统计学概念和方法--精
统计学的基本概念与原理

统计学的基本概念与原理统计学是一门研究数据收集、分析、解释和预测的学科。
它通过数学和逻辑的方法来帮助我们理解和解释现实世界中的各种现象和问题。
统计学的应用范围广泛,可以在科学研究、商业决策、社会政策和医学等领域中发挥重要作用。
本文将介绍统计学的基本概念和原理。
一、总体与样本统计学中的总体是指我们关心的所有个体或事物的集合,也可以称为总体统计单位。
样本则是从总体中选取的一部分个体或事物,它是总体的一个子集。
通过对样本进行研究和分析,我们可以得出关于总体的结论。
二、描述统计与推论统计描述统计是对数据进行整理、汇总、分析和呈现的技术和方法。
常用的描述统计方法包括测量中心趋势的均值和中位数,描述数据分布的标准差和方差,以及用图表来展示数据。
推论统计是通过从样本中得出结论来推断总体特征的方法。
它基于概率理论,使用抽样方法和统计推断进行分析和预测。
三、概率与概率分布概率是研究随机事件发生可能性的数学工具。
它用来描述事件发生的可能性大小,是一个介于0和1之间的数。
概率分布是描述随机变量所有可能取值及其对应概率的函数或表格。
常见的概率分布包括正态分布、二项分布和泊松分布等。
四、参数估计与假设检验参数估计是通过样本的统计量来估计总体的参数值。
参数是总体的一个数值特征,比如总体均值或总体方差。
常用的参数估计方法有点估计和区间估计。
假设检验是通过对样本数据进行分析,判断总体参数是否满足某个假设条件。
常用的假设检验方法有单样本检验、双样本检验和方差分析等。
五、回归与相关回归分析是研究因变量与一个或多个自变量之间关系的统计方法。
通过建立回归模型,我们可以预测因变量的值,并了解自变量对因变量的影响程度。
相关分析是研究两个或多个变量之间关系的方法。
它通过计算相关系数来判断变量之间的相关程度。
六、抽样与实验设计抽样是从总体中选取样本的过程。
合理的抽样方法可以保证样本的代表性和可信度。
常见的抽样方法有简单随机抽样、分层抽样和系统抽样等。
统计学的基本概念和含义

统计学是一门研究收集、分析、解释和展示数据的学科。
它涵盖了数据收集、数据处理、数据分析和数据解释等方面的知识和方法。
以下是统计学中的一些基本概念和含义:1. 总体与样本:在统计学中,总体(population)指的是我们感兴趣的全体个体或对象的集合。
样本(sample)则是从总体中选取出来的一部分个体或对象的集合。
通过对样本进行观察和分析,可以推断出关于总体的特征。
2. 参数与统计量:参数(parameter)是描述总体特征的数值指标,例如总体的平均值、标准差等。
统计量(statistic)是从样本中计算得到的数值指标,用于估计总体参数。
3. 数据类型:统计学中的数据可以分为两种主要类型:定性数据(qualitative data)和定量数据(quantitative data)。
定性数据是以分类或描述性方式呈现的数据,如性别、颜色等。
定量数据是以数值形式呈现的数据,如身高、年龄等。
4. 描述统计学与推论统计学:描述统计学(descriptive statistics)是通过对数据进行整理、概括和可视化,来描述和总结数据的特征。
推论统计学(inferential statistics)则是基于样本数据,通过推断和估计总体特征,以及进行假设检验和置信区间的建立。
5. 数据收集与抽样:数据收集是指获取数据的过程,可以通过实地调查、问卷调查、实验等方法进行。
抽样是从总体中选择出样本的过程,以确保样本代表总体,并使统计推断成为可能。
6. 统计分析方法:统计学提供了一系列分析方法,如描述性统计、频率分布、概率论、假设检验、回归分析、方差分析等。
这些方法用于处理和分析数据,从中得出结论或作出决策。
