数形结合法解不等式

数形结合法解不等式
数形结合法解不等式

数形结合解不等式

宜都市一中 王从志

纵观2008年高考试卷,关于不等式的命题重点考查不等式的基础知识,基本技能和基本思想方法。预测在2009年的高考试卷中,考查不等式的命题仍将主要考查“三基”。而准确求解不等式是解决不等式相关问题的基本功。因此,我们在复习过程中要根椐不等式能成立、恰成立及恒成立等问题的特点,选择各类不等式问题的最佳解法。

类型一:简单不等式的解法

例1:解下列不等式:

2(1).2x x x -> 1(2). -3<

<2x

【解析】:(1)解法一(公式法) 原不等式等价于x2-2x>x 或x2-2x<-x 解得x>3或x<0或0

∴原不等式的解集为﹛x ︱x<0或03﹜

解法2(数形结合法)

作出示意图,易观察原不等式的解集为﹛x ︱x<0或03﹜

第(1)题图 第(2)题图

【解析】:此题若直接求解分式不等式组,略显复杂,且容易解答错误;若能结合反比例函数图象,则解集为1|2x x ??>

????1或x<-3,结果一目了然。 例2:解不等式:1||x x

【解析】作出函数f(x)=|x|和函数g(x)=1

x 的图象,

易知解集为01∞?∞(-,)[,+)

类型二:解含参数不等式问题

例2变式:解关于x 的不等式:||a x x ≥

分析:此题若直接求解,需对x 和a 的取值分情况讨论,易混淆。结合绝对值和反比例函数图象的性质,很容易得到

(1)a>0

时,解集为∞+)

(2)a=0时,解集为0(0∞?∞(-,),+)

(3)a<0

时,解集为,∞(-

练习:1、.|1||1|0x x +--≥解不等式 

【引导学生归纳、比较诸如分类讨论、平方法、几何意义法,数形结合等不同等价转化方法,并相互展示交流。】

2、变式练习:如果将以上不等式右边不为0,以上哪些方法更佳? 例如:

.|1||1|32x x +--≥

解不等式 。除了分类讨论、几何意义等方法外,以下函数

转化、数形结合方法可供参考:

【解法1】令2(1)()|1||1|2(11)

2(1)x g x x x x x x -<-??=+--=-≤≤??>?

令()32h x =

,分别作出函数g(x)和h(x)的图象,知原不等式的解集为3[,)4+∞

【解法2】原不等式等价于|1||1|32x x +≥+- 令3()|1|,()|1|2g x x h x x =+=-+

分别作出函数g(x)和h(x)的图象,易求出g (x )和h (x )的图象的交点坐标为37(,)44 所以不等式|1||1|32x x +--≥的解集为3[,)4+∞

【解法3】 由

|1||1|3

2x x +--≥的几何意义可设F1(-1,0),F2(1,0),M(x ,y ),若

1232MF MF -=,可知M的轨迹是以F1、F2为焦点的双曲线的右支,其中右顶点为(,0),由双曲线的图象和|x+1|-|x-1|≥知x≥.

3、探究深入:如果以上不等式右边不为具体数值,而是一个参变量m,怎样解关于x 的不等式:|1||1|x x m +--≥

解析:结合函数y=|1||1|x x +--的图象,易知

(1)当m>2时,解集为Φ

(2)

m 22[

,+)2m -≤≤∞时,解集为

(3)m<-2时,解集为R

4、等价转化:若关于x 的不等式|1||1|x x m +--≥分别满足(1)解集为空集(2)解集非空集 (3)解集为R ,求m 的取值范围。

这个问题实际上包含了高考不等式常见的三大类型(能成立问题、恰成立问题和恒成立问题)中的两种。

类型三:不等式恰能成立问题、恰成立问题、恒成立问题。

例3:若不等变

2-2x -2ax+62≤≤恰有一解,求实数a 的值 引导分析:此题若解不等式组,就特别麻烦了。结合二次函数的图形就会容易得多。 图解:

由图象易知:a=2或者a=-2

例4、若不等式

21log ,(0,)2a x x x <∈对恒成立,则实数a 的取值范围是 此题直接求解无从着手,结合函数

21y y=log 0,2

a x x =及在()上的图象 易知,a 只需满足条件:

0<a <1,且11log 24a ≥即可从而解得

1[,1)16a ∈ 专题小结

数形结合解不等式是历年高考重点内容之一。有效借助“以形助数”或“以数解

形”,可以使复杂问题简单化,抽象问题形象化,从而起到优化解题途径的目的。正如著名数学家华罗庚先生所说:“数缺形时少直觉,形缺数时难入微;数形结合百般好,隔离分家万事非。”

解不等式(知识点、题型详解)

