求极限的方法及例题总结解读

求极限的方法及例题总结解读
求极限的方法及例题总结解读

1.定义:

说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5

)13(lim 2

=-→x x

(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。

利用导数的定义求极限

这种方法要求熟练的掌握导数的定义。

2.极限运算法则

定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3)

)0(,)()(lim

成立此时需≠=B B A

x g x f

说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限

这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。

8.用初等方法变形后,再利用极限运算法则求极限

例1

1213lim

1

--+→x x x

解:原式=4

3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。

注:本题也可以用洛比达法则。 例2

)

12(lim --+∞

→n n n n

解:原式=

2

3

1

1213lim

1

2)]1()2[(lim =

-++

=-++--+∞

→∞→n

n n n n n n n n

n 分子分母同除以

例3 n

n

n n n 323)1(lim ++-∞→

解:原式11)32(1)31

(lim 3=++-=

∞→n

n n n

上下同除以。

3.两个重要极限

(1)1

sin lim

0=→x x

x

(2)e

x x

x =+→1

)1(lim ;e

x x x =+∞→)11(lim

说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,

例如:133sin lim 0=→x x x ,e x x x =--→21

0)21(lim ,e x x

x =+∞→3)31(lim ;等等。

利用两个重要极限求极限

例5 203cos 1lim

x x

x -→

解:原式=61)2(122sin 2lim 32sin 2lim

2

2

02

2

0=?=→→x x

x x x x 。

注:本题也可以用洛比达法则。 例6

x

x x 2

)

sin 31(lim -→

解:原式=6

sin 6sin 31

sin 6sin 310

]

)

sin 31[(lim )sin 31(lim ---→-?

-→=-=-e x x x

x x

x x

x

x x 。

例7

n

n n n )12(

lim +-∞

解:原式=31

331

1

331])131[(lim )131(lim -+--+∞→+-?

-+∞→=+-+=+-+e n n n n

n n n n

n n 。

4.等价无穷小

定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有:

x ~x sin ~x tan ~x arcsin

~x arctan ~)1ln(x +~1-x e 。

说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上

面的等价

关系成立,例如:当0→x 时,13-x

e

~x 3;)1ln(2x -~2x -。

定理 4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且

)(x f ~)(1x f ,)(x g ~)(1x g ,则当)()(lim

110

x g x f x x →存在时,)()

(lim

0x g x f x x →也存在且

等于)(x f )()(lim 110x g x f x x →,即)()(lim 0x g x f x x →=)()(lim 110x g x f x x →。

利用等价无穷小代换(定理4)求极限

例9

)arctan()31ln(lim

20

x x x x +→

解:)31ln(0x x +→时,

~x 3,)arctan(2x ~2x , ∴ 原式=33lim

20

=?→x x x x 。

例10 x x e e x

x x sin lim

sin 0--→

解:原式=1sin )sin (lim sin )1(lim sin 0sin sin 0=--=--→-→x x x x e x x e e x x x x x x 。

注:下面的解法是错误的:

原式=1sin sin lim sin )1()1(lim 0sin 0=--=----→→x x x x x x e e x x x x 。

正如下面例题解法错误一样:

0lim sin tan lim

3030

=-=-→→x x

x x x x x x 。

例11 x x x x sin )

1sin tan(lim

20→

解:

等价与是无穷小,时,当x x x x x x x 1

sin )1sin tan(1sin

0222∴→ ,

所以,原式=0

1sin lim 1

sin

lim

020==→→x x x x x x x 。(最后一步用到定理2)

五、利用无穷小的性质求极限

有限个无穷小的和是无穷小,有界函数与无穷小乘积是无穷小。用等

价无穷小替换求极限常常行之有效。

例 1. )11sin 1(

lim 2

--+→x x e x x 2. x x x ln )1sin(sin lim 0-→

1/21

5.洛比达法则

定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和

)(x g 满足:(1))(x f 和)(x g 的极限都是0或都是无穷大;

(2))(x f 和)(x g 都可导,且)(x g 的导数不为0;

(3))()

(lim

x g x f ''存在(或是无穷大);

则极限

)()(lim

x g x f 也一定存在,且等于)()

(lim x g x f '',即

)()(l

i m x g x f =)()

(lim x g x f ''。

说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是否满足,只要有一条不满足,洛比达法则就不能应用。特别要注意条件

(1)是否满足,即验证所求极限是否为“00”型或“∞∞

”型;条件

(2)一般都满足,而条件(3)则在求导完毕后可以知道是否满足。另外,洛比达法则可以连续使用,但每次使用之前都需要注意条件。

利用洛比达法则求极限

说明:当所求极限中的函数比较复杂时,也可能用到前面的重要极限、等价无穷小代换等方法。同时,洛比达法则还可以连续使用。

例12 203cos 1lim

x x

x -→(例4)