统计学在各个领域中具有广泛的应用,包括科学研究、经济学、社会学、医学、市场营销等。
通过统计学的方法和技术,我们能够更好地理解和利用数据,从中发现规律、做出预测,并支持决策和问题解决。
统计学

第一章总论第一节统计的产生和发展一、统计的含义统计一词通常有三种含义:即统计工作、统计资料、统计学。
统计工作是对社会、经济以及自然现象的总体数量方面进行搜集、整理和分析过程的总称;统计资料是统计工作的成果,即是通过统计工作所取得的各种数字资料及与之相关的其它资料的总称;统计学是一门系统地论述统计理论和方法的科学;它们既有区别又有联系:统计学与统计工作是理论与实践的关系,而统计工作的成果便是统计资料。
二、统计工作的产生与发展统计学科的产生与发展17世纪中叶有:政治算术学派{代表人物:威廉·配第}国势学派(记述学派){代表人物:康令、阿亨瓦尔}。
配第为了让人们知道和确信“英国的事业和各种问题,并非处于可悲的状态”,在他的代表作《政治算术》(1671-1676年间写成)中用数字比较分析了英、荷、法三国的经济实力和造成这种实力差异的原因,并从贸易、税别、分工、资本和利用闲散劳动力等多方面提出了英国的强盛之道。
19世纪后半叶有:数理统计学派{代表人物:凯特勒}、社会统计学派。
第二节统计的研究对象一、统计的性质统计是认识社会的有力武器,四层含义:社会经济统计是一种武器,就是一种工具、一种手段、一种方法;它是一种认识武器,是用来认识和反映客观世界运动、发展、变化的武器;它是一种认识社会的武器,即它是一门研究社会经济的科学;它是认识社会的有力武器。
二、统计的特点数量性、具体性、总体性、社会性第三节统计研究的基本方法和统计工作过程一、统计研究的基本方法统计工作的基本任务有两条:一是服务,二是监督。
大量观察法、综合指标法、统计分组法二、统计工作过程就一次统计活动来讲,一个完整的认识过程可分为传统的三阶段:统计调查即根据统计任务所确定的指标体系,拟订调查纲要,搜集被研究对象的准确材料;统计整理就是对调查资料加以汇总综合,使之系统化、条理化;统计分析就是将加工整理好的统计资料加以分析研究,采用各种分析方法,计算各种分析指标,揭示被研究对象的基本特征和发展的规律性,必要时还要对其未来的发展作出科学的预测。
统计学整理

选择和判断:统计学含义:统计学是一门认识方法论科学,它是研究如何收集数据、整理数据、分析数据,以便从中作出正确推断的认识方法论科学。
描述统计学和推断统计学的区别:描述统计学是研究如何反映客观现象的数据资料,对所收集的数据进行加工整理,通过图、表等读者易于理解的形式汇总显示。
推断统计学是研究如何根据样本数据推断总体数量特征的理论和方法,具体包括:抽样调查、假设检验、相关回归分析等。
描述统计是整个统计学的基础,推断统计则是现代统计学的核心和主要内容。
选择:统计学的基本概念:总体:指客观存在的、在同一性质的基础上结合起来的许多个别单位的整体。
总体单位:构成总体的每个个别单位称为总体单位。
标志:说明总体单位的属性和特征的名称。
标志分为:品质标志 (只能用文字来说明总体属性,eg:文化程度)数量标志(说明总体单位数量的特征,eg:职工人数,销售额,工资额等)不变标志(某个标志上的答案都相同)可变标志(一定有一个标志是可变的)数量标志的答案叫数量标志表现,也叫标志值指标:说明总体数量特征(分为指标名称和指标数量两部分)eg:男性比重,英语平均成绩,学生人数。
按计算方法不同分:数量指标:说明总体规模大小和数量多少的指标。
(总量指标)质量指标:说明总体内部数量对比关系和一般水平的指标。
(相对指标,平均指标)按其数值的表现形式分:总量指标:也就是数量指标,数值是绝对数形式相对指标:数值是相对形式。
平均指标:数值是平均数形式。
