高数高等数学微分练习题与答案详细讲解(南风暖心)
(完整word版)大一高数同济版期末考试题(精) - 副本

高等数学上(1)一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值;(B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(10=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e .6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:10330()x f x dx xe dx ---=+⎰⎰⎰3()xxd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
高等数学(上册)第4章习题答案_吴赣昌_人民大学出版社_高数_理工类

x2 ★★(6) 1 x2 dx
思路:注意到
x2 x2 1 1 1 1 2 2 1 x 1 x 1 x2
, 根据不定积分的线性性质, 将被积函数分项, 分别积分。
2
解:
x2 1 1 x2 dx dx 1 x2 dx x arctan x C.
课后习题全解
习题 4-1
1.求下列不定积分:
知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!
1
★(1)
x
dx
2
x
1 x2 x
5 2
思路: 被积函数
x
5 2
,由积分表中的公式(2)可解。
解:
x
(
dx
2
2 x dx x 2 C 3 x
cos 2 x
1
1
2
x
dx
1 1 sec2 xdx tan x C. 2 2
★ (17)
思路:不难,关键知道“ cos 2 x cos x sin x (cos x sin x)(cos x sin x) ” 。
2 2
解:
cos x sin xdx (cos x sin x)dx sin x cos x C. cos
第4章
名称 不 定 积 分 的 概 念 设
不定积分
主要内容
内容概要
f ( x) , x I ,若存在函数 F ( x) ,使得对任意 x I 均有 F ( x) f ( x) f ( x)dx ,则称 F ( x) 为 f ( x) 的一个原函数。
考研数学复习教程答案详解高数部分

第一篇高等数学第一章函数、极限与连续强化训练(一)一、选择题1.2.提示:参照“例1.1.5”求解。
3.4.解因选项(D)中的 不能保证任意小,故选(D)5.6.7.8.9.10.二、填空题11.提示:由2cos 12sin 2xx =-可得。
12.13.提示:由1 未定式结果可得。
14.提示:分子有理化,再同除以n即可。
15.提示:分子、分母利用等价无穷小代换处理即可。
16.17.提示:先指数对数化,再利用洛必达法则。
18.19.解因()2000122(1cos )22cos 2lim lim lim lim lim 1x x x x x x x xx f x x xxx -----→→→→→⋅---=====- ()0lim lim xx x f x ae a --→→==, 而()0f a =,故由()f x 在 0x =处连续可知,1a =-。
20.提示:先求极限(1∞型)得到()f x 的表达式,再求函数的连续区间。
三、 解答题 21.(1)(2)提示:利用皮亚诺型余项泰勒公式处理12sin ,sin x x。
(3)(4)(5)提示:先指数对数化,再用洛必达法则。
(6)提示:请参照“例1.2.14(3)”求解。
22.23.解 由题设极限等式条件得21()ln(cos )201()lim ,limln(cos )1f x x xxx x f x e e x x x+→→=+=, 即 2201()1()limln(cos )lim ln(1cos 1)1x x f x f x x x x x x x→→+=+-+=, 利用等价无穷小代换,得201()lim(cos 1)1x f x x x x →-+=,即230cos 1()lim()1x x f x x x→-+=, 故 30()3lim 2x f x x →=。
24.提示:先指数对数化,再由导数定义可得。
25.26.28.提示:利用皮亚诺型余项泰勒公式求解。
大学高等数学上考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x =(C )()f x x = 和 ()()2g x x =(D )()||x f x x=和 ()g x =1 2.函数()()sin 420ln 10x x f x x a x ⎧+-≠⎪=+⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰ ②()220dxa x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A4.C 5.D 6.C 7.D 8.A9.A10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121x x e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x-+=+⎰___________. 三.计算题(每小题5分,共30分) 1.求下列极限:①()1lim 12x x x →+②arctan 2lim 1x x xπ→+∞-2.求由方程1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()x y f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________.7. 20_______________________.x td e dt dx-=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭ 三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy .3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x < 2.4a = 3.2x = 4.'