解:原式=61

6sin lim

0=

→x x x 。(最后一步用到了重要极限)

例13

12cos

lim

1

-→x x

x π 解:原式=212sin

2

lim

1πππ

-=-

→x

x 。

例14

30

sin lim

x x x x -→ 解:原式=203cos 1lim

x x x -→=61

6sin lim 0=→x x x 。(连续用洛比达法则,最后用重

要极限)

例15 x x x

x x x sin cos sin lim

2

0-→

解:

313sin lim 3)

sin (cos cos lim

cos sin lim

202

020==--=?-=→→→x x x x x x x x x x x x x x x x 原式先用等价无穷小,再

用洛必达法则

例18

])1ln(11[lim 0x x x +-→ 解:错误解法:原式=0

]1

1[lim 0=-→x x x 。

正确解法:

。原式21

)1(2lim 21

11

lim )1ln(lim

)1ln()1ln(lim

000

0=+=-+=?-+=+-+=→→→→x x x x x x x x

x x x x x x x x x

应该注意,洛比达法则并不是总可以用,如下例。 例19

x x x

x x cos 3sin 2lim

+-∞

解:易见:该极限是“00

”型,但用洛比达法则后得到:x x x sin 3cos 21lim

--∞→,

此极限

不存在,而原来极限却是存在的。正确做法如下:

原式=

x x

x x x cos 3sin 21lim

+

-

∞→(分子、分母同时除以x ) =31

(利用定理1和定理2)

6.连续性

定理6 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内的一点,则有)

()(lim 00

x f x f x x =→。

利用函数的连续性(定理6)求极限

例4

x

x e

x 122

lim →

解:因为20=x 是函数x

e x x

f 12)(=的一个连续点, 所以原式=e e 422

12

=。

7.极限存在准则

定理7(准则1)单调有界数列必有极限。

四、利用单调有界准则求极限

首先常用数学归纳法讨论数列的单调性和有界性,再求解方程可求出极限。 例1. 设0>a ,

)

,2,1(,,,1121 =+=+=+==+n x a x x a a a x a x n n

求极限n

n x ∞

→lim 。

定理8(准则2)已知}{,}{,}{n n n z y x 为三个数列,且满足: (1)),3,2,1(, =≤≤n z x y n n n (2)a

y n n =∞→lim ,a

z n n =∞

→lim

则极限∞

→n n

x lim 一定存在,且极限值也是a ,即

a

x n n =∞

→lim 。

10. 夹逼定理

利用极限存在准则求极限 例20 已知

)

,2,1(,2,211 =+==+n x x x n n ,求n

n x ∞

→lim

解:易证:数列}{n x 单调递增,且有界(0

n x ∞

→lim 存在,设a

x n n =∞

→lim 。对已知的递推公式

n

n x x +=+21两边求极限,

a a +=2,解得:2=a 或1-=a (不合题意,舍去) 所以2

lim =∞

→n n x 。

例21

)

1

2111

(

lim 2

2

2

n n n n n ++

+++

+∞

→ 解:易见:112

1

1

122222

+<

++

+++

+<

+n n n

n n n n

n n

因为

1lim

2

=+∞

→n

n n n ,

1

1

lim

2

=+∞→n n n

所以由准则2得:1

)12

11

1

(

lim 2

2

2

=++

++++∞

→n

n n n n 。

9. 洛必达法则与等价无穷小替换结合法

对于一些函数求极限问题,洛必达法则和等价无穷小结合运用,往往能化简运算,收到奇效。

11. 泰勒展开法

12. 利用定积分的定义求极限法

积分本质上是和式的极限,所以一些和式的极限问题可以转化为求定积分的问题。

8. 利用复合函数求极限

十、利用级数收敛的必要条件求极限

级数收敛的必要条件是:若级数∑∞

=1

n

n

u

收敛,则

lim=

n

n

u

,故对某

些极限

)

(

lim n

f

n∞

→,可将函数)

(n

f作为级数

∑∞

=1

)

(

n

n

f

的一般项,只须证明此

技术收敛,便有

)

(

lim=

n

f

n。

例n n n n !

lim

∞→

十一、利用幂级数的和函数求极限

当数列本身就是某个级数的部分和数列时,求该数列的极限就成了求相应级数的和,此时常可以辅助性的构造一个函数项级数(通常为幂级数,有时为Fourier 级数)。使得要求的极限恰好是该函数项级数的和函数在某点的值。

例求)3333311(lim 12-∞

→++++

n n

7等比等差数列公式应用(对付数列极限)(q 绝对值符号要小于1)

8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限) 可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限)例如知道Xn 与Xn+1的关系,已知Xn 的极限存在的情况下, xn 的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化

11 还有个方法 ,非常方便的方法 就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!

x 的x 次方快于 x ! 快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢) !!!!!!

当x 趋近无穷的时候 他们的比值的极限一眼就能看出来了

12 换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中

16直接使用求导数的定义来求极限,

(一般都是x 趋近于0时候,在分子上f (x 加减麽个值)加减f (x )的形式, 看见了有特别注意)

读书的好处

1、行万里路,读万卷书。

2、书山有路勤为径,学海无涯苦作舟。

3、读书破万卷,下笔如有神。

4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文

5、少壮不努力,老大徒悲伤。

6、黑发不知勤学早,白首方悔读书迟。——颜真卿

7、宝剑锋从磨砺出,梅花香自苦寒来。

8、读书要三到:心到、眼到、口到

9、玉不琢、不成器,人不学、不知义。

10、一日无书,百事荒废。——陈寿

11、书是人类进步的阶梯。

12、一日不读口生,一日不写手生。

13、我扑在书上,就像饥饿的人扑在面包上。——高尔基

14、书到用时方恨少、事非经过不知难。——陆游

15、读一本好书,就如同和一个高尚的人在交谈——歌德

16、读一切好书,就是和许多高尚的人谈话。——笛卡儿

17、学习永远不晚。——高尔基

18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向

19、学而不思则惘,思而不学则殆。——孔子

20、读书给人以快乐、给人以光彩、给人以才干。——培根

求极限方法总结全

极限求解总结 1、极限运算法则 设lim n →∞ a a =a ,lim n →∞ a a =a ,则 (1) lim n →∞ (a a ±a a )=lim n →∞ a a ±lim n →∞ a a =a ±a ; (2) lim n →∞ a a a a =lim n →∞ a a lim n →∞ a a =aa ; (3) lim n →∞a a a a = lim n →∞a a lim n →∞ a a = a a (a ≠0). 2、函数极限与数列极限的关系 如果极限lim x →a 0 a (a )存在,{a a }为函数a (a )的定义域内任一收敛于a 0的数列,且满 足:a a ≠a 0(a ∈a +),那么相应的函数值数列{a (a )}必收敛,且lim a →∞ a (a a )= lim a →a 0 a (a ) 3、定理 (1) 有限个无穷小的和也是无穷小; (2) 有界函数与无穷小的乘积是无穷小; 4、推论 (1) 常数与无穷小的乘积是无穷小; (2) 有限个无穷小的乘积也是无穷小;

(3)如果lim a(a)存在,而c为常数,则lim[aa(a)]=a lim a(a) (4)如果lim a(a)存在,而n是正整数,则lim[a(a)]a=[lim a(a)]a 5、复合函数的极限运算法则 设函数y=a[a(a)]是由函数u=a(a)与函数y=a(a)复合而成的,y=a[a(a)] 在点a0的某去心领域内有定义,若lim a→a0a(a)=a0,lim a→a0 a(a)=a,且存在a0> 0,当x∈U(a0,a0)时,有a(a)≠a0,则lim a→a0a[a(a)]=lim a→a0 a(a)=a 6、夹逼准则 如果 (1)当x∈U(a0,a)(或|a|>M)时,g(x)≤a(a)≤h(x) (2)lim a→a0(a→∞)a(a)=a,lim a→a0(a→∞) a(a)=a 那么lim a→a0(a→∞) a(a)存在,且等于A 7、两个重要极限 (1)lim a→0sin a a =1 (2)lim x→∞(1+1 x )x=a 8、求解极限的方法(1)提取因式法