不等式的解法 1、一元一次不等式ax b > 方法:通过去分母、去括号、移项、合并同类项等步骤化为ax b >的形式,若0a >,则b x a > ;若0a <,则b x a < ;若0a =,则当0b <时,x R ∈;当0b ≥时,x ∈?。 【例1-1】(1)21 33 ax -> 解:此时,因为a 的符号不知道,所以要分:a =0,a >0, a <0这三种情况来讨论. 由原不等式得a x >1, ①当a =0时,? 0>1.所以,此时不等式无解. ② 当a >0时,? x > a 1, ③当a <0时,?x -+-a b x b a 。 解:R a ∈,012>+-a a ∴ 01)1(32 2<+-++-a a x a a 的解为3 1- +b a ∴ 解b a b a x 23)(6+-- < 由题意b a b a 23) (631+--=- ∴ 043>=b a 代入所求:062>--b bx ∴ 3-,12,x x 是 方程2 0ax bx c ++=的两实根,且12x x <,则其解集如下表:

数形结合法解一元二次不等式的教学设计-

数形结合法解一元二次不等式的教学设计 教师面对的是一个个鲜活的生命个体,怎样让我们的课堂充分体现出学生的主观能动性,为每个学生创设出动脑、动口、动手的机会,创设和谐、宽松、高效的课堂教学是每个教师都在思考并希望解决的问题。因此,教学设计需要从学生熟悉的内容出发,根据数学的学科特点和学生的实际情况,深入钻研教材,分析教学任务,有针对性地设计教学方案。 1客观分析教材 1.1学习一元二次不等式的重要性 在幼儿师范学校,数学是一门重要的文化课程。为提高学前教育专业学生的数学素养,必须努力提高数学课堂教学质量,使学生切实掌握从事幼儿教育工作和进一步学习所需要的数学基础知识和基本技能,进一步提高学生的思维能力、运算能力、空间想象能力、解决实际问题的能力;结合数学教学进行思想教育,进一步培养学生的良好的个性品质、辩证唯物主义观点和科学态度。解一元二次不等式需要通过讨论一元二次方程的解的情况、画出对应二次函数的示意图、观察函数图象得出一元二次不等式的解集。因此,理解和掌握数形结合法求解一元二次不等式可以有效提高学前教育专业学生的数学思维能力、运算能力、空间想象能力和解决实际问题的能力。 1.2教学内容分析 教材是学生学习的重要载体,是教师教学的客观依据。一元二次不等式及其解法这一部分内容编排在二次函数的图象和性质之后,接下来是一元一次不等式组、绝对值不等式的解法,再是一元二次不等式的解法。本节内容教学重、难点:数形结合法解一元二次不等式。 为此,可以将求解一元二次不等式的相关内容归纳如下:1、将具体例子进行细化,分步进行:第一步,确定方程的根的情况;第二步,画出对应二次函数的对应图形;第三步,观察图形,结合二次函数的图象的意义确定一元二次不等式的解集。2、数学的学习方法之一是数形结合,用此方法形象直观,容易掌握,多给学生强调此方法,让学生习惯于数形结合法解决数学问题,因此不要求学生记忆书上结论,避免学生死记硬背。3、举例强化。

浅谈数形结合思想在小学数学教学中的渗透

浅谈数形结合思想在小学数学教学中的渗透 摘要:“数”与“形”之间密不可分,它们相互转化,相辅相成。在教学中渗透数形结合的思想,可把抽象的数学概念直观化,帮助学生形成概念;可使计算中的算式形象化,帮助学生在理解算理的基础上把握算法;可将复杂问题简朴化,在解决问题的过程中,提高学生的思维能力和数学素养。适时的渗透数形结合的思想,可达到事半功倍的效果。 关键词:数形结合;小学数学;数学思想 美国教育心理家布鲁纳也指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。数学思想方法是解决数学问题所采用的方法。它是数学概念的建立、数学规律的归纳、数学知识的掌握和数学问题解决的基础。在人的数学研究中,最有用的不仅仅是数学知识,更重要的是数学思想方法。小学数学中常用的数学思想方法中“数形结合”思想尤为重要。那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。 数、形是数学中两大基本概念之一,可以说全部数学大体上都是围绕这两个基本概念的提炼、演变、发展而展开的。“数”和“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。“数形结合“的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。 本文先解读“数形结合”思想,浅谈其历史性及重要意义,后结合实践重点探讨“数形结合”在小学数学教学中的实际应用和实施途径。 一.了解小学数学教材中蕴涵的主要数学思想方法 数学思想:符号思想,集合思想,对应思想,化归思想。 数学方法: (1)思维方法:分析、综合、抽象、概括、归纳、演绎 (2) 一般方法:观察、实验、比较、分类、联想、类比、化归、猜想 (3)数学特点较强的方法:函数法、数学模型法、数形结合法、统计法、变换法、分析法、综合法 (4)数学技能:换元法、代入法、系数比较法、合并同类项法、因式分解法、判别式法、配方法、加减消元法、代入消元法、待定系数法、恒等变形法、公式法、构造法、通分母、去括号 在小学数学教学中渗透的数学思想和方法,是以数学方法为主,一般称为数学思想方法,包括思维方法与数学技能。、 二、“数形结合”,由来已久?早在数学被抽象、分离为一门学科之前,人们在生活中度量长度、面积和体积时,就已经把数和形结合起来了。在宋元时期,我国古代数学家系统地引进了几何问题代数化的方法,用代数式描述某些几何特