()x x e f e 5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+=三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰ =221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy eC x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos2)( ,则 =)(x f ( ).A 、2sinx B 、 2sin x - C 、 C x +2sin D 、2sin 2x - 7、⎰=+dx x x ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰104dx x π B 、⎰1ydy π C 、⎰-10)1(dy y π D 、⎰-14)1(dx x π 9、⎰=+101dx e e xx( ).A 、21lne + B 、22ln e + C 、31ln e+ D 、221ln e +10、微分方程 x e y y y 22=+'+'' 的一个特解为( ). A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数x xe y =,则 =''y ;2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 xx x x --+→11lim; 2、求x x y s i n ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分 ⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、x e x )2(+; 2、94; 3、0 ; 4、x e x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x c o slim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→ 3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C x xdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰104dx xπ B 、⎰10ydy πC 、⎰-10)1(dy y π D 、⎰-104)1(dx x π 9、设a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 x xe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x ;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、x e x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、x x e C e C 221+. 三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e - ; 6、x e xy 122-= ;四、1、 29; 2、图略。
高数课后答案详解

高数课后答案详解【篇一:高数课后习题答案】txt>▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆《全新版大学英语综合教程》(第三册)练习答案及课文译文/viewthread.php?tid=77fromuid=164951《全新版大学英语综合教程》(第一册)练习答案及课文译文/viewthread.php?tid=75fromuid=164951《会计学原理》同步练习题答案/viewthread.php?tid=305fromuid=164951《微观经济学》课后答案(高鸿业版)/viewthread.php?tid=283fromuid=164951《统计学》课后答案(第二版,贾俊平版)/viewthread.php?tid=29fromuid=164951《西方经济学》习题答案(第三版,高鸿业)可直接打印/viewthread.php?tid=289fromuid=164951毛邓三全部课后思考题答案(高教版)/毛邓三课后答案/viewthread.php?tid=514fromuid=164951新视野大学英语听说教程1听力原文及答案下载/viewthread.php?tid=2531fromuid=164951西方宏观经济高鸿业第四版课后答案/viewthread.php?tid=2006fromuid=164951《管理学》经典笔记(周三多,第二版)/viewthread.php?tid=280fromuid=164951《中国近代史纲要》课后习题答案/viewthread.php?tid=186fromuid=164951《理论力学》课后习题答案/viewthread.php?tid=55fromuid=164951《线性代数》(同济第四版)课后习题答案(完整版)/viewthread.php?tid=17fromuid=164951高等数学(同济第五版)课后答案(pdf格式,共527页)/viewthread.php?tid=18fromuid=164951中国近现代史纲要课后题答案/viewthread.php?tid=5900fromuid=164951曼昆《经济学原理》课后习题解答/viewthread.php?tid=85fromuid=16495121世纪大学英语读写教程(第三册)参考答案/viewthread.php?tid=5fromuid=164951谢希仁《计算机网络教程》(第五版)习题参考答案(共48页)/viewthread.php?tid=28fromuid=164951《概率论与数理统计》习题答案/viewthread.php?tid=57fromuid=164951《模拟电子技术基础》详细习题答案(童诗白,华成英版,高教版) /viewthread.php?tid=42fromuid=164951《机械设计》课后习题答案(高教版,第八版,西北工业大学)《大学物理》完整习题答案/viewthread.php?tid=217fromuid=164951《管理学》课后答案(周三多)/viewthread.php?tid=304fromuid=164951机械设计基础(第五版)习题答案[杨可桢等主编]/viewthread.php?tid=23fromuid=164951程守洙、江之永主编《普通物理学》(第五版)详细解答及辅导/viewthread.php?tid=3fromuid=164951新视野大学英语课本详解(四册全)/viewthread.php?tid=1275fromuid=16495121世纪大学英语读写教程(第四册)课后