利息计算

利息计算公式 储蓄存款利率是由国家统一规定,中国人民银行挂牌公告。利率也称为利息率,是在一定日期内利息与本金的比率,一般分为年利率、月利率、日利率三种。年利率以百分比表示,月利率以千分比表示,日利率以万分比表示。 1 计算公式 储蓄存款利率是由国家统一规定,中国人民银行挂牌公告。利率也称为利息率,是在一定日期内利息与本金的比率,一般分为年利率、月利率、日利率三种。年利率以百分比表示,月利率以千分比表示,日利率以万分比表示。如年息九厘写为 9%,即每百元存款定期一年利息9元,月息六厘写为6‰,即每千元存款一月利息6元,日息一厘五毫写为 1.5‰0,即每万元存款每日利息1元5角,目前我国储蓄存款用月利率挂牌。为了计息方便,三种利率之间可以换算,其换算公式为:年利率÷12=月利率;月利率÷30=日利率;年利率 ÷360=日利率. 2 计息起点 储蓄存款利息计算时,本金以“元”为起息点,元以下的角、分不计息,利息的金额算至分位,分位以下四舍五入。分段计息算至厘位,合计利息后分以下四舍五入。 3 计算规定 1、算头不算尾,计算利息时,存款天数一律算头不算尾,即从存入日起算至取款前一天止; 2、不论闰年、平年,不分月大、月小,全年按360天,每月均按30天计算; 3、对年、对月、对日计算,各种定期存款的到期日均以对年、对月、对日为准。即自存入日至次年同月同日为一对年,存入日至下月同一日为对月; 4、定期储蓄到期日,比如遇例假不办公,可以提前一日支取,视同到期计算利息,手续同提前支取办理。 利息的计算公式:本金×年利率(百分数)×存期

如果收利息税再×(1-5%) 本息合计=本金+利息 应计利息的计算公式是:应计利息=本金×利率×时间 应计利息精确到小数点后12位,已计息天数按实际持有天数计算。 PS:存期要与利率相对应,不一定是年利率,也可能是日利率还有月利率。 一、计算利息的基本公式储蓄存款利息计算的基本公式为:利息=本金×存期×利率 二、利率的换算年利率、月利率、日利率三者的换算关系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意与存期相一致。 三、计息起点 1、储蓄存款的计息起点为元,元以下的角分不计付利息。 2、利息金额算至厘位,实际支付时将厘位四舍五入至分位。 3、除活期储蓄年度结算可将利息转入本金生息外,其他各种储蓄存款不论存期如何,一律于支取时利随本清,不计复息。 四、存期的计算 1、计算存期采取算头不算尾的办法。 2、不论大月、小月、平月、闰月,每月均按30天计算,全年按360天计算。 3、各种存款的到期日,均按对年对月对日计算,如遇开户日为到期月份所缺日期,则以到期月的末日为到期日。 五、外币储蓄存款利息的计算外币储蓄存款利率遵照中国人民银行公布的利率执行,实行原币储蓄,原币计息(辅币可按当日外汇牌价折算成人民币支付)。其计息规定和计算办法比照人民币储蓄办法。 4 贷款利息计算的基本常识 (一)人民币业务的利率换算公式为(注:存贷通用): 1.日利率(0/000)=年利率(%)÷360=月利率(‰)÷30 2.月利率(‰)=年利率(%)÷12 (二)银行可采用积数计息法和逐笔计息法计算利息。 1.积数计息法按实际天数每日累计账户余额,以累计积数乘以日利率计算利息。计息公式为: 利息=累计计息积数×日利率,其中累计计息积数=每日余额合计数。 2.逐笔计息法按预先确定的计息公式利息=本金×利率×贷款期限逐笔计算利息,具体有三: 计息期为整年(月)的,计息公式为: ①利息=本金×年(月)数×年(月)利率 计息期有整年(月)又有零头天数的,计息公式为:

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

求极限的方法总结

学号:0 学年论文 求极限的方法总结 Method of Limit 学院理学院专业班级 学生指导教师(职称) 完成时间年月日至年月日

摘要 极限的概念是高等数学中最重要、最基本的概念之一。许多重要的概念如连续、导数、定积分、无穷级数的和及广义积分等都是用极限来定义的。因此掌握好求极限的方法对学好高等数学是十分重要的。但求极限的方法因题而异,变化多端,有时甚至感到变幻莫测无从下手,通过通过归纳和总结,我们罗列出一些常用的求法。本文主要对了数学分析中求极限的方法进行一定的总结,以供参考。 关键词:极限洛必达法则泰勒展开式定积分无穷小量微分中值定理

Abstract The concept of limit is the most important mathematics,one of the most basic important concepts such as continuity,derivative,definite integral,infinite series and generalized integrals and are defined by the mater the methods the Limit learn mathematics integrals and are defined by the limit varies by title,varied,anf sometimes even impossible to start very unpredictable,and summarized through the adoption,we set out the requirements of some commonly used this paper,the mathematical analysis of the method of seeking a certain limit a summary for reference. Keyword:Limit Hospital's Rule Taylor expansion Definite integral Infinitesimal Mean Value Theorem

高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】 高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件。是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“0 0”“∞ ∞”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成

