第6章统计量及其抽样分布
概率论与数理统计(06)第6章 统计量及其抽样分布

σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
概率论与数理统计第六章统计量,样本及抽样分布

(2) X 1
~
2 (n1 ),
X2
~
2 (n2 ),
X1,
X
独
2
立
,
则
X 1 X 2 ~ 2 (n1 n2 ).
(3) X ~ 2 (n), E( X ) n, D( X ) 2n,
.
2021/3/11
20
(4). 2分布的分位点
对于给定的正数,0 1,
称满足条件
P
2 2 (n)
k 1
,
X
k 2
,,
X
k n
独立且与X
k同分布,
E
(
X
k i
)
k
k 1,2,,n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1, A2 ,, Ak ) p g(1,2 ,,k ) 其中g为连续函数.
这就是矩估计法的理论根据.
2021/3/11
18
皮肌炎图片——皮肌炎的症状表现 数理统计
10
3. 总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具体的、确 定的值. 如我们从某班大学生中抽取10人测量身高, 得到10个数,它们是样本取到的值而不是样本. 我 们只能观察到随机变量取的值而见不到随机变量.
2021/3/11
11
总体(理论分布) ?
样本
样本值
统计是从手中已有的资料--样本值,去推断总 体的情况---总体分布F(x)的性质.
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
再由函数的性质有
lim h(t)
n
1 et2 2. 2
统计学第6章统计量及其抽样分布

整理ppt
16
2. T统计量
设X1,X2,…,Xn是来自正态总体N~ (μ,σ2 )
n
的一个样本,
X
1 n
n i 1
Xi
(Xi X )2 s 2 i1
n 1
则 T(X) ~t(n1)
S/ n
称为T统计量,它服从自由度为(n-1)的t分布。
整理ppt
17
F分布
定义:设随机变量Y与Z相互独立,且Y和Z分别服 从自由度为m和n的c2分布,随机变量X有如下表达式:
整理ppt
8
中心极限定理
设从均值为,方差为2的一个任意总 体中抽取容量为n的样本,当n充分大时, 样本均值的抽样分布近似服从均值为μ、 方差为σ2/n的正态分布。
当样本容量足够大时
(n≥30),样本均值的抽样
分布逐渐趋于正态分布
整理ppt
9
标准误差
标准误差:样本统计量与总体参数之间的平均差异
1. 所有可能的样本均值的标准差,测度所有样本 均值的离散程度
因此,估计这100名患者治愈成功的比 例在85%至95%的概率为90.5%
整理ppt
22
6.5 两个样本平均值之差的分布
设
X
1
是独立地抽自总体
X1 ~N(1,12)
的一个容量
为n1的样本的均值。 X 2 是独立地抽自总体
X2 ~N(2,22)的一个容量为n2的样本的均值,则有
E (X 1X 2)E (X 1) E (X 2)12
2. 样本均值的标准误差小于总体标准差
3. 计算公式为
x
n
整理ppt
10
【例】设从一个均值μ=8、标准差σ=0.7的总 体中随机抽取容量为n=49的样本。要求:
第6章-统计量及其抽样分布

对应于每个数值的相对出现频数排成另一列, 由此,全部可能的样本统计量值形成了一个概 率分布,这个分布就是我们想要得到的抽样分 布。
样本均值的抽样分布 与中心极限定理
当总体服从正态分布N(μ,σ2)时,来自该总体的所有 容量为n的样本的均值x也服从正态分布,x 的数
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
样本均值的抽样分布
所有样本均值的均值和1.0 1.5 4.0 16
2.5 m
n
(xi mx )2
s
2 x
i 1
M
M为样本数目
(1.0 2.5)2
(4.0 2.5)2
s2
0.625
16
n
1. 样本均值的均值(数学期望)等于总体均值 2. 样本均值的方差等于总体方差的1/n
从检查一部分得知全体。
复习 抽样方法
抽样方式
概率抽样
非概率抽样
简单随机抽样 整群抽样
多阶段抽样
分层抽样 系统抽样
方便抽样 自愿样本 配额抽样
判断抽样 滚雪球抽样
6.2.1 抽样分布 (sampling distribution)
1. 样本统计量的概率分布,是一种理论分布
在重复选取容量为n的样本时,由该统计量的所有可 能取值形成的相对频数分布
2. 随机变量是 样本统计量
样本均值, 样本比例,样本方差等
3. 结果来自容量相同的所有可能样本
4. 提供了样本统计量长远而稳定的信息,是进行推 断的理论基础,也是抽样推断科学性的重要依据
抽样分布的形成过程 (sampling
distribution)
贾俊平《统计学》课后习题及详解(统计量及其抽样分布)【圣才出品】