答案/viewthread.php?tid=7fromuid=164951新视野大学英语读写教程3册的课后习题答案/viewthread.php?tid=805fromuid=164951新视野大学英语第四册答案(第二版)/viewthread.php?tid=5310fromuid=164951《中国近现代史》选择题全集(共含250道题目和答案)/viewthread.php?tid=181fromuid=164951《电工学》课后习题答案(第六版,上册,秦曾煌主编)/viewthread.php?tid=232fromuid=164951完整的英文原版曼昆宏观、微观经济学答案/viewthread.php?tid=47fromuid=164951《数字电子技术基础》习题答案(阎石,第五版)/viewthread.php?tid=90fromuid=164951《电路》习题答案上(邱关源,第五版)/viewthread.php?tid=137fromuid=164951《电工学》习题答案(第六版,秦曾煌)/viewthread.php?tid=112fromuid=16495121世纪大学英语读写教程(第三册)课文翻译/viewthread.php?tid=6fromuid=164951《生物化学》复习资料大全(3套试卷及答案+各章习题集)/viewthread.php?tid=258fromuid=164951《模拟电子技术基础》课后习题答案(共10章)/viewthread.php?tid=21fromuid=164951《概率论与数理统计及其应用》课后答案(浙江大学盛骤谢式千编著)/viewthread.php?tid=178fromuid=164951《理论力学》课后习题答案(赫桐生,高教版)《全新版大学英语综合教程》(第四册)练习答案及课文译文/viewthread.php?tid=78fromuid=164951《化工原理答案》课后习题答案(高教出版社,王志魁主编,第三版)/viewthread.php?tid=195fromuid=164951《国际贸易》课后习题答案(海闻 p.林德特王新奎)大学英语综合教程 1-4册练习答案/viewthread.php?tid=1282fromuid=164951《流体力学》习题答案/viewthread.php?tid=83fromuid=164951《传热学》课后习题答案(第四版)/viewthread.php?tid=200fromuid=164951高等数学习题答案及提示/viewthread.php?tid=260fromuid=164951《高分子化学》课后习题答案(第四版,潘祖仁主编)/viewthread.php?tid=236fromuid=164951/viewthread.php?tid=6417fromuid=164951《计算机网络》课后习题解答(谢希仁,第五版)/viewthread.php?tid=3434fromuid=164951《概率论与数理统计》优秀学习资料/viewthread.php?tid=182fromuid=164951《离散数学》习题答案(高等教育出版社)/viewthread.php?tid=102fromuid=164951《模拟电子技术基础简明教程》课后习题答案(杨素行第三版) /viewthread.php?tid=41fromuid=164951《信号与线性系统分析》习题答案及辅导参考(吴大正版)/viewthread.php?tid=74fromuid=164951《教育心理学》课后习题答案(皮连生版)/viewthread.php?tid=277fromuid=164951《理论力学》习题答案(动力学和静力学)/viewthread.php?tid=221fromuid=164951选修课《中国现当代文学》资料包/viewthread.php?tid=273fromuid=164951机械设计课程设计——二级斜齿圆柱齿轮减速器(word+原图)/viewthread.php?tid=35fromuid=164951《成本会计》配套习题集参考答案/viewthread.php?tid=300fromuid=164951《概率论与数理统计》8套习题及习题答案(自学推荐)/viewthread.php?tid=249fromuid=164951《现代西方经济学(微观经济学)》笔记与课后习题详解(第3版,宋承先) /viewthread.php?tid=294fromuid=164951《计算机操作系统》习题答案(汤子瀛版,完整版)/viewthread.php?tid=262fromuid=164951《线性代数》9套习题+9套相应答案(自学,复习推荐)/viewthread.php?tid=244fromuid=164951《管理理论与实务》课后题答案(手写版,中央财经大学,赵丽芬)统计学原理作业及参考答案/viewthread.php?tid=13fromuid=164951机械设计课程设计——带式运输机的传动装置的设计/viewthread.php?tid=222fromuid=164951/viewthread.php?tid=50fromuid=164951《新编大学英语》课后答案(第三册)/viewthread.php?tid=168fromuid=164951《通信原理》课后习题答案及每章总结(樊昌信,国防工业出版社,第五版) /viewthread.php?tid=203fromuid=164951《c语言程序与设计》习题答案(谭浩强,第三版)/viewthread.php?tid=59fromuid=164951《微生物学》课后习题答案(周德庆版)/viewthread.php?tid=291fromuid=164951新视野第二版全四册听说教程答案/viewthread.php?tid=6959fromuid=164951《宏观经济学》课后答案(曼昆,中文版)/viewthread.php?tid=138fromuid=164951《电力电子技术》习题答案(第四版,王兆安,王俊主编)/viewthread.php?tid=164fromuid=164951《土力学》习题解答/课后答案/viewthread.php?tid=43fromuid=164951《公司法》课后练习及参考答案/viewthread.php?tid=307fromuid=164951《全新版大学英语综合教程》(第二册)练习答案及课文译文 /viewthread.php?tid=76fromuid=164951新视野大学英语视听说第三册答案/viewthread.php?tid=5161fromuid=164951《工程力学》课后习题答案(梅凤翔主编)/viewthread.php?tid=191fromuid=164951《理论力学》详细习题答案(第六版,哈工大出版社)/viewthread.php?tid=2445fromuid=164951《成本会计》习题及答案(自学推荐,23页)/viewthread.php?tid=301fromuid=164951《自动控制原理》课后题答案(胡寿松,第四版)/viewthread.php?tid=52fromuid=164951《复变函数》习题答案(第四版)/viewthread.php?tid=118fromuid=164951《信号与系统》习题答案(第四版,吴大正)/viewthread.php?tid=268fromuid=164951《有机化学》课后答案(第二版,高教版,徐寿昌主编)/viewthread.php?tid=3830fromuid=164951《电工学——电子技术》习题答案(下册)《财务管理学》章后练习参考答案(人大出版,第四版)/viewthread.php?tid=292fromuid=164951现代汉语题库(语法部分)及答案/viewthread.php?tid=211fromuid=164951《概率论与数理统计》习题详解(浙大二、三版通用)/viewthread.php?tid=80fromuid=164951《有机化学》习题答案(汪小兰主编)/viewthread.php?tid=69fromuid=164951《微机原理及应用》习题答案/viewthread.php?tid=261fromuid=164951《管理运筹学》第二版习题答案(韩伯棠教授)/viewthread.php?tid=34fromuid=164951《古代汉语》习题集(附习题答案)福建人民出版社/viewthread.php?tid=1277fromuid=164951《金融市场学》课后习题答案(张亦春,郑振龙,第二版) /viewthread.php?tid=279fromuid=164951《公共关系学》习题及参考答案(复习必备)/viewthread.php?tid=308fromuid=164951现代汉语通论(邵敬敏版)词汇语法课后练习答案/viewthread.php?tid=1429fromuid=164951《国际经济学》教师手册及课后习题答案(克鲁格曼,第六版) /viewthread.php?tid=281fromuid=164951《教育技术》课后习题答案参考(北师大)/viewthread.php?tid=199fromuid=164951《金融市场学》课后答案(郑振龙版)/viewthread.php?tid=24fromuid=164951《组织行为学》习题集答案(参考下,还是蛮好的)/viewthread.php?tid=297fromuid=164951《分析化学》课后习题答案(第五版,高教版)/viewthread.php?tid=122fromuid=164951大学英语精读第3册答案(外教社)/viewthread.php?tid=9fromuid=164951《国际经济学》习题答案(萨尔瓦多,英文版)/viewthread.php?tid=155fromuid=164951《复变函数与积分变换》习题答案/viewthread.php?tid=70fromuid=164951《信息论与编码》辅导ppt及部分习题答案(曹雪虹,张宗橙,北京邮电大学出版社) /viewthread.php?tid=136fromuid=164951《宏观经济学》习题答案(第七版,多恩布什)/viewthread.php?tid=293fromuid=164951《物理化学》习题解答(天津大学, 第四版,106张)/viewthread.php?tid=2647fromuid=164951新视野大学英语视听说教程第一册【篇二:高数练习题及答案】xt>一、填空题(每空3分,共15分)z?的定义域为y2yy2(1)函数(2)已知函数z?arctan20?zx,则?x?=(x?y)ds?(3)交换积分次序,?dy?f(x,y)dx(4)已知l是连接(0,1),(1,0)两点的直线段,则?l(5)已知微分方程y???2y??3y?0,则其通解为二、选择题(每空3分,共15分)?x?3y?2z?1?0?(1)设直线l为?2x?y?10z?3?0,平面?为4x?2y?z?2?0,则() a. l平行于? b. l在?上 c. l垂直于?d. l与?斜交(2()xyz?确定,则在点(1,0,?1)处的dz??2a.dx?dyb.dx?22d.dx?2?2(3)已知?是由曲面4z?25(x?y)及平面z?5所围成的闭区域,将在柱面坐标系下化成三次积分为() a.?0c.2????(x?y)dv5d??rdr?dz235?2?0d??rdr?dz2?22543?2?0d??20rdr?5dz2r35d. ()1?d??rdr?dz(4)已知幂级数a. 2b. 1c. 2d. (5)微分方程y???3y??2y?3x?2e的特解y的形式为y?()a.xx??xxb.(ax?b)xec.(ax?b)?ced.(ax?b)?cxe三、计算题(每题8分,共48分)x?11、求过直线l1:12?y?20?z?3?1且平行于直线l2:x?22?y?11?z1的平面方程?z?z2、已知z?f(xy,xy),求?x, ?y3、设d?{(x,y)x?y?4}22,利用极坐标求??dxdxdy24、求函数f(x,y)?e(x?y?2y)的极值?x?t?sint?(2xy?3sinx)dx?(x?e)dy?5、计算曲线积分l,其中l为摆线?y?1?cost从点2y2x2o(0,0)到a(?,2)的一段弧x?xy?y?xe6、求微分方程满足 yx?1?1的特解四.解答题(共22分)1、利用高斯公式计算半球面z????2xzdydz?yzdzdx?z?dxdy,其中?由圆锥面z?与上(10? )?2、(1)判别级数?n?1(?1)n?1n3n?1的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6?)n?(2)在x?(?1,1)求幂级数n?1?nx的和函数(6?)高等数学(下)模拟试卷二一.填空题(每空3分,共15分)z?(1)函数ln(1?x?y)的定义域为;elnx0xy(2)已知函数z?e,则在(2,1)处的全微分dz?(3)交换积分次序,?1dx?f(x,y)dy2=;(4)已知l是抛物线y?x上点o(0,0与点b(1,1之间的一段弧,则?l?;(5)已知微分方程y???2y??y?0,则其通解为 .二.选择题(每空3分,共15分)?x?y?3z?0?(1)设直线l为?x?y?z?0,平面?