民间借贷民事诉讼法利息计算方法

民间借贷民事诉讼法利息计算方法 民间借贷民事诉讼法利息计算方法是怎么样的呢,它是根据什么法条的呢?下面小编来为大家讲讲相关内容。 一、民间借贷期内利息 1、双方约定利息 法院对约定的利息认定与处理如图所示,年利率在低于24%区间,法院支持;在24%-36%区间,法院处于中立地位,如果当事人自愿支付,后悔想要回法院不会支持,反之,如果出借人索要此部分利息,法院也不会支持,通俗点理解就是"给了别想要回,不给也别想要";超过红线36%,法院的强硬态度便立刻闪现,即不论何种情形,一律不予支持。 具体参见《关于审理民间借贷案件适用法律若干问题的规定》(以下简称'规定')相关法条: 第二十六条"借贷双方约定的利率未超过年利率24%,出借人请求借款人按照约定的利率支付利息的,人民法院应予支持。借贷双方约定的利率超过年利率36%,超过部分的利息约定无效。借款人请求出借人返还已支付的超过年利率36%部分的利息的,人民法院应予支持。" 第二十八条"借贷双方对前期借款本息结算后将利息计入后期借款本金并重新出具债权凭证,如果前期利率没有超过年利率24%,重新出具的债权凭证载明的金额可认定为后期借款本金;超过部分的利息不能计入后期借款本金。约定的利率超过年利率24%,当事人主

张超过部分的利息不能计入后期借款本金的,人民法院应予支持。 按前款计算,借款人在借款期间届满后应当支付的本息之和,不能超过最初借款本金与以最初借款本金为基数,以年利率24%计算的整个借款期间的利息之和。出借人请求借款人支付超过部分的,人民法院不予支持。" 第三十二条"借款人可以提前偿还借款,但当事人另有约定的除外。借款人提前偿还借款并主张按照实际借款期间计算利息的,人民法院应予支持。" 2、双方没有约定利息 1)没有约定利息,出借人主张期内利息,不被法院支持。 2)借款人自愿支付,后又反悔以不当得利为由要求返还的,不超过年利率36%部分的利息,法院均不支持;超过36%红线部分利息法院始终支持返还。 参考法条: '规定'第二十五条第一款"借贷双方没有约定利息,出借人主张支付借期内利息的,人民法院不予支持。" 第三十一条"没有约定利息但借款人自愿支付,或者超过约定的利率自愿支付利息或违约金,且没有损害国家、集体和第三人利益,借款人又以不当得利为由要求出借人返还的,人民法院不予支持,但借款人要求返还超过年利率36%部分的利息除外。" 3、双方约定不明 1)自然人之间约定不明,法院不支持期内利息。

求极限的常用方法典型例题

求极限的常用方法典型例题 掌握求简单极限的常用方法。求极限的常用方法有 (1) 利用极限的四则运算法则; (2) 利用两个重要极限; (3) 利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量); (4) 利用连续函数的定义。 例 求下列极限: (1)x x x 33sin 9lim 0-+→ (2)1)1sin(lim 21--→x x x (3)x x x 1 0)21(lim -→ (4)2 22)sin (1cos lim x x x x x +-+∞→ (5))1 1e (lim 0-+→x x x x 解(1)对分子进行有理化,然后消去零因子,再利用四则运算法则和第一重要极限计算,即 x x x 33sin 9lim 0-+→ =) 33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =3 3sin 91lim 3sin lim 00++?→→x x x x x =2 1613=? (2)利用第一重要极限和函数的连续性计算,即 )1)(1()1sin(lim 1 )1sin(lim 121-+-=--→→x x x x x x x 11lim 1)1sin(lim 11+?--=→→x x x x x 2 11111=+?= (3)利用第二重要极限计算,即 x x x 1 0)21(lim -→=2210])21[(lim --→-x x x 2e -=。 (4)利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量)计算,即

222222222)sin 1(lim ]1cos 1[lim )sin 1(1cos 1lim )sin (1cos lim x x x x x x x x x x x x x x x x +-+=+-+=+-+∞→∞→∞→∞→= 1 注:其中当∞→x 时,x x x x sin 1sin =,)1(cos 11cos 2222-=-x x x x 都是无穷小量乘以有界变量,即它们还是无穷小量。 (5) 利用函数的连续性计算,即 )11e (lim 0-+→x x x x =11 01e 00-=-+?