名称说明对象表示方式标志总体单位的属性特征或数量特征文字或数值指标总体的数量特征数值四个数据的区别:定性数据:品质变量的答案就是定性数据,定性数据本身是文字。
eg:性别为品质变量,它的答案“男”“女”就是定性数据。
名义级数据:品质变量的一种答案,仅是一种代码来表示品质变量的不同类型。
不能比较大小四则运算eg:“性别”是品质变量,用变量值“1”表示男性,“2”表示女性,这是“1”“2”或“男”“女”就是名义级数据。
统计学理论基础知识(史上最全最完整)

统计学理论基础知识(史上最全最完整)统计学是一门关于收集、分析、解释和展示数据的学科。
它在许多领域中都发挥着重要作用,包括自然科学、社会科学、商业和医学等。
基本概念- 数据:统计学的研究对象,可以是数值、文字或图像等。
- 总体与样本:总体是我们想要研究的所有个体或事物,而样本是从总体中选择的一部分。
- 参数与统计量:参数是总体的数值特征,统计量是样本的数值特征。
- 频数与频率:频数是某个数值出现的次数,频率是频数与样本大小之比。
描述统计学- 中心趋势:用于衡量数据集中的位置,常用的统计量有平均数、中位数和众数。
- 变异程度:用于衡量数据集中的离散程度,常用的统计量有标准差、方差和四分位数。
- 数据分布:用于描述数据集中每个值的频率分布情况,常用的图表有直方图和箱线图。
推断统计学- 参数估计:通过样本统计量对总体参数进行估计,包括点估计和区间估计。
- 假设检验:根据样本数据对总体参数的假设进行推断性统计分析,包括设置原假设和备择假设,并进行显著性检验。
相关分析- 相关系数:用于衡量两个变量之间的关联程度,常用的相关系数有Pearson相关系数和Spearman等级相关系数。
- 回归分析:用于建立变量之间的数学关系,常用的回归分析有线性回归和多元回归。
统计学软件- 常用统计软件:如SPSS、R、Excel等。
- 数据可视化工具:如Tableau、Power BI等。
这份文档提供了统计学的基础知识概述,包括基本概念、描述统计学、推断统计学、相关分析和统计学软件。
它将帮助读者理解统计学的核心概念和方法,为进一步探索统计学打下坚实的基础。
吴喜之-统计学基本概念和方法-第五章总体参数的估计分析

例4.对某型号的20辆汽车记录其每5升汽油的行 驶里程(千米),观测数据如下: 29.8 27.6 28.3 27.9 30.1 28.7 29.9 28.0 27.9 28.7
28.4 27.2 29.5 28.5 28.0 30.0 29.1 29.8 29.6 26.9
总体X: 该型号汽车每5升汽油的行驶里程,
例5 设盒内有黑,白两种球,个数之比是9比1,但不知道 哪种球多,有放回取三次,每次取一球,发现第一,三 次取到白球,第二次取到黑球,判断哪种球多?
解 : 设白球比例是 p,到底是0.9还是0.1呢?
如果 p=0.1, P( A) 0.12 0.9 0.009 如果 p=0.9, P( A) 0.92 0.1 0.081
数
用估计量估计总体参数
• 人们往往先假定某数据来自一个特定的总体族(比如 正态分布族)
• 而要确定是总体族的哪个成员则需要知道总体参数值 (比如总体均值和总体方差)
• 人们于是可以用相应的样本统计量(比如样本均值和 样本方差)来估计相应的总体参数
用估计量估计总体参数
• 一些常见的涉及总体的参数包括总体均值(m)、总 体标准差(s)或方差(s2)和(Bernoulli试验中)成功概 率p等(总体中含有某种特征的个体之比例)。
可用矩估计法估计其均值和标准差
x x1 x2 x20 29.8 27.6 26.9 28.695 (千米)
20
20
s
1 19
20 i1
( xi
x)2
1 19
20
( xi
28.695)2 0.98
(千米)
i1
总体均值,总体标准差的估计分别为 28.695,0.98.