第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数? 答:(1)设是从总体中抽取的容量为的一个样本,如果由此样本构造一个函数,不依赖于任何未知参数,则称函数是一个统计量。
(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。
为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。
(3)统计量是样本的一个函数。
由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。
2.判断下列样本函数哪些是统计量?哪些不是统计量?12n X X X ,,…,X n 12()n T X X X ,,…,12()n T X X X ,,…,1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故、是统计量,、不是统计量。
3.什么是次序统计量?答:设是从总体中抽取的一个样本,称为第个次序统计量,它是样本满足如下条件的函数:每当样本得到一组观测值…,时,其由小到大的排序中,第个值就作为次序统计量的观测值,而称为次序统计量,其中和分别为最小和最大次序统计量。
4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。
统计量加工过程中一点信息都不损失的统计量通常称为充分统计量。
5.什么是自由度?答:统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的变量的个数。
统计学 第6章 统计量及其抽样分布

1. 样本统计量的概率分布,是一种理论分布
2. 随机变量是样本统计量
3. 结果来自容量相同的所有可能样本 4. 提供了样本统计量长远而稳定的信息,是进行 推断的理论基础,也是抽样推断科学性的重要 依据
6 - 8 / 55
统计学
STATISTICS (第五版)
重要统计量
1.样本均值:
n 1 若X ~ N(, 2), X X i, n i 1
1 n 1 则E X EX i ,D X 2 n i 1 n 2.样本方差:
n 1 2 S2 ( X X ) i n 1 i 1
1 1 2 2 DX i 2 n n n i 1
X ~ (n)
2
6 - 13 / 55
统计学
STATISTICS (第五版)
2分布
(图示)
n=1 n=4 n=10
n=20
6 - 14 / 55
不同容量样本的抽样分布
2
统计学
STATISTICS (第五版)
2 分布:
定理:如果随机变量 X1, X 2, , X n 相互独立,且都服从 同一正态分布
6.1.1 6.1.2 6.1.3 6.1.4
6 - 4 / 55
统计学
STATISTICS (第五版)
统计量
(statistic)
1. 设 X1,X2,…,Xn 是从总体 X中抽取的容量为 n的一个样本,如果由此样本构造一个函 数 T(X1,X2,…,Xn) ,不依赖于任何未知参 数,则称函数 T(X1,X2,…,Xn) 是一个统计 量
6 - 2 / 55
统计学
STATISTICS (第五版)
第六章 统计量及其抽样分布

样本均值的抽样分布
样本均值的抽样分布
1. 容量相同的所有可能样本的样本均值的概率分 布
2. 一种理论概率分布 3. 进行推断总体总体均值的理论基础
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。 总体的均值、方差及分布如下
第 一
16个样本的均值(x)
个
第二个观察值
观 察值1 2
3
4
11
1.
20.
52. 0.
5
21
2.
25.
03. 5.
0
23
2.
30.
53. 0.
5
24
3.
35.
04. 5.
0
.3 P (X ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 X
第六章 统计量及其抽样分布
抽样理论依据: 1、大数定律 (1)独立同分布大数定律:证明当N足够大时,平均数据有稳定性,为用样本平 均数估计总体平均数提供了理论依据。 (2)贝努力大数定律:证明当n足够大时,频率具有稳定性,为用频率代替概率 提供了理论依据 2、中心极限定律 (1)独立同分布中心极限定律:设从均值为u、方差为s2(有限)的任意一个总体 中抽取样本量为n的样本,但n充分大时,样本均值X的抽样分布近似服从均值为u, 方差为s2/n的正态分布。 (2)德莫佛-拉普拉斯中心极限定律:证明属性总体的样本数和样本方差,在n足 够大时,同样趋于正态分布。
(central limit theorem)
统计学第六章抽样和抽样分布

