n1 X n n X 1 , X 2 ,, X n , X n1 , 求 Y 的分布 . S n 1 1 n 1 n 2 2 其中 X n X i , S ( Xi X n ) n i 1 n 1 i 1
1 2 解 由已知得 X n1 ~ N ( , ) , X n ~ N ( , ) , n n 1 2 所以 X n1 X n ~ N (0, ) n n 标准化得 X n1 X n ~ N (0,1) n 1
概率论与数理统计第6章
不含未知参数的样本的函数称为统计量 不含未知参数的样本的函数称为统计量. 统计量 2. 几个常见统计量
1 n 样本均值 X = ∑Xi n i=1
反映总体 均值的信息 反映总 体方差 的信息
1 n 2 2 样本方差 S = ∑( Xi − X) n −1 i=1
样本2阶中心矩 样本 阶中心矩
反映总体2 反映总体 阶 中心矩的信息
(
)
−
n1 +n2 2
x≥0
例1 设X、Y相互独立均服从正态分布 、 相互独立均服从正态分布 N(0,3), X1,X2,…,X9和Y1,Y2,…,Y9分别为来 的样本。 自X、Y的样本。求 、 的样本
U=
X1 + X 2 + L + X 9 Y +Y +L+Y
2 1 2 2
的分布。 的分布。
2 9
小样本问题中使用) 精确抽样分布(小样本问题中使用) 抽样分布 大样本问题中使用) 渐近分布 (大样本问题中使用
{
三. 统计三大分布
1 . χ 分布
2
定义: 相互独立, 定义 设 X1 , X2 ,L, Xn相互独立 都服从正态 分布N(0,1), 则称随机变量: 则称随机变量: 分布 2 2 2 2 χ = X 1 + X 2 + …+X n 所服从的分布为自由度为 n 的 χ 分布. 分布
3. F分布 分布 与 X ~ χ (n1),Y ~ χ (n2 ), X与Y X / n1 相互独立, 相互独立,则称统计量 F = Y / n2 定义: 定义 设
2 2
服从自由度为n 分布, 服从自由度为 1及 n2 的F分布,n1称为第 分布 一自由度, 称为第二自由度, 一自由度,n2称为第二自由度,记作 F~F(n1,n2) .
统计学 第6章--统计量及其抽样分布(7)20200329
统计学
STA(第TI7S版TI)C性S 质F1
( n1 ,
n2 )
F
1 (n2 ,
. n1 )
性质的证明 因为F ~ F (n1, n2 ), 所以
P
1 F
1
F1
(n1
,
n2
)
1
P
1 F
1
F1
(n1
,
n2
)
1 P{F F1 (n1, n2 )} 1 (1 )
由于 1 F
样本均值的抽样分布 与中心极限定理
当总体服从正态分布N(μ,σ2)时,来自该总体的所有 容量为n的样本的均值x也服从正态分布,x 的数
学期望为μ,方差为σ2/n。即x~N(μ,σ2/n)
=10
n= 4
x 5
n =16
x 2.5
= 50 X
总体分布
x 50
x
抽样分布
6 - 25
作者:贾俊平,中国人民大学统计学院
3. 令 Y z 2 ,则 Y 服从自由度为1的2分布,即
Y ~ 2 (1)
4. 当总体 X ~ N(, 2 ) ,从中抽取容量为n的样本,则
n
(xi x)2
6 - 10
i 1
2
~ 2 (n 1)
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第7版)
2分布
(性质和特点)
STATISTICS (第7版)
t 分布
1. 戈 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 “Student”(学生)为笔名的论文中首次提出
2. t 分布是类似正态分布的一种对称分布, 它通常要比正态分布平坦和分散
贾俊平统计学第六章 抽样分布
n=4 σx = 5 n =16 σ x = 2.5
µ = 50
X
µx = 50
X
总体分布
抽样分布
中心极限定理
(central limit theorem)
中心极限定理: 中心极限定理:设从均值为µ,方差为σ 2的一个任意总 体中抽取容量为n的样本, 充分大时, 体中抽取容量为n的样本,当n充分大时,样本均值的抽 样分布近似服从均值为µ 方差为σ 样分布近似服从均值为µ、方差为σ2/n的正态分布
解:根据中心极限定理,样本容量>30,可视 为样本均值近似服从正态分布。
样本均值的抽样分布与中心极限定理 (例题分析)
因此知,样本均值服从:
0.62 X~N ( µ , σ 2 n ) = N 10, = N (10, 0.01) 36 (1) P X <9. = P X − 10 < 9.9 − 10 9) ( 0.1 0.1
6.1 统计量
1. 统计量的概念 2. 常用的统计量
统计量的概念
定义:
设X1,X2,……,Xn是从总体X中抽取的样本容 量为n的一个样本,如果由此样本构造一个函数 T(X1,X2,……,Xn),不依赖任何未知参数, 则称行数T(X1,X2,……,Xn)是一个统计量。 统计量是样本的函数 统计量不依赖任何未知总体参数 根据具体样本的观测值x1,x2,……,xn带入统 计量函数,计算出来的值是一个具体的统计量 的值。
0.1 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 X 0.3 0.2 P (X )
样本均值的抽样分布 3.0 3 3.5 2 4.0 1
均值X的取值 均值 的取值 均值X的个数 均值 的个数