求极限的方法总结

求极限的几种常用方法 一、 约去零因子求极限 例如求极限limx→1x4-1x-1,本例中当x→1时,x-1→0,表明x 与1无限接近,但x≠1,所以x-1这一因子可以约去。 二、 分子分母同除求极限 求极限limx→∞x3-x23x3+1 ∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 limx→∞x3-x23x3+1=limx→∞1-1x3+1x3=13 三、 分子(母)有理化求极限 例:求极限limx→∞(x3+3-x2+1) 分子或分母有理化求极限,是通过有理化化去无理式。 ()()()()131313lim 13lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x 0132lim 22=+++=+∞→x x x 例:求极限limx→01+tanx -1+sinxx3 30sin 1tan 1lim x x x x +-+→=() x x x x x x sin 1tan 1sin tan lim 30+++-→ =300sin tan lim sin 1tan 11lim x x x x x x x -+++→→= 41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。 四、 应用两个重要极限求极限

(2)limx→∞(1+1x)x=limx→0(1+x)1x=e 在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。 例:求极限limx→∞(x+1x-1)x 第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x,最后凑指数部分。 limx→∞(x+1x-1)x=limx→∞(1+2x-1)x=limx→∞[1+1x-122x-1(1+ 2x-1)12]2=e2 五、利用无穷小量的性质求极限 无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。这种方法可以处理一个函数极限不存在但有界,和另一个函数的极限是零的极限的乘积的问题。 例:求limx→∞sinxx 因为sinx≤1, limx→∞1x=0,所以limx→∞sinxx=0 六、用等价无穷小量代换求极限 常见等价无穷小有: 当x→0时,x~sinx~tanx~arcsinx~arctanx~ln1+x~ex1, 1-cosx~12x2,(1+ax)b-1~abx 等价无穷小量代换,只能代换极限式中的因式。此方法在各种求极限的方法中应作为首选。 例:limx→0xln(1+x)1-cosx=limx→0xx12x2=2

银行存款利息计算方法(一)

银行存款利息计算方法(一) 存款利息计算的有关规定 1、存款的计息起点为元,元以下角分不计利息。利息金额算至分位,分以下尾数四舍五入。除活期储蓄在年度结息时并入本金外,各种储蓄存款不论存期多长,一律不计复息。 2、到期支取:按开户日挂牌公告的整存整取定期储蓄存款利率计付利息。 3、提前支取:按支取日挂牌公告的活期储蓄存款利率计付利息。部分提前支取的,提前支取的部分按支取日挂牌公告的活期储蓄存款利率计付利息,其余部分到期时按开户日挂牌公告的整存整取定期储蓄存款利率计付利息,部分提前支取以一次为限。 4、逾期支取:自到期日起按存单的原定存期自动转期。在自动转期后,存单再存满一个存期(按存单的原定存期),到期时按原存单到期日挂牌公告的整存整取定期储蓄存款利率计付利息;如果未再存满一个存期支取存款,此时将按支取日挂牌公告的活期储蓄存款利率计付利息。 5、定期储蓄存款在存期内如遇利率调整,仍按存单开户日挂牌公告的相应的定期储蓄存款利率计算利息。 6、活期储蓄存款在存入期间遇有利率调整,按结息日挂牌公告的活期储蓄存款利率计算利息。 7、大额可转让定期存款:到期时按开户日挂牌公告的大额可转让定期存款利率计付利息。不办理提前支取,不计逾期息。欢迎到无忧财务 具体计算方法 1、计算活期储蓄利息:每年结息一次,7月1日利息并入本金起息。未到结息日前清户者,按支取日挂牌公告的活期储蓄存款利率计付利息,利息算到结清前一天止。 确定存期: 在本金、利率确定的前提下,要计算利息需要知道确切的存期。在现实生活中,储户的实际存期很多不是整年整月的,一般都带有零头天数,这里介绍一种简便易行的方法,可以迅速准确地算出存期,即采用以支取日的年、月、日分别减去存入日的年、月、日,其差数为实存天数。 例如:支取日:1998年6月20日-存入日:1995年3月11日=3年3月9日按储蓄计息对于存期天数的规定,换算天数为:3×360(天)3×30(天)9如果发生日不够减时,可以支取“月”减去“1”化为30天加在支取日上,再各自相减,其余类推。这种方法既适合用于存款时间都是当年的,也适用于存取时间跨年度的,很有实用价值。 2、计算零存整取的储蓄利息到期时以实存金额按开户日挂牌公告的零存整取定期储蓄存款利率计付利息。逾期支取时其逾期部分按支取日挂牌公告的活期储蓄存款利率计付利息。

高等数学求极限的14种方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件。是: ε δεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“ 00”“∞ ∞ ”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通