基本不等式与余弦定理综合求解三角形面积的最值探究

基本不等式与余弦定理综合求解三角形面积的最值探究 建水县第二中学: 贾雪光 从最近几年高考试题的考查情况看,解三角形部分的考查中主要是对用正、余弦定理来求解三角形、实际应用问题, 这两种常见考法中,灵活应用正余弦定理并结合三角形中的内角和定理,大边对大角,等在三角形中进行边角之间的相互转化,以及与诱导公式特别是C B A sin )sin(=+、 C B A sin 2 cos =+的联系是关键。 于是多数教师在复习备考过程中,往往都会将大量的时间和精力花在对正余弦定理的变形,转化,变式应用上,当然这也无可厚非,但是我在高考备考复习教学中发现了这样一类题目,如: 1、在锐角△ABC 中,a, b, c 分别为内角A, B, C 的对边,且A A 2 2sin 21cos =+ ,7 = a 求△ABC 的面 积的最大值;2、已知向量)2 1,(sin A M =与)cos 3sin ,3(A A N +=共线,其中A 是△ABC 的内角,(1)求角A 的大小;(2)若BC=2,求△ABC 的面积S 的最大值。3、△ABC 中,a, b, c 分别为内角A, B, C 的对边,向量)2cos ,2 (cos ),1,4(2 A A N M =-=,2 7= ?N M ,(1)求角A 的大小;(2)若3=a 是判 断当c b ?取得最大值时△ABC 的形状。面对这样的问题,我们如何来引导学生很自然的过度,用一种近乎水到渠成的方法来求解呢? 实际上我们在教学和学习的过程中往往会忽略一个很明显的问题,那就是余弦定理与基本不等式的综合,如果我们在讲授正余弦定理的时候能在引入正课时多下一点功夫,我们就会有意外的收获哦。 我在教学中是这样处理的:实际上在余弦定理中我们总有这样一组公式: A bc c b a cos 222 2 ?-+=, B ac c a b cos 2222?-+=, C ab b a c cos 2222?-+= 同时在基本不等式中我们总有这样一组公式:bc c b 222≥+,ac c a 222≥+ ,ab a b 222≥+在三角形中各边都是正数,所以上面三个式子在a 、 b 是三角形的三边时总是成立的,如果我们将两组公式综合后会发现这样的一组公式即:)cos 1(22A bc a -?≥,)cos 1(22C ac b -?≥ )c o s 1(22c ab c -?≥于是我们就有方程等式,得到了一组不等式,而在涉及到最值得求解时,我们常用的处理方法是,一求函数值域;二、导函数;三、基本不等式即均值定理;但是前两种方法显然都不可能用于求解上面两个题目类型的求解,于是在涉及到与解三角形有关的三角形的面积的最大值时我们就只能考虑用均值定理了,自然也就要用到上面我们推导得出的这一组公式罗。 于是我没有: 例1:在锐角△ABC 中,a, b, c 分别为内角A, B, C 的对边,且A A 2 2sin 21cos =+ ,7 = a 求

数形结合解不等式问题

数形结合解不等式问题 省玉田县林南仓中学金志刚(邮编064106) 不等式问题是高中数学中的重要容,也是历年高考的必考题目。有些题目因为计算量大很多学生感觉学起来困难太大,以至产生了畏难情绪。本文试图将抽象数学问题与具体直观图形结合起来,充分利用图形性质和特点,对问题理行分析思考,化抽象为直观,化繁琐为简洁。 例1 已知集合 } {21 )1 ( 1g a x g x A< + -,集合} {0 )2 )( (> - - =x a x x B,若A∪B=R,则实数a的取值围是_________。 分析:如用代数法解不等式,求a的取值围,需分三种情况讨论,而用数形结合方法则可一步获解。 由 } {21 )1 ( 1g a x g x A< + - = 得 } {1 1+ < < - =a x a x A。 又由 {}0 )2 () (> - - =x a x x B, 令)2 )( ( ) (- - =x a x x f, 据图可见A ∪ B=R的充要条件是 .3 1 1 3 )1 ( ,0 )1 ( < < ? ? ? ? > - > - ? ? ? ? > + > - a a a a f a f 例2 设函数f(x)={, x> , x x , - x 1 2 2 1    ≤ 若f( x)>1,则 x的取值围是() A、(-1,1) B、(-1,+∞) C、(-,-2)(0,+) D、(-,-1)(1,+) 分析:本题主要考查函数的基本知识,利用函数的单调性 解不等式以及考生借助数形结合思想解决问题的能力。 一般解法: 1 { 2 1 > > x x 或 1 1 2 { > - ≤ x x 解得得x<-1或x >1。 解法2:如图1,在同一坐标系中,作出函数y=f(x)的