为x?y?z?1?0,则l与?的夹角为();???z?a. 0b. 2c. 3d. 4 (2)设z?f(x,y)是由方程z?3xyz?a确定,则?x yz2233?();xy2yz2x?xz2?a. xy?zb. z?xyc. xy?zd. z?xy (3)微分方程y???5y??6y?xe 的特解y的形式为y?();a.(ax?b)e2xb.(ax?b)xe222xc.(ax?b)?ce22xd.(ax?b)?cxe2x(4)已知?是由球面x?y?z?a所围成的闭区域, 将三次积分为(); a?02?2???dv?在球面坐标系下化成a?20d??sin?d??rdra2b.?02??20d??d??rdr2?a20c.?02?d??d??rdr?ad.?02nd??sin?d??rdr??(5)已知幂级数n?1?2n?1xn,则其收敛半径().1a. 2b. 1c. 2三.计算题(每题8分,共48分)5、求过a(0,2,4)且与两平面?1:x?2z?1和?2:y?3z?2平行的直线方程 .?z?z6、已知z?f(sinxcosy,e22x?y),求?x, ?y.7、设d?{(x,y)x?y?1,0?y?x},利用极坐标计算22??arctandyxdxdy.8、求函数f(x,y)?x?5y?6x?10y?6的极值. 9、利用格林公式计算? 222l(esiny?2y)dx?(ecosy?2)dyxx,其中l为沿上半圆周(x?a)?y?a,y?0、从a(2a,0)到o(0,0)的弧段.x?16、求微分方程四.解答题(共22分)y??y3?(x?1)2的通解.?1、(1)(6?)判别级数敛;n?1(?1)n?12sinn?3的敛散性,若收敛,判别是绝对收敛还是条件收?n(2)(4?)在区间(?1,1)内求幂级数2、(12?)利用高斯公式计算 z?x?y(0?z?1)的下侧22?n?1?xnn的和函数 .??2xdydz?ydzdx?zdxdy,?为抛物面高等数学(下)模拟试卷三一.填空题(每空3分,共15分)1、函数y?arcsin(x?3)的定义域为 .2、n??3n?3n?2=.3、已知y?ln(1?x),在x?1处的微分dy?.2lim(n?2)22?4、定积分1?1(x2006sinx?x)dx?2.dy5、求由方程y?2y?x?3x?0所确定的隐函数的导数dx57.二.选择题(每空3分,共15分)x?3x?2的间断点 1、x?2是函数(a)可去(b)跳跃(c)无穷(d)振荡y?x?1222、积分?10=.(a) ?(b)??(c) 0 (d) 13、函数y?e?x?1在(??,0]内的单调性是。
(word完整版)高等数学同步练习题(2021年整理)

(word完整版)高等数学同步练习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高等数学同步练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高等数学同步练习题(word版可编辑修改)的全部内容。
高等数学同步练习题 第一部分 函数1。
求下列函数的定义域: (1)1)1ln(12++-=x x y ; (2) ][1a x y +=。
2。
讨论下列哪些函数相同: (1) x ln 2与2ln x ; (2) 2x 与x ;(3) x 与x x sgn . 3.讨论下列函数奇偶性:(1) )1ln(2x x y ++=; (2) x e x y 2=; 4。
(1) 设52)2(2+-=+x x x f ,求)2(-x f ; (2) 设x e f x =+)1(,求)(x f ;(3)设221)1(x x x x f +=+,求)(x f .5。
设⎪⎩⎪⎨⎧>-=<=111011)(x x x x f ,x e x g =)(,求)]([x g f 和)]([x f g 并作出这两个函数的图形。
第二部分 一元微分学一、求导数1. 若函数)(x f 在a 可导,计算 (1)ah a f h f ah --→)()(lim;(2)h h a f a f h )()(lim 0--→;(3)ha f h a f h )()2(lim-+→;(4)hh a f h a f h 2)()2(lim+-+→。
2。
求导数: (1) x y =;(2) 53x x y =.(3) xy 1=(4) 531xxy =3. 求下列曲线在指定点的切线及法线方程 (1) )1,1(1在点xy =处;(2) )21,3(cos π在点xy =处.(3) 求2x y =在点)0,1(-处的切线4. 若函数)(x f 在a 处可导,计算)]()1([lim a f n a f n n -+∞→。
重庆大学高数(下)期末试题六(含答案) (自动保存的)

重庆大学《高等数学(工学类)》课程试卷 第1页 共1页重庆大学《高等数学(工学类)》课程试卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:考试时间: 120 分一、选择题(每小题3分,共18分)1. 设函数),(y x f 在曲线弧L上有定义且连续,L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ (),t αβ≤≤其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且22()()0,t t ϕψ''+≠则曲线积分(,)().L f x y ds =⎰(A)⎰βαψϕdt t t f ))(),(( (B)⎰'+'αβψϕψϕdt t t t t f )()())(),((22(C) ⎰αβψϕdt t t f ))(),(( (D) ⎰'+'βαψϕψϕdt t t t t f )()())(),((22知识点:对弧长曲线积分公式;难度等级:1 答案: D2. 设级数∑∞=1n n a 为一交错级数,则().(A)该级数必收敛 (B)该级数必发散(C)该级数可能收敛,也可能发散(D)若0(),n a n →→∞则必收敛知识点:级数收敛的判断;难度等级:1 答案: C3. 下列方程中,设21,y y 是它的解,可以推知21y y +也是它的解的方程是().(A)0)()(=++'x q y x p y (B) 0)()(=+'+''y x q y x p y(C) ()()()y p x y q x y f x '''++= (D) ()()0y p x y q x '''++=知识点:线性微分方程的解的性质;难度等级:1答案 答案: B微答4. 设函数(,)F x y 可微,如果曲线积分(,)()C F x y xdx ydy +⎰与路径无关,则(,)F x y 应满足().