高数求极限的16种方法(超经典)高彦辉总结

L .+'''+.+'''+. + 天天快乐+ '+. .+' "+.+" 爱 爱爱 爱祝爱 爱愿爱 爱你爱 爱永爱 爱远爱 爱被爱 爱爱爱 爱包爱 爱围爱 爱爱 爱爱 爱爱 爱 漂亮吧!送给你,希望你会幸福一生,梦想成真! 高数中求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先,对极限的总结如下: 极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。 1 .极限分为一般极限,数列极限(区别在于数列极限时发散的,是一般极限的一种) 2.解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N 趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0LHopital 法则分为3中情况 1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数 快于对数函数(画图也能看出速率的快慢)!!!!!!当x趋近无穷的时候他们的比值的极限一眼就能看出来了12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换

各种利息计算方法例题

.各种利息计算方法例题 利息计算基本公式:利息=本金×利率×存期=本金×天数×日利率=本金×月数×月利率 税后利息=利息×80% 天数计算=月×30天+另头天数(如4月24日即为144天) 利率表示法:%代表年利率,‰代表月利率,万分比代表日利率。 1、活期储蓄存单:按实际存期有一天算一天,大小月要调整。现行日利率为每天0.2元。 例:2006年2月18日存入的活期存单一张,金额为1000元,于06年05月08日支取。问应实付多少利息? 解:(158-78-1)天×0.1万×0.2元=1.58元 2、定期存款利息计算: A、提前支取按活期存单的计算方法计算。 B、到期支取的利息=本金×年利率×年数 C、过期支取的利息=到期息+过期息(到期息参照B,过期息参照A) 实付利息=应付利息×80% 例:※2006年03月16日存入一年期存款一笔,金额为50000元,于2006年9月3日支取,利率为2.25%,问应付给储户本息多少? 解:实付息=(273-106+4)天×5万×0.2元=171元 本息合计=50000+171=50171元 ※2001年6月16日存入五年期存款一笔,金额为20000元,利率为2.88%,于2006年6月16日支取,问应实付多少利息? 解:实付息=20000×2.88%×5年 =2880元. ※2003年01年27日存入三年期存款一笔,金额为12000元,利率2.52%,于2006年6月16日支取,问实付利息为多少? 解:到期息=12000×2.52%×3年=907.2元 过期息=(196-57+1)×1.2万×0.2元=33.60元 实付利息=(到期息+过期息)=(907.2+34.08)=940.08元.

极限计算方法及例题

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2 =-→x x ;???≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,) ()(lim 成立此时需≠= B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim =→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim =→x x x ,e x x x =--→21 ) 21(lim ,e x x x =+ ∞ →3)31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有:

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

利率表示方法和利息的计算方法

利息计算方法及例题 各种利息计算方法例题 利息计算基本公式:利息=本金×利率×存期=本金×天数×日利率=本金×月数×月利率 税后利息=利息×80% 天数计算=月×30天+另头天数(如4月24日即为144天) 利率表示法:%代表年利率,‰代表月利率,万分比代表日利率。 1、活期储蓄存单:按实际存期有一天算一天,大小月要调整。现行日利率为每天0.2元。 例:2006年2月18日存入的活期存单一张,金额为1000元,于06年05月08日支取。问应实付多少利息? 解:(158-78-1)天×0.1万×0.2元×80%=1.26元 2、定期存款利息计算: A、提前支取按活期存单的计算方法计算。 B、到期支取的利息=本金×年利率×年数 C、过期支取的利息=到期息+过期息(到期息参照B,过期息参照A) 实付利息=应付利息×80% 例:※2006年03月16日存入一年期存款一笔,金额为50000元,于2006年9月3日支取,利率为2.2 5%,问应付给储户本息多少? 解:实付息=(273-106+4)天×5万×0.2元×80%=136.80元 本息合计=50000+136.8=50136.80元 ※ 2001年6月16日存入五年期存款一笔,金额为20000元,利率为2.88%,于2006年6月16日支取,问应实付多少利息? 解:实付息=20000×2.88%×5年×80%=2304元. ※ 2003年01年27日存入三年期存款一笔,金额为12000元,利率2.52%,于2006年6月16日支取,问实付利息为多少? 解:到期息=12000×2.52%×3年=907.2元 过期息=(196-57+1)×1.2万×0.2元=33.60元 实付利息=(到期息+过期息)×80%=(907.2+34.08)×0.8=752.64元. 3、利随本清贷款利息计算:方法与活期存单一样,按头际天数有一天算一天。逾期归还的,逾期部分按每天3/万计算。(现行计算方法是按原订利率的50%计算罚息) ※例:某户于2006年2月3日向信用社借款30000元,利率为10.8‰,定于2006年8月10日归还,若贷户于2006年7月3日前来归还贷款时,问应支付多少利息? 解:利息=(213-63+0)天×(10.8‰÷30)×30000元=1620元. ※例:某户于2005年10月11日向信用社借款100000元,利率为9.87‰,定于2006年5月10日到期,贷户于2006年6月15日前来归还贷款,问应支付多少利息? 解:利息=(160+360-311+2)天×100000元×(9.87‰÷30)+(195-160+1)天×100000元×(9.87‰÷30×1.5)=6941.90+1776.60=8718.50元 4、定活两便利息计算:存期不足三个月按活期存款利率计算。三个月以上六个月以下的整个存期按定期三个月的利率打六折计算,六个月以上一年以下的整个存期按定期六个月的利率打六折计算,超过一年的整个存期都按一年期利率打六折算。日期有一天算一天. 例:某存款户于2005年3月1日存入10000元定活两便存款,分别于2005年8月4日、2005年9月1 5日、2006年6月16日支取,问储户支取时分别能得多少利息?(三个月利率为1.71%,半年利率为2.0 7%,一年利率为2.25%) 解:2005年8月4日支取时可得利息=(244-91+3)天×(1.71%÷360)×10000元×60%×80%=35.57元. 2005年9月15日可得利息=(285-91+4)天×(2.07%÷360)×10000元×60%×80%=54.65元.