穿根法解高次不等式

穿根法解高次不等式 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数得系数为正。 使用方法: ①在数轴上标出化简后各因式得根,使等号成立得根,标为实点,等号不成立得根要标虚点。 ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“〉”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) 错误!≤1 解: (1) 原不等式等价于(x +4)(x+5)2(x —2)3>0 (2) 根据穿根法如图 不等式解集为 {x x< 1 3 或\f( 1 , 2 )【例2】 解不等式:(1)2x 3-x 2—15x 〉0;(2)(x+4)(x+5)2(2—x)3<0。 【分析】 如果多项式f(x)可分解为n 个一次式得积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法"求解,但要注意处理好有重根得情况、 解:(1)原不等式可化为

x(2x+5)(x-3)〉0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)得阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x〈—4或x >2}、 【说明】 用“穿根法”解不等式时应注意..............:.①各一次项中......x .得.系数必为正.....;.②对于偶次或奇次重根可参照.............(.2.).得解法转化为不含重.........根得不等式.....,.也可直接用“穿根法.........",..但注意...“奇穿偶不穿”.........其法如图.... (5..-.2.). .. 二. 数轴标根法”又称“数轴穿根法” 第一步:通过不等式得诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x 前得系数为 正数) 例如:将x^3—2x^2—x+2>0化为(x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x —2)(x-1)(x+1)=0得根为:x 1=2,x 2=1,x 3=—1 第三步:在数轴上从左到右依次标出各根。 例如:—1 1 2 第四步:画穿根线:以数轴为标准,从“最右根”得右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根、 第五步:观察不等号,如果不等号为“〉",则取数轴上方,穿根线以内得范围;如果不等号为“<”则取数轴下方,穿根线以内得范围。x得次数若为偶数则不穿过,即奇过偶不过。 例如:

数形结合思想

数形结合思想 1. 数形结合思想的概念。 数形结合思想就是通过数和形之间的对应关系和相互转化来解决问题的思想方法。数学是研究现实世界的数量关系与空间形式的科学,数和形之间是既对立又统一的关系,在一定的条件下可以相互转化。这里的数是指数、代数式、方程、函数、数量关系式等,这里的形是指几何图形和函数图象。在数学的发展史上,直角坐标系的出现给几何的研究带来了新的工具,直角坐标系与几何图形相结合,也就是把几何图形放在坐标平面上,使得几何图形上的每个点都可以用直角坐标系里的坐标(有序实数对)来表示,这样可以用代数的量化的运算的方法来研究图形的性质,堪称数形结合的完美体现。数形结合思想的核心应是代数与几何的对立统一和完美结合,就是要善于把握什么时候运用代数方法解决几何问题是最佳的、什么时候运用几何方法解决代数问题是最佳的。如解决不等式和函数问题有时用图象解决非常简捷,几何证明问题在初中是难点,到高中运用解析几何的代数方法有时就比较简便。 2. 数形结合思想的重要意义。 数形结合思想可以使抽象的数学问题直观化、使繁难的数学问题简捷化,使得原本需要通过抽象思维解决的问题,有时借助形象思维就能够解决,有利于抽象思维和形象思维的协调发展和优化解决问题的方法。数学家华罗庚曾说过:“数缺形时少直觉,形少数时难入微。”这句话深刻地揭示了数形之间的辩证关系以及数形结合的重要性。众所周知,小学生的逻辑思维能力还比较弱,在学习数学时必须面对数学的抽象性这一现实问题;教材的编排和课堂教学都在千方百计地使抽象的数学问题转化成学生易于理解的方式呈现,借助数形结合思想中的图形直观手段,可以提供非常好的教学方法和解决方案。如从数的认识、计算到比较复杂的实际问题,经常要借助图形来理解和分析,也就是说,在小学数学中,数离不开形。另外,几何知识的学习,很多时候只凭直接观察看不出什么规律和特点,这时就需要用数来表示,如一个角是不是直角、两条边是否相等、周长和面积是多少等。换句话说,就是形也离不开数。因此,数形结合思想在小学数学中的意义尤为重大。 3. 数形结合思想的具体应用。 数形结合思想在数学中的应用大致可分为两种情形:一是借助于数的精确性、程序性和可操作性来阐明形的某些属性,可称之为“以数解形”;二是借助形

向量解三角形数列不等式测试卷

向量、解三角形、数列、不等式测试卷 一、选择题(本大题共12小题,每小题5分,共60分) 1.由11a =,3d =确定的等差数列{}n a , 当298n a =时,n 等于 ( ) A.99 B.100 C.96 D.101 2.ABC ?中,若?===60,2,1B c a ,则ABC ?的面积为 ( ) A . 2 1 B .23 C.1 D.3 3.如图,在△ABC 中,1 ,3,,,2 BD DC AE ED AB a AC b BE = ===若则= ( ) A .1133a b + B .11 24a b -+ C .1124a b + D .11 33 a b -+ 4.已知3≥x ,函数1 1 -+=x x y 的最小值是 ( ) A .2 7 B .4 C .8 D .6 5.设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -?-的最小值为 ( ) A 、2- ( B )22- ( C )1- (D)12- 6.在各项均为正数的等比数列 {}n b 中,若783b b ?=,则 3132log log b b ++……314log b +等于 ( ) (A) 5 (B) 6 (C)7 (D)8 7.设,x y 满足约束条件1 2x y y x y +≤?? ≤??≥-? ,则3z x y =+的最大值为 ( ) A . 5 B. 3 C. 7 D. -8 8.在ABC ?中,80,100,45a b A ?===,则此三角形解的情况是 ( ) A.一解 B.两解 C.一解或两解 D.无解 9.已知b a ,满足:a =3,b =2,b a +=4,则b a -=( ) A .3 B .5 C .3 D 10 10.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( )