统计学的基本概念和原理
统计学的基本概念和原理统计学是一门研究数据收集、整理、分析、解释和推断的学科。
它在我们生活的各个领域都起着重要的作用,从医学研究到市场营销,从社会科学到自然科学,无不需要统计学来提供数据支持和科学依据。
本文将介绍统计学的基本概念和原理,帮助读者对统计学有更全面的了解。
一、统计学的概念及重要性统计学是研究和应用数据分析的科学,它涉及到收集、整理、分析和解释数据的方法和技术。
统计学可以帮助我们从数据中提取有用的信息,揭示事物之间的关系和规律,为决策提供科学依据。
无论是政府制定政策,还是企业做市场预测,都需要统计学的支持。
只有掌握了统计学的基本概念和原理,我们才能正确地分析和解释数据,做出准确的判断。
二、数据类型和测量在统计学中,数据可以分为两种类型:定量数据和定性数据。
定量数据是数值型的,可以进行数学运算,如身高、体重等;而定性数据则是描述性的,无法进行数学运算,如性别、职业等。
在统计学中,我们还需要了解数据的测量尺度,主要包括名义尺度、顺序尺度、间隔尺度和比率尺度。
这些不同的尺度对于数据的分析和解释有着不同的要求和限制。
三、数据收集和抽样在统计学中,数据的收集是非常重要的环节。
我们可以通过抽样来收集数据,以保证数据的代表性和可靠性。
常用的抽样方法包括随机抽样、系统抽样和分层抽样等。
通过合适的抽样方法,我们可以从总体中选择出样本,从而通过对样本的分析来推断总体的特征和规律。
同时,我们还需要关注数据的来源和可信度,以确保数据的准确性和可靠性。
四、概率和概率分布概率是统计学中的重要概念,它描述了事件发生的可能性。
通过概率的计算和分析,我们可以对事件发生的概率进行预测和推断。
在统计学中,概率分布则是用来描述随机变量的分布情况的数学函数。
常用的概率分布包括正态分布、均匀分布、二项分布等。
通过对数据的分析和概率的计算,我们可以对随机变量的特征和规律进行推断和解释。
五、统计推断和假设检验统计推断是统计学中的核心内容,它用于从样本中推断总体的性质和规律。
统计学的基本概念
第二部分数据的整理与抽样一、统计学的基本概念1、统计资料定义:凡是可以推导出某项论断的事实或数字均称为统计资料。
统计资料是进行分析、推断、预测的基础。
要根据研究的目的、要求,有计划地收集统计资料。
统计资料原始资料(初级):未经过加工处理的第一手统计调查资料。
次级资料:经过加工处理的数据(有权威性的公开发表的:统计年鉴、行业协会公布的报告等等)。
统计数据度量数据:用数量尺度测量的数据,如年龄、成绩。
品质数据:不用数量尺度测量的数据,如性别,企业类型。
称关于特定问题的统计资料为一个资料集合,其主要特征有:元素:统计资料由各个元素组成。
变量:元素的特征。
有定量的变量与定性的变量。
观测:一次观测指对统计资料中某一元素的所有变量表述的记录。
xxx xxx xxx xxx xxx xxx王五xxx xxx xxx xxx xxx Xxx李四xxx xxx xxx xxx xxx xxx张三…..…..….班级专业学号姓名2、统计资料收集的方法与途径方法间接引用直接收集实验式:设计统计实验,控制某些因素以研究其对变量的影响。
例如确定产品的价格弹性观察式:对变量的影响因素不加任何限制。
根据统计研究的目的和要求收集统计资料。
所收集的资料必须满足准确性、及时性和完整性的要求。
统计报表组织方式专门调查普查重点调查抽样调查典型调查途径直接观察:通过观察对象的活动进行记录获得资料。
优点:资料全面生动,避免由于理解偏差造成的误差。
缺点:耗时、人力,对观察者素质要求高。
访问:与被调查对象直接接触,获得资料问卷调查:设计并发放调查表。
优点:避免调查人对调查对象的直接影响,缺点:返回率低,无法保证调查表的质量。
3、总体与个体(1)定义:凡是客观存在的、具有统一性质的由个别事物组成的集合体,称为统计总体。
构成总体的个别事物称为个体(总体单位)。
(2)总体与个体必须具备的条件客观性:特定的非一般意义上;大量性:包含足够多的个体以避免偶然性;同质性:构成总体的个体在性质上必须是相同的,否则无法反映总体的特征;差异性:构成总体的个体之间存在差异。