银行存款利息计算方法

银行存款利息计算方法_银行管理 存款利息计算的有关规定 1、存款的计息起点为元,元以下角分不计利息。利息金额算至分位,分以下尾数四舍五入。除活期储蓄在年度结息时并入本金外,各种储蓄存款不论存期多长,一律不计复息。 2、到期支取:按开户日挂牌公告的整存整取定期储蓄存款利率计付利息。 3、提前支取:按支取日挂牌公告的活期储蓄存款利率计付利息。部分提前支取的,提前支取的部分按支取日挂牌公告的活期储蓄存款利率计付利息,其余部分到期时按开户日挂牌公告的整存整取定期储蓄存款利率计付利息,部分提前支取以一次为限。 4、逾期支取:自到期日起按存单的原定存期自动转期。在自动转期后,存单再存满一个存期(按存单的原定存期),到期时按原存单到期日挂牌公告的整存整取定期储蓄存款利率计付利息;如果未再存满一个存期支取存款,此时将按支取日挂牌公告的活期储蓄存款利率计付利息。 5、定期储蓄存款在存期内如遇利率调整,仍按存单开户日挂牌公告的相应的定期储蓄存款利率计算利息。 6、活期储蓄存款在存入期间遇有利率调整,按结息日挂牌公告的活期储蓄存款利率计算利息。 7、大额可转让定期存款:到期时按开户日挂牌公告的大额可转让定期存款利率计付利息。不办理提前支取,不计逾期息。欢迎到无忧财务 具体计算方法 1、计算活期储蓄利息:每年结息一次,7月1日利息并入本金起息。未到结息日前清户者,按支取日挂牌公告的活期储蓄存款利率计付利息,利息算到结清前一天止。

确定存期: 在本金、利率确定的前提下,要计算利息需要知道确切的存期。在现实生活中,储户的实际存期很多不是整年整月的,一般都带有零头天数,这里介绍一种简便易行的方法,可以迅速准确地算出存期,即采用以支取日的年、月、日分别减去存入日的年、月、日,其差数为实存天数。 例如:支取日:1998年6月20日-存入日:1995年3月11日=3年3月9日按储蓄计息对于存期天数的规定,换算天数为:3×360(天)3×30(天)9如果发生日不够减时,可以支取“月”减去“1”化为30天加在支取日上,再各自相减,其余类推。这种方法既适合用于存款时间都是当年的,也适用于存取时间跨年度的,很有实用价值。 2、计算零存整取的储蓄利息到期时以实存金额按开户日挂牌公告的零存整取定期储蓄存款利率计付利息。逾期支取时其逾期部分按支取日挂牌公告的活期储蓄存款利率计付利息。 银行存款利息计算方法_银行管理 零存整取定期储蓄计息方法有几种,一般家庭宜采用“月积数计息”方法。其公式是:利息=月存金额×累计月积数×月利率,其中:累计月积数=(存入次数1)÷2×存入次数。 据此推算一年期的累计月积数为(121)÷2×12=78,以此类推,三年期、五年期的累计月积数分别为666和1830.储户只需记住这几个常数就可按公式计算出零存整取储蓄利息。 例:某储户1997年3月1日开立零存整取户,约定每月存入100元,定期一年,开户日该储种利率为月息4.5‰,按月存入至期满,其应获利息为:

相关文档
最新文档