穿根法解高次不等式

穿根法解高次不等式 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点, 等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿 透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使 “<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或 (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图

不等式解集为 {x x< 1 3 或 1 2 ≤x ≤1或x>2}. 【例2】 解不等式:(1)2x 3-x 2-15x >0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】 如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x <-5或-5<x <-4或x >2}. 【说明】 用“穿根法”解不等式时应注意:①各一次项中.....................x .的系..数必为正;②对于偶次或奇次重根可参照..................(2)...的解法转化为不含重根..........的不等式,也可直接用“穿根法”,但注意...................“奇穿偶不穿”........其法如....图.(5..-.2).. ..

浅谈小学数形结合思想

浅谈小学数形结合思想方法 摘要:数形结合既是一种重要的数学思想,又是一种常用的数学方法,在小学数学教学与解决问题中广泛应用,本文介绍相关概念并结合人教版小学数学教材,初步整理了数形结合思想方法在各教学领域的渗透与应用,提出培养数形结合思想方法的策略。 关键词:小学数学;数形结合 1.数形结合思想方法的概念 数形结合思想就是通过数和形之间的对应关系和互相转化来解决问题的思想方法。1数形结合既是一种重要的数学思想,又是一种常用的数学方法,在小学数学教学与解决问题中广泛应用,包含“以形助数”和“以数解形”两个方面:前者借助形的直观性来阐明抽象的数之间的关系;后者是利用数的精确性、规范性与严密性来阐明形的某些属性。数形结合思想方法使数与形两种信息互相转换并且优势互补,从而能够将复杂的问题简单化,抽象的问题具体化。2 2.数形结合思想在各个学习领域的渗透与应用 小学数学分为“数与代数”、“图形与几何”、“统计与概率”、“综合与实践”这四个学习领域,数形结合思想在这四个领域中都得到了广泛的应用。我通过对教材的分析,初步整理了数形结合思想方法在各教学领域的渗透与应用。 2.1数形结合思想方法在“数与代数”知识领域中的渗透与应用 数是十分抽象的,教材在编排上充分利用了数形结合,帮助孩子理解数的含义。如,一年级上册1~5的认识这一课时: 教材的内容与目标体现以下两方面:(1)体会“形”的直观性。借助各种实物图作为直观工具,帮助学生理解数字的含义。(2)了解可以用数来描述几何图形。通过让学生用相应数量的小棒摆一摆图形的过程,引导学生数一数,增强用数的量化来描述形,让学生初步感受数中有形、形中有数的思想。 除此之外,在加减法的计算学习中,利用画图来直观呈现各种信息,帮助学生分析数量关系;在乘法口诀的学习中,利用各种图形(点子图、数轴、表格)帮助学生理解乘法的意义和口诀的推导;在分数的学习中,为了让学生能够理解分数的含义,教材运用了大量的图形作为直观手段;在小数的学习中,利用尺子、线段、正方形等直观手段帮助学生理解小数的意义与性质;在方程的学习中,利用天平图作为直观手段,理解等式的性质,利用画线段图帮助学生理解数量关系……可以说,数形结合思想在“数与代数”的学习中无处不在,应用十分广泛。 2.2数形结合思想方法在“图形与几何”知识领域中的渗透与应用 1王永春.小学数学与数学思想方法[M].上海:华东师范大学出版社,2014:65. 2毕保洪,贺家兰.数形结合思想的应用[J].中学教与学,2017,1:15-16.

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

数轴标根法又称数轴穿根法或穿针引线法

“数轴标根法”又称“数轴穿根法”或“穿针引线法” 是高次不等式的简单解法 当高次不等式f(x)>0(或<0)的左边整式、分式不等式φ(x)/h(x)>0(或<0)的左边分子、分母能分解成若干个一次因式的积(x-a1)(x-a2)…(x -an)的形式,可把各因式的根标在数轴上,形成若干个区间,最右端的区间f (x)、φ(x)/h(x)的值必为正值,从右往左通常为正值、负值依次相间,这种解不等式的方法称为序轴标根法。 为了形象地体现正负值的变化规律,可以画一条浪线从右上方依次穿过每一根所对应的点,穿过最后一个点后就不再变方向,这种画法俗称“穿针引线法”,如图1(图片自上而下依次为图一,二,三,四)。 步骤 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x前的系数为正数) 例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1 第三步:在数轴上从左到右依次标出各根。 例如:-1 1 2 第四步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根。 第五步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。x的次数若为偶数则不穿过,即奇过偶不过。 例如: 若求(x-2)(x-1)(x+1)>0的根。