统计学概念及公式汇总
统计学概念及公式汇总常⽤统计学概念及公式第⼀章⼀、总体和总体单位总体是指在同⼀性质基础上结合起来的许多个别事物的整体。
总体单位是指构成总体的个别事物。
例如:——(我们的班级、⼀所学校、某⼀地区、某⼀部门等)总体按其单位数是否有限,分为有限总体和⽆限总体。
⼆、标志和标志表现标志是说明总体单位特征的名称,有品质标志与数量标志之别。
品质标志表⽰事物质的特性,是⽤⽂字表⽰的。
数量标志表⽰事物的量的特性,是可以⽤数值表⽰的,如⼈的年龄、⾝⾼、体重,企业的产值、利润等。
标志表现是标志名称之后所表明的内容。
三、变异和变量在⼀个总体中,各单位的品质标志或数量标志的标志表现具有差异性,这种差别都称为变异。
在统计中,可变的数量标志和指标称为变量,变量的数值表现称为变量值。
变量按变量值是否连续,可以分为离散性变量和连续性变量。
离散性变量的各变量值之间都是以整位数断开的,连续性变量的数值是相邻两值之间可作⽆限分割。
综上所述,把总体、总体单位、标志等概念联系起来,可以概括出统计总体的三个基本特征:1、同质性。
即总体所有单位都必须具有某种共同的性质。
2、⼤量性。
即总体应包括全部总体单位或⾜够多数的总体单位3、差异性。
即所有的总体单位必须在某⼀⽅⾯同质,但在其他⽅⾯⼜必须存在差异。
四、统计指标(⼀)统计指标的概念及其构成要素1、统计指标是反映客观存在的社会总体现象数量特征的概念。
例如国内⽣产总值、⼈⼝⾃然增长率、劳动⽣产率等。
按照这种理解,统计指标包括三个构成要素:(1)指标名称,(2)计量单位,(3)计算⽅法。
2、统计指标是反映客观存在的社会现象总体数量特征的概念和具体数值。
例如:1998年我国国内⽣产总值79395.7亿元,⽐上年增长7.8%;1998年末,我国总⼈⼝数为124810万⼈,这些都是统计指标。
按照这种理解,统计指标除包括上述三个要素外,还包括(1)时间限制,(2)空间限制,(3)指标数值三个要素。
以上两种理解⽅法都是成⽴的,合理的。
统计学的基本概念和原理
统计学的基本概念和原理统计学是一门研究数据收集、分析和解释的学科。
通过运用数学和统计方法,统计学帮助我们理解和描述数据,揭示数据之间的关系,并从数据中获取有关现象和问题的信息。
本文将介绍统计学的基本概念和原理,帮助读者了解其核心内容。
一、统计学的定义和作用统计学可以被定义为一种通过数据的收集、整理、分析和解释来研究和描述现象的科学方法。
它对于我们理解和解释现实生活中的问题和现象至关重要。
统计学通过量化和总结数据,帮助我们从海量信息中提取有意义的结论。
二、统计学的基本概念1. 总体和样本:在统计学中,总体是指我们要研究的整体群体,而样本则是从总体中抽取出的一部分个体。
通过从样本中收集数据并进行分析,我们可以对整体总体进行推断。
2. 变量:变量是指在研究中可能会发生变化的属性或特征。
变量可以分为定性变量和定量变量。
定性变量是具有类别或标签的变量,例如性别、颜色等。
定量变量则是可以进行数值化衡量的变量,例如年龄、身高等。
3. 观测和测量:观测和测量是指对变量进行数据收集的过程。
观测是指直接观察并记录数据,例如观察某人的行为。
测量是指使用测量工具对变量进行量化,例如使用尺子测量身高。
4. 描述统计学和推论统计学:描述统计学是指通过对数据进行整理、总结和描述,来了解数据的特征和结构。
推论统计学是指通过从样本推断总体特征的过程,通过利用样本的信息来推断总体的参数。
三、统计学的原理1. 概率:概率是统计学中一个重要的概念,它描述了事件发生的可能性。
概率可以帮助我们理解和预测事件的结果,并在统计推断中起到重要的作用。
2. 样本的代表性:在统计学中,样本的代表性是指样本能够准确地反映总体的特征。
为了保证样本的代表性,我们需要进行随机抽样,并确保样本的大小足够大。
3. 统计推断:统计推断是指通过从样本中获得的信息,对总体进行统计学上的推断。
统计推断的核心方法是利用概率和抽样理论来进行参数估计和假设检验。
4. 假设检验:假设检验是统计学中的一种方法,用于检验关于总体参数的假设是否成立。