(A)(,)(,)y x yF x y xF x y ''= (B)(,)(,)y x F x y F x y ''=命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密(C)(,)(,)yy xx yF x y xF x y ''''= (D)(,)(,)y x xF x y yF x y ''= 知识点:曲线积分与路径无关;难度等级:1;答案: D 分析: 由曲线积分与路径无关的条件,计算可得. 5. 设2222:,x y z R Ω++≤则⎰⎰⎰Ω+dxdydz y x )(22().=(A) 538R π (B) 534R π (C)5158R π (D) 51516R π 知识点:三重积分计算;难度等级:2;答案: C 6. 已知曲线)(x y y =经过原点且在原点处的切线与直线062=++y x平 行,而)(x y 满足微分方程250,y y y '''-+=则曲线的方程为=y().(A)x e x 2sin - (B) )2cos 2(sin x x e x -(C) )2sin 2(cos x x e x - (D)x e x 2sin知识点:二阶线性齐次微分方程的通解;难度等级:1;答案: A二、填空题(每小题3分,共18分)7. 设2,yzt xz u e dt =⎰则__________.uz ∂=∂知识点:多元函数的偏导数,变限函数求导;难度等级:1。
中国石油大学高等数学高数期末考试试卷及答案-(14)

A卷2009—2010学年第一学期《高等数学(2-1)》期末试卷专业班级姓名学号开课系室基础数学系考试日期 2010年1月11日注意事项1.请在试卷正面答题,反面及附页可作草稿纸;2.答题时请注意书写清楚,保持卷面清洁;3.本试卷共五道大题,满分100分;试卷本请勿撕开,否则作废.一.填空题(共5小题,每小题4分,共计20分)1.21lim()xx x e x →-=.2.()()1200511xx x x e e dx --+-=⎰ .3.设函数()y y x =由方程21x yt e dt x+-=⎰确定,则0x dydx==.4. 设()x f 可导,且1()()xtf t dt f x =⎰,1)0(=f ,则()=x f . 5.微分方程044=+'+''y y y 的通解为 .二.选择题(共4小题,每小题4分,共计16分)1.设常数0>k ,则函数k e x x x f +-=ln )(在),0(∞+内零点的个数为( ).(A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分方程43cos2y y x ''+=的特解形式为( ).(A )cos2y A x *=; (B )cos2y Ax x *=;(C )cos2sin2y Ax x Bx x *=+; (D )x A y 2sin *=. 3.下列结论不一定成立的是( ). (A )若[][]b a d c ,,⊆,则必有()()⎰⎰≤badcdxx f dx x f ;(B )若0)(≥x f 在[]b a ,上可积,则()0baf x dx ≥⎰;(C )若()x f 是周期为T 的连续函数,则对任意常数a 都有()()⎰⎰+=TT a adxx f dx x f 0;(D )若可积函数()x f 为奇函数,则()0xt f t dt ⎰也为奇函数. 4. 设()xx e ex f 11321++=, 则0=x 是)(x f 的( ). (A) 连续点; (B) 可去间断点;(C) 跳跃间断点; (D) 无穷间断点.三.计算题(共5小题,每小题6分,共计30分) 1.计算定积分230x x e dx-.2.计算不定积分dx x xx ⎰5cos sin .3.求摆线⎩⎨⎧-=-=),cos 1(),sin (t a y t t a x 在2π=t 处的切线的方程.4. 设20()cos()xF x x t dt=-⎰,求)(x F '.5.设n n n n n x nn )2()3)(2)(1( +++=,求nn x ∞→lim .四.应用题(共3小题,每小题9分,共计27分) 1.求由曲线2-=x y 与该曲线过坐标原点的切线及x 轴所围图形的面积.2.设平面图形D 由222x y x +≤与y x ≥所确定,试求D 绕直线2=x 旋转一周所生成的旋转体的体积.3. 设1,a >at a t f t-=)(在(,)-∞+∞内的驻点为 (). t a 问a 为何值时)(a t 最小? 并求最小值.五.证明题(7分)设函数()f x 在[0,1]上连续,在(0,1)内可导且1(0)=(1)0,()12f f f ==,试证明至少存在一点(0,1)ξ∈, 使得()=1.f ξ'一.填空题(每小题4分,5题共20分):1. 21lim()xx x e x →-=21e .2.()()1200511x x x x e e dx --+-=⎰e 4.3.设函数()y y x =由方程21x yt e dt x +-=⎰确定,则0x dydx==1-e .4. 设()x f 可导,且1()()x tf t dt f x =⎰,1)0(=f ,则()=x f 221x e.5.微分方程044=+'+''y y y 的通解为xe x C C y 221)(-+=.二.选择题(每小题4分,4题共16分):1.设常数0>k ,则函数ke x x xf +-=ln )( 在),0(∞+内零点的个数为( B ). (A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分方程x y y 2cos 34=+''的特解形式为 ( C )(A )cos2y A x *=; (B )cos2y Ax x *=; (C )cos2sin2y Ax x Bx x *=+; (D )x A y 2sin *= 3.下列结论不一定成立的是 ( A )(A) 若[][]b a d c ,,⊆,则必有()()⎰⎰≤badcdxx f dx x f ;(B) 若0)(≥x f 在[]b a ,上可积,则()0baf x dx ≥⎰;(C) 若()x f 是周期为T 的连续函数,则对任意常数a 都有()()⎰⎰+=TT a adxx f dx x f 0;(D) 若可积函数()x f 为奇函数,则()0xt f t dt ⎰也为奇函数.4. 设()xx e ex f 11321++=, 则0=x 是)(x f 的( C ). (A) 连续点; (B) 可去间断点;(C) 跳跃间断点; (D) 无穷间断点. 三.计算题(每小题6分,5题共30分): 1.计算定积分⎰-232dxe x x .