在数轴上标根得:-1 1 2 画穿根线:由右上方开始穿根。 因为不等号为“>”则取数轴上方,穿跟线以内的范围。即:-12。(如图四) 奇过偶不过 就是当不等式中含有有单独的x偶幂项时,如(x^2)或(x^4)时,穿根线是不穿过 (X-1)^2. 0点的。但是对于X奇数幂项,就要穿过0点了。还有一种情况就是例如: 当不等式里出现这种部分时,线是不穿过1点的。但是对于如(X-1)^3的式子,穿根线要过1点。也是奇过偶不过。可以简单记为“奇穿过,偶弹回”。(如图三,为(X-1)^2) 注意事项 运用序轴标根法解不等式时,常犯以下的错误: 出现形如(a-x)的一次因式时,匆忙地“穿针引线”。 例1 解不等式x(3-x)(x+1)(x-2)>0。 解 x(3-x)(x+1)(x-2)>0,将各根-1、0、2、3依次标在数轴上,由图1可得原不等式的解集为{x|x<-1或03}。 事实上,只有将因式(a-x)变为(x-a)的形式后才能用序轴标根法,正确的解法是: 解原不等式变形为x(x-3)(x+1)(x-2)<0,将各根-1、0、2、3依次标在数轴上,,原不等式的解集为{x|-1

数形结合法解不等式

数形结合解不等式 宜都市一中王从志 纵观2008年高考试卷,关于不等式的命题重点考查不等式的基础知识,基本技能和基本思想方法。预测在2009年的高考试卷中,考查不等式的命题仍将主要考查“三基”。而准确求解不等式是解决不等式相关问题的基本功。因此,我们在复习过程中要根椐不等式能成立、恰成立及恒成立等问题的特点,选择各类不等式问题的最佳解法。 类型一:简单不等式的解法 例1:解下列不等式: 2 (1).2 x x x -> 1 (2). -3<<2 x 【解析】:(1)解法一(公式法) 原不等式等价于x2-2x>x或x2-2x<-x解得x>3或x<0或03﹜ 解法2(数形结合法) 作出示意图,易观察原不等式的解集为﹛x︱x<0或03﹜ 第(1)题图第(2)题图 【解析】:此题若直接求解分式不等式组,略显复杂,且容易解答错误;若能结合反 比例函数图象,则解集为 1 | 2 x x ?? > ?? ?? 1 或x<- 3 ,结果一目了然。 例2:解不等式: 1 ||x x ≥

【解析】作出函数f(x)=|x|和函数g(x)=1 x 的图象, 易知解集为01∞?∞(-,)[,+) 类型二:解含参数不等式问题 例2变式:解关于x 的不等式: ||a x x ≥ 分析:此题若直接求解,需对x 和a 的取值分情况讨论,易混淆。结合绝对值和反比例函数图象的性质,很容易得到 (1)a>0时,解集为a ∞(,+) (2)a=0时,解集为0(0∞?∞(-,),+) (3)a<0时,解集为,a ∞-(-) 练习:1、.|1||1|0x x +--≥解不等式  【引导学生归纳、比较诸如分类讨论、平方法、几何意义法,数形结合等不同等价转化方法,并相互展示交流。】 2、变式练习:如果将以上不等式右边不为0,以上哪些方法更佳 例如: .|1||1|32x x +--≥ 解不等式 。除了分类讨论、几何意义等方法外,以下函数 转化、数形结合方法可供参考: 【解法1】令2(1)()|1||1|2(11) 2(1)x g x x x x x x -<-??=+--=-≤≤??>? 令()32h x = ,分别作出函数g(x)和h(x)的图象,知原不等式的解集为3[,)4+∞

高次不等式的解法

高次不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4 (2) 变形为 (2x-1)(x-1) ≥0 根据穿根法如图

不等式解集为 {x x<1 3 或 1 2 ≤x≤1或x>2}. 【例2】解不等式:(1)2x3-x2-15x>0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x<-4或x>2}. 【说明】用“穿根法”解不等式时应注意:①各一次项中 .....................x.的系 .. 数必为正;②对于偶次或奇次重根可参照..................(2) ...的解法转化为不含重根 .......... 的不等式,也可直接用“穿根法”,但注意...................“奇穿偶不穿” ........其法如 ....图.(5..-.2)....