2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 可加性:若U和V为两个独立的2分布随机变量, U由~度2为(n1n)1,+nV2的~2(2n分2)布,则U+V这一随机变量服从自
5. n→∞时, 2分布的极限分布是正态分布。
第6章统计量及其抽样分布
2分布 (图示)
n=1 n=4 n=10 n=20
不同第容6章量统计样量及本其的抽样抽分布样分布
已知
想知道
所有数据
描述性统计,计算参数
总体特征
何种分布+ 样本数据
统计推断
总体特征
第6章统计量及其抽样分布
为什么能抽样?
中国成语:“一叶知秋” 出自《淮南子·说 山训》:“以小明大,见一叶落而知岁之将 暮,睹瓶中之冰而知天下之寒。”
谚语:“你不必吃完整头牛,才知道肉是老 的”
从检查一部分得知全体。
第6章统计量及其抽样分布
复习 抽样方法
抽样方式
概率抽样
非概率抽样
简单随机抽样 整群抽样
多阶段抽样
分层抽样 系统抽样
方便抽样 自愿样本 配额抽样
判断抽样 滚雪球抽样
第6章统计量及其抽样分布
6.2.1 抽样分布 (sampling distribution)
1. 样本统计量的概率分布,是一种理论分布
2
例题
设随机变量 X ~ 2(20),求 PXk0.05
中的 k 。
解: n20,0.05,查表 :
P X 3 1 .4 1 0 .0 5 , k 3 1 .4 1
即临界值 0.052(20)31.41
第6章统计量及其抽样分布
6.3.2 t 分布(t distribution)
当X=(X1,X2,…,Xn)是来自正态分布总体N(m,s 2)
的一个样本时,
方差
n
2
若m已知,则 ( X i m) 是s 2 的充分统计量;
i 1
均值
若s
2已知,则
X
1 n
n i1
Xi
是m
的充分统计量。
第6章统计量及其抽样分布
6.2 关于分布的几个概念
6.2.1 抽样分布 6.2.2 渐进分布 6.2.3 随机模拟获得的近似分布
思考
随机模拟:大样本时,样本均值服从正态分布吗? 提示:EXCEL——数据分析——随机数发生器
第6章统计量及其抽样分布
6.3 由正态分布导出的几个重要分布
正态分布
几 种
χ 2 分布
概
率
分 布
F 分布
t 分布
第6章统计量及其抽样分布
6.3.1 2分布 (2 distribution)
由阿贝(Abbe) 于1863年首先给出,后来由海 尔墨特(Hermert)和卡·皮尔逊(K·Pearson) 分别 于1875年和1900年推导出来。&&
2分布的概率密度函数
2 x e fn
(x)
1
n
2(
n)
2
n 2
1
2x
0
x 0; x 0.
()0x1exdx
第6章统计量及其抽样分布
2分布 (性质和特点)
1. 分布的变量值始终为正 2. 分布的形状取决其自由度n的大小,通常为不
对称的正偏分布,但随着自由度的增大逐渐趋 于对称
3. 期望为:E(2)=n,方差为:D(2)=2n(n为自由
distribution)
总体
样 本
计算样本统计 量
如:样本均值
、比例、方差
第6章统计量及其抽样分布
6.2.2 渐近分布
当样本量n无限增大时,计算统计量 T(X1,X2,…,Xn)的极限分布,把极限分布作 为抽样分布的一种近似,这种极限分布就 被称为渐近分布。
第6章统计量及其抽样分布
6.2.3 随机模拟获得的近似分布
第6章统计量及其抽样分布
为什么要抽样?
为了收集必要的资料,对所研究对象(总体)的全部元 素逐一进行观测,往往不很现实。
元素多,搜集数据费
抽 样
时、费用大,不及时而 使所得的数据无意义
总体庞大,难以对总 体的全部元素进行 研究
原
因
检查具有破坏性
炮弹、灯管、砖等
第6章统计量及其抽样分布
关于总体,知道得很少
第6章统计量及其抽样分布
6.1 统计量
6.1.1 统计量的概念 6.1.2 常用统计量 6.1.3 次序统计量 6.1.4 充分统计量
第6章统计量及其抽样分布
6.1.1 统计量的概念 (statistic)
1. 设X1,X2,…,Xn是从总体X中抽取的容量为n的 一个样本,如果由此样本构造一个函数 T(X1,X2,…,Xn) , 不 依 赖 于 任 何 未 知 参 数 , 则称函数T(X1,X2,…,Xn)是一个统计量
掌握
一般 了解
6.1.3 次序统计量 一组样本观测值X1,X2,…,Xn由小到大的排序
X(1)≤X(2)≤…≤ X(i)≤…≤ X(n)后,称 X(1),X(2),…,X(n)为次序统计量 中位数、分位数、四分位数等都是次序统计量
第6章统计量及其抽样分布
6.1.4 充分统计量
统计量加工过程中一点信息都不损失的统计量称 为充分统计量。
统计学 第 6 章 统计量及其抽样分布
第6章统计量及其抽样分布
第 6 章 统计量及其抽样分布
6.1 统计量 6.2 关于分布的几个概念 6.3 由正态分布导出的几个重要分布 6.4 样本均值的分布与中心极限定理 6.5 样本比例的抽样分布 6.6 两个样本平均值之差的分布 6.7 关于样本方差的分布
样本均值、样本比例、样本方差等都是统 计量
2. 统计量是样本的一个函数 3. 统计量是统计推断的基础
第6章统计量及其抽样分布
6.1.2 常用统计量
样本均值
样本方差
样本变异系数
样本k 阶矩 mk
样本k 阶中心矩
样本偏度
1 n
n
xik
1 i1
n
n k
i1
xi
xk
样本峰度
第6章统计量及其抽样分布
在重复选取容量为n的样本时,由该统计量的所有可 能取值形成的相对频数分布
2. 随机变量是 样本统计量
样本均值, 样本比例,样本方差等
3. 结果来自容量相同的所有可能样本 4. 提供了样本统计量长远而稳定的信息,是进行推
断的理论基础,也是抽样推断科学性的重要依据
第6章统计量及其抽样分布
抽样分布的形成过程 (sampling
设 随 机 变 量 X1 , X2 , … , Xn 相 互 独 立 ,
n
且 Xi ~ N(0,1) ,则
X
服2 从自由度为n的
i
2分布。
i1
当总体 X~N(m,s2),从中抽取容量为n的样本,
则n
(xi x)2
i1
s2
~ 2(n1)
(n1)s2
s2
~ 2(n1)
第6章统计量及其抽样分布
6.3.1 2分布 (2 distribution)