解:⎰⎰⎰----===202020322121,2tt x tde dt te dx ex t x 则设 -------2⎥⎦⎤⎢⎣⎡--=⎰--200221dt e te t t -------2 2223210221----=--=e e e t --------22.计算不定积分dx x x x ⎰5cos sin .解:⎥⎦⎤⎢⎣⎡-==⎰⎰⎰x dx x x x xd dx x x x 4445cos cos 41)cos 1(41cos sin --------3C x x x x x d x x x +--=+-=⎰tan 41tan 121cos 4tan )1(tan 41cos 43424 -----------3 3.求摆线⎩⎨⎧-=-=),cos 1(),sin (t a y t t a x 在2π=t 处的切线的方程. 解:切点为)),12((a a -π-------22π==t dx dy k 2)c o s 1(s i n π=-=t ta ta 1= -------2切线方程为)12(--=-πa x a y 即ax y )22(π-+=. -------24. 设 ⎰-=xdtt x x F 02)cos()(,则=')(x F )cos()12(cos 222x x x x x ---.5.设n n n n n x nn )2()3)(2)(1( +++=,求nn x ∞→lim .解:)1l n (1ln 1∑=+=n i n n i n x ---------2 ⎰∑+=+==∞→∞→101)1ln(1)1ln(lim ln lim dxx n n i x n i n n n --------------2=12ln 211)1ln(1010-=+-+⎰dx x x x x ------------2故 nn x ∞→lim =e e 412ln 2=- 四.应用题(每小题9分,3题共27分) 1.求由曲线2-=x y 与该曲线过坐标原点的切线及x 轴所围图形的面积.解:设切点为),00y x (,则过原点的切线方程为xx y 2210-=,由于点),00y x (在切线上,带入切线方程,解得切点为2,400==y x .-----3 过原点和点)2,4(的切线方程为22xy =-----------------------------3面积dyy y s )222(22⎰-+==322-------------------3或 322)2221(2212042=--+=⎰⎰dx x x xdx s2.设平面图形D 由222x y x +≤与y x ≥所确定,试求D 绕直线2=x 旋转一周所生成的旋转体的体积.解: 法一:21V V V -=[][]⎰⎰⎰---=-----=102212122)1(12)2()11(2dyy ydyy dy y πππ -------6)314(201)1(31423-=⎥⎦⎤⎢⎣⎡--=ππππy --------3 法二:V =⎰---12)2)(2(2dxx x x x π⎰⎰----=101022)2(22)2(2dxx x dx x x x ππ ------------------ 5[]⎰--+--=102234222)22(ππdx x x x x x ππππππππ322134213234141201)2(3222232-=-+=-⎥⎦⎤⎢⎣⎡⨯⨯+-=x x ------------- 43. 设1,a >at a t f t-=)(在(,)-∞+∞内的驻点为 (). t a 问a 为何值时)(a t 最小? 并求最小值.解:.ln ln ln 1)(0ln )(a aa t a a a t f t -==-='得由 --------------- 30)(l n 1ln ln )(2e e a a a a a t ==-='得唯一驻点又由------------3.)(,0)(,;0)(,的极小值点为于是时当时当a t e a a t e a a t e a e e e =<'<>'>-----2故.11ln 1)(,)(e e e e t a t e a e e -=-==最小值为的最小值点为--------------1五.证明题(7分)设函数()f x 在[0,1]上连续,在(0,1)内可导且1(0)=(1)0,()12f f f ==,试证明至少存在一点(0,1)ξ∈, 使得()=1.f ξ'证明:设()()F x f x x =-,()F x 在[0,1]上连续在(0,1)可导,因(0)=(1)=0f f ,有(0)(0)00,(1)(1)11F f F f =-==-=-,--------------- 2又由1()=12f ,知11111()=()-=1-=22222F f ,在1[1]2,上()F x 用零点定理,根据11(1)()=-022F F <,--------------- 2可知在1(1)2,内至少存在一点η,使得1()=0(,1)(0,1)2F ηη∈⊂,,(0)=()=0F F η由ROLLE 中值定理得 至少存在一点(0,)(0,1)ξη∈⊂使得()=0F ξ'即()1=0f ξ'-,证毕. --------------3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 12 第二节 微分 §2.1 微分的概念 一、微分概念的引入 在实际测量中,由于受到仪器精度的限制,往往会产生误差。例如x0为准确数,实际测量出是x*=x0+Δx为x0的近似数,由此产生的误差为Δx相应产生的函数值的误差Δy=f(x0+Δx)-f(x0),往往需要估计Δy的值。如果f(x0+Δx),f(x0)计算很复杂。因此计算Δy也很麻烦或者实际中只知道近似数x*与误差|Δx|≤δ,又如何估计Δy? 假设f′(x)存在,则
0xlimx)x(f)xx("f00=0xlimxy=f′(x0),有
xy=f′(x0)+α,0xlimα=0,于是
Δy=f′(x0)Δx+αΔx,而0xlimxx=0 (1)即 αΔx=0(Δx)(Δx→0)因此,当|Δx|很小时, Δy≈f′(x0)Δx 在实际中如果不知道x0,只知道x*,由x0,x*相差很小,则 Δy≈f′(x*)Δx,从而可以估计出Δy。 从(1)式我们看到,f′(x0)相对Δx是一个常数,αΔx是Δx的高阶无穷小,如果Δy=AΔx+0(Δx)(Δx→0),则Δy≈AΔx,由此得到微分的概念。 二、微分的概念 2 / 12