浅谈数形结合思想的应用

浅谈数形结合思想的应用 ——蒋海朋摘要:数学是在客观上研究数量关系和空间形式的一门科学,用通俗易懂的话来概括就是数学是研究“数”和“形”的一门科学。数相对于形来说更为抽象,形相对于数来说较为直观,在研究学习中,数与形是相辅相成、息息相关的。对于这个问题,本人在结合自己学习的总结以及前人所提供的经验,并且查阅相关资料,对于这个话题做一个简单的分析。文中的例子都是本人在学习中总结的历年高考、中考的试题以及模拟题,有很强的代表性。 关键词:数形结合数学思想应用 1 引言 1.1问题提出的背景 纵观数学发展的历史进程,数学家们早已把“数”和“形”联系在一起。早在公元300年之前,欧几里得的著作《几何原本》,他从几何的角度出发去研究和处理等价的代数问题;笛卡尔利用坐标为根基,通过代数为途径来研究几何问题,进而创立了解析几何学;化圆为方、三等分角、立方倍积这些几何难题都通过代数的方法得以完美解决。 数学往往被分为两大类:代数、几何。虽然他们被分为两类,但他们绝不是相互独立的,反而是密切相关的。很多代数上的问题计算量很大,看似非常复杂,甚至无从下手,但是利用了图形之后就会发现问题迎刃而解,直观的图形很容易反映图形的性质;很多几何问题因为辅助线相对复杂想不到,导致无法进一步研究,但是往往我们利用坐标系能够把几何问题转化成代数问题,同样也做到了化 繁为简。这就是数学上常用的数形结合思想。 1.2问题研究的意义 伟大的数学家华罗庚就曾说过:“数形结合百般好,割裂分家万事休。”这两句诗充分直观得反映了“数”与“形”这两者密不可分的联系。应用数形结合思想来思考问题就是要求我们结合代数的准确论证和图形的直观描述来发现问题的解决途径的一种思想方法。由此可见,数形结合思想对于数学解题方面的应用来说是十分重要的,但老师往往仅仅把它当做一种思想一谈而过,照着课本讲课,没有引导学生进一步思考,导致很多学生都不能具体有序地应用这种思想。 2 数形结合思想的重要地位 2.1使用数形结合思想的意义 数形结合思想无疑是连接“数”和“形”的桥梁,几何的直观形象和数量关系的严谨他们各有优点,在应用过程中有目的有计划地将“数”与“形”结合在一起,根据题目的已知条件,整合“数”和“形”的相关信息,巧妙结合,从而建起它们中间的桥梁,兼取两者之优,能让我们的解题更为轻松。

专题8-数轴穿根法

专题:数轴穿根法 “数轴穿根法”又称“数轴标根法” 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x 前的系数为正数) 例如: (x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x-2)(x-1)(x+1)=0的根为:x 1=2,x 2=1,x 3=-1 第三步:在数轴上从左到右依次标出各根。 例如:-1 1 2 第三步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右跟”上去,一上一下依次穿过各根。 第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。 例如: 若求(x-2)(x-1)(x+1)>0的解。 因为不等号威“>”则取数轴上方,穿根线以内的范围。即:-12。 穿根法的奇过偶不过定律: “奇穿过,偶弹回”。 还有关于分式的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,但是注意,解不能让原来分式下面的式子等于0 专项训练: 1、解不等式0)3)(1)(12(>--+x x x 解析:1)一边是因式乘积、另一边是零的形式,其中各因式未知数的系数为正。 2)因式)12(+x 、)1(-x 、)3(-x 的根分别是 1 - 、1、3。在数轴上把它们标出(如图1)。 3)从最大根3的右上方开始,向左依次 穿线(数轴上方有线表示数轴上方有函数 图象,数轴下方有线表示数轴下方有函数图象,此线并不表示函数的真实图象)。 4)数轴上方曲线对应的x 的取值区间,为0)3)(1)(12(>--+x x x 的解集,数轴下方曲线对应的x 的取值区间,为0)3)(1)(12(<--+x x x 的解集。 ∴不等式0)3)(1)(12(>--+x x x 的解集为),3()1,2 1 (+∞- 。 在上述解题过程中,学生存在的疑问往往有:为什么各因式中未知数的系数为正;为什

数形结合解不等式问题

数形结合解不等式问题 河北省玉田县林南仓中学 金志刚(邮编064106) 不等式问题是高中数学中的重要内容,也是历年高考的必考题目。有些题目因为计算量大很多学生感觉学起来困难太大,以至产生了畏难情绪。本文试图将抽象数学问题与具体直观图形结合起来,充分利用图形性质和特点,对问题理行分析思考,化抽象为直观,化繁琐为简洁。 例1 已知集合}{21)1(1g a x g x A <+-,集合}{0)2)((>--=x a x x B ,若A ∪B=R ,则实数a 的取值范围是_________。 分析:如用代数法解不等式,求a 的取值范围,需分三种情况讨论,而用数形结合方法则可一步获解。 由}{21)1(1g a x g x A <+-= 得}{11+<<-=a x a x A 。 又由{}0)2()(>--=x a x x B , 令)2)(()(--=x a x x f , 据图可见A ∪ B=R 的充要条件是 .31010 30)1(,0)1(<->-??? ?>+>-a a a a f a f 例 2 设函数f(x)={ ,x>,xx,-x0 122 1 ≤若f(0x )>1,则0x 的取值范围是 ( ) A 、(-1,1) B 、(-1,+∞ ) C 、(-∞,-2)?(0,+∞) D 、(-∞,-1)?(1,+∞) 分析:本题主要考查函数的基本知识,利用函数的单调性解不等式以及考生借助数形结合思想解决问题的能力。 一般解法:1 { 2 1 >>x x 或 1120 {>-≤x x 解得得x<-1或x >1。

解法2:如图1,在同一坐标系中,作出函数y=f(x )的图象 和直线y=l ,它们相交于(-1,1)和(1,1)两点, 由 f(x)>1 得 x<-1 或 x>1 例3 解不等式x x +>2 常规解法:原不等式等价于(I)x x x x ≥+≥+>???? ???02022 或(II )???≥+<020x x 解(I)得02≤2的解就是使y x 12=+的图象在 y x 2=的上方的那段对应的横坐标。 如右图,不等式的解集为{}x x x x A B |≤<,而x B 可由x x +=2解得x x B A ==-22,,故不等式的解集为{}x x |-≤<22 例4 若-3<1 x <2,则x 的取值范围是( ) A 、(-13 ,12 ) B 、(12 ,13 ) C 、(-13 ,0)?(12 ,+∞) D 、(-∞,-13 )?(1 2 ,+ 分析:本题若用常规解法则比较花时间,若用函数y=1 x 图象求解,则比较简单。如右图不难得出 -3<1 x <2 解是 x<-13 或 x>1 2 例5. 设对于任意实数 ,函数 总有意义,求 实数a 的取值范围。 解法1:函数有意义,则 ,即在上 总成立。

元高次不等式的解法

元高次不等式的解法 The manuscript was revised on the evening of 2021

一元高次不等式的解法 步骤:正化,求根,标轴,穿线(奇过偶不过),定解 穿根法(零点分段法)(高次不等式:数轴穿根法: 奇穿,偶不穿)解题方法:数轴标根法。 解题步骤: (1)首项系数化为“正” (2)移项通分,不等号右侧化为“0” (3)因式分解,化为几个一次因式积的形式 (4)数轴标根。 求解不等式:)0)(0(0022110><>++++--a a x a x a x a n n n n 解法:①将不等式化为0123()()()()0n a x x x x x x x x ---->形式,并将各因式中的x 系数化“+”(为了统一方便) ②求根,并将根按从小到大的在数轴上从左到右的表示出来; ③由右上方穿线,经过数轴上表示各根的点。(即从右向左、从上往下:看x 的次数:偶次根穿而不过,奇次根一穿而过)。注意:奇穿偶不穿。 ④若不等式(x 系数化“+”后)是“0>”,则找“线”在x 轴上方的区间;若不等式是“0<”,则找“线”在x 轴下方的区间: 注意:“≤或≥”标根时,分子实心,分母空心。 例1: 求不等式223680x x x --+>的解集。 解:将原不等式因式分解为:(2)(1)(4)0x x x +--> 由方程:(2)(1)(4)0x x x +--=解得1232,1,4x x x =-==,将这三个根按从小到大顺序在数轴上标出来,如图 由图可看出不等式223680x x x --+>的解集为:{}|21,4x x x -<<>或 (1)()()()()00,f x f x g x g x >??> ()() ()()(2)00;f x f x g x g x

浅谈数形结合思想方法的渗透

浅谈数形结合思想方法的渗透 数形结合思想是数与形之间的对应关系,通过数与形的相互转化,将抽象的数学语言与直观的图形结合起来解决问题的思想方法,数形结合思想是数学中最重要、最基本的思想,是解决许多数学问题的有效思想,利用数形结合能使“数”和“形”统一起来。以形助数,以数辅形,可以使许多数学问题变得简易化。华罗庚教授对此有精辟概述:“数无形,少直观;形无数,难入微”。那么如何在教学中渗透数形结合的思想。下面谈谈自己的看法: 一、教师要深入研究教材,有效渗透数形结合 小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法①?在学生获得知识和解决问题的过程中能有效地引导学生经历知识形成的过程,让学生在观察、对比、分析、抽象、概括的过程中看到数学知识蕴涵的思想。如一年级下册“两位数加减一位数和整十数“35-2和35-20内容时,教师可提出问题,这两题怎么计算?让学生说出算法,再根据学生的回答分别写出支形图,并写出想的过程,然后进一步追问:“有没有不同的算法?”激发学生思考,开拓学生的学习思维。最后进一步问:计算35-2,能不能先用十位上的3减2等于1,结果35-2等于15对吗?让学生思考讨论,产生思维的碰撞,让学生的思维碰撞出智慧的火花。接下来让学生用摆小棒验证,教师可充分利摆小棒,使学生明白:因为35中的3表示3个十,5表示5个1,计数单位不同,所以不能用十位上的3减2,可以用5个1减2个1等于3个1,它们的计数单位都是1,再和3个十合并起来等33。通过摆小棒有效地渗透数形结合,使问题简明直观。教师要深入研究教材,弄清编排的意图,吃透教材,才能用好教材,有效渗透数形结合思想,彰显了数学学习的价值,通过摆小棒这个活动让学生感受到简单推理的过程,获得一些简单推理的经验就可以了。在教师的引导下,让学生明白这两题是把相同数位相加减的算理,这是教材编排的意图,也是本节课的重点。学生不明白道理又怎么能更好的掌握计算方法?在教学时,应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然,知其所以然”。渗透数学思想,路漫漫兮,任重而道远,作为孩子们的导师,我们应该充分根据孩子们的发展规律,适当地利用教材,在教学过程中巧妙地渗透思想,培

相关文档
最新文档