定义 设y=f(x)在x0的某领域U(x0)有定义,若 Δy=f(x+Δx)-f(x)可表示为 Δy=AΔx+o(Δx) (Δx→0) 其中A是写Δx无关的常数,AΔx称为Δy的线性部。则称y=f(x)在点x处可微,称线性部AΔx为y=f(x)在点x处的微分,记为dy,即dy=AΔx。 三、可微与可导的关系 从概念的引入,我们可以看到可导必可微,反之也是正确的。因此有 定理 函数y=f(x)在点x可微的充要条件是函数y=f(x)在点x处可导。且A=f′(x)。 证 充分性,由f(x)在点x处可导,有
0xlimxy=f′(x),于是
xy=f′(x)+α,其中0xlimα=0,有
Δy=f′(x)Δx+αΔx,由0xlimxy=0,有αΔx=o(Δx)(Δx→0) 所以 Δy=f′(x)Δx+o(Δx) (Δx→0) 因此,y=f(x)在点x处可微且f′(x)=A。 必要性 由y=f(x)在点x处可微,由定义知 Δy=AΔx+0(Δx) (Δx→0),A与Δx无关。 3 / 12
由0xlimxy=0xlim[A+x)x(O]=A=f′(x) 所以y=f(x)在点x处可导。 于是,若y=f(x)在点x处可微,则 dy=AΔx,由A=f′(x),有 dy=f′(x)Δx 由函数x在x处可微,则dx=(x)′Δx=Δx,即自变量的改变量等于自变量的微分,因此
dy=f′(x)dx等价于dxdy=f′(x) 由此可见,导数f′(x)等于函数y=f(x)的微分dy与自变量x的微分dx的商。因此,导数又称为微商,这时dxdy不仅可以看成一个整体记号,也可以看成dy与dx的商。 下面举几个例子,来说明微分的一些实际意义 (1) 圆面积S=πr2,其中r为圆半径,则 图2-6 ΔS=π(r+Δr)2-πr2=2πrΔr+π(Δr)2 ds=2πrΔr=2πrdr 当半径有增量Δr时,圆面积的增量ΔS,如图中圆环表示,用微分ds近似它即以边长为2πr(圆)环圆长)高为圆环厚度dr的长方形面积来近似。如图2-7 图2-7 (2)圆柱体体积V=πr2h,其中r为圆柱体的底面半径,h为圆柱的4 / 12
高 Δv=π(r+Δr)2h-πr2h =2πrhΔhΔr+πh(Δr)2 dv=2πrhΔr=2πrhdr 图2-8 当底面半径有增量Δr时,圆柱体的增量Δv,如图中空心圆柱表示,用微分dv近似,即底面长为2πr(圆柱底面周长)宽为h(圆柱的高)高为圆柱厚度Δr的长方体体积。如图2-9
(3)球的体积v=34πr3(其中r为地球半径),当半径有增量Δr时,球体积的增量(即薄球壳的体积Δv) ΔV=34π(r+Δr)3-34πr3
=34π[r3+3r2Δr+3rΔr3-πr3] =4πr2Δr+(4rπΔr+34πΔr2)Δr dv=4πr2Δr 即薄球壳的体积Δv用微分dv近似即以球壳球面面积4πr2与厚dr的乘积来近似。 四、微分的几何意义 若y=f(x)在点x处可微,则 Δy=f′(x)Δx+o(Δx)=dy+o(Δx) 5 / 12
图2-9 及PT中曲线y=f(x)在曲线上点P(x,y)处的切线斜率tanα=f′(x) Δy=f(x+Δx)-f(x)=NQ dy=f′(x)Δx=tanαΔx=NT 图2-10 o(Δx)=Δy-dy=NQ-NT=TQ 由dy≈Δy,即 NT≈NQ,则
|PT|=22NTx≈22NQx=|PQ|≈|PQ|
因此,当|Δx|很小时,可用线段NT近似代替NQ,或者说在P
点邻近,可用切线段PT近似代替曲线弧PQ。 §2.2 微分的基本性质 一、微分基本公式 由dy=f(x)dx,将导数公式表中每个导数乘上自变量的微分dx,便得相应的微分公式(公式略,请读者写出来)。 二、微分的四则运算 定理 设u(x),v(x)在点x处均可微,则
u±v,uv,cu(c为常数),vu (v≠0)在点x处都可微,且 6 / 12
1。 d(u±v)=du±dv 2。 d(uv)=vdu+udv特别d(cu)=cdu(c为常数)
3。 d(vu)=2vudvvdu (v≠0),特别d(v1)=-2vdv (v≠0)
注:微分的四则运算与导数的四则运算类似,只须把导数四则运算中的导数改成微分,就可得到微分的四则运算。
证3 d(vu)=(vu)′dx=2v'uvv'udx =2vdx'uvvdx'u=2vudvvdu (v≠0) 三、一阶微分不变形 定理 若u=φ(x)在x处可微,y=f(u)在点u(u=φ(x))处可微,则复合函数 y=f(φ(x))在点x处可微,且 dy=f′(u)du 证:由复合函数的求导法则知,y=f(φ(x))在点x处可导,所以在点x处可微,且 dy[WB]=f′(φ(x))φ′(x)dx =f′(φ(x))dφ′(x) =f′(u)du dy=f′(u)du,即这里u是中间变量,它与当x是自变量,y=f(x)在点x处可微,dy=f′(x)dx形式一样。我们称之为微分的一阶不变性。 7 / 12
例1. y=e)xxsin(2 解法一 由y′=e)xxsin(2cos (x2+x)·(2x+x21)
于是 dy=y′dx=e)xxsin(2cos (x2+x)(2x+x21)dx 解法2 利用微分的四则运算和微分一阶不变性 dy=de)xxsin(2=e)xxsin(2dsin(x2+x) =e)xxsin(2cos (x2+x)d(x2+x) =e)xxsin(2cos (x2+x)[d(x2)+dx] =e)xxsin(2cos (x2+x)[2xdx+x21dx]
=e)xxsin(2cos(x2+x)(2x+x21)dx 从这里也可得到y′=e)xxsin(2cos (x2+x)(2x+x21) 例2. 求由方程2y-x=(x-y) ln(x-y)所确定的函数y=y(x)的微分dy 解 对方程两端求微分 d(2y-x)=ln (x-y)d(x-y)-(x-y)dln(x-y)得 2dy-dx=ln(x-y)(dx-dy)-(dx-dy)解出dy,有
dy=yx2xdx
例3. )t(y)t(x 利用微分求dxdy,22dxyd 8 / 12
解:dxdy=)t(d)t(d=dt)t('dt)t('=)t(')t('=y′ 从这里可以看出,只要求ψ′(t),φ′(t)存在且φ′(t)≠0,dxdy存在
22dxyd
=dx'dy=)t(d)t(')t('d=dt)t(')]t('[)t(")t(')t')t("2dt
=3)]t('[)t(")t(')t')t(" §2.3 近似计算与误差估计 一、近似计算 若y=f(x)在点x0处可微,即 Δy=f(x0+Δx)-f(x0)≈f′(x0)Δx+o(Δx) (Δx→0) 当|Δx|很小时,有 Δy≈f′(x0)Δx (1) 即f(x0+Δx))-f(x0)≈f′(x0)Δx,则 f(x0+Δx)≈f(x0)+f′(x0)Δx (2) (1)式为我们提供计算Δy近似值的公式 (2)式为我们提供计算f(x0+Δx)近似值的公式 特别x0=0有f(Δx)≈f(0)+f′(0)Δx 设Δx=x,若|x|很小时,有