八年级数学第十一章单元测试题
人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列长度的各组线段能组成一个三角形的是()A.1cm,2cm,3cm B.3cm,8cm,5cmC.4cm,5cm,10cm D.4cm,5cm,6cm2.以下四个图片中的物品,没有利用到三角形的稳定性的是()A.B.C.D.3.在△ABC中,若∠A=80°,∠B=20°则∠C=()A.80°B.70°C.60°D.100°4.如图,△ABC的面积为8,AD为BC边上的中线,E为AD上任意一点,连接BE,CE,图中阴影部分的面积为()A.2 B.3 C.4 D.55.如图AB∥CD,AE交CD于点F,连接DE,若∠D=28°,∠E=112°则∠A的度数为()A.48°B.46°C.42°D.40°6.如图∠A=100°,∠B=20°则∠ACD的度数是()A.100°B.110°C.120°D.140°7.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE= 91°∠DCE=124°,则∠AEC的度数是( )A.29°B.30°C.31°D.33°8.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米二、填空题9.如图,A\B为池塘岸边两点,小丽在池塘的一侧取一点O,得到△OAB,测得OA=16米OB=12米,A\B 间最大的整数距离为米.10.正n形的每个内角都是120°,这个正n边形的对角线条数为条.11.如图,BD是△ABC的中线,DE⊥BC于点E,已知△ABD的面积是3,BC的长是4,则DE的长是.12.如图AB∥CD,若∠A=65°.∠E=38°,则∠C=.13.如图,△ABC中,AD\AE分别为角平分线和高∠B=46°,∠C=64°则∠DAE=.三、解答题14.若一个多边形的内角和比它的外角和的3倍多180°,求这个多边形的边数和对角线的条数.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.16.如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=60°,∠BED=70°,求∠BAC的度数.17.如图,在△BCD中BC=3,BD=5.(1)若CD的长是偶数,直接写出CD的值;(2)若点A在CB的延长线上,点E、F在CD的延长线上,且AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数.18.如图,在五边形ABCDE中AE∥CD,∠A=100°,∠B=120°.(1)若∠D=110°,请求∠E的度数;(2)试求出∠C的度数.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】2710.【答案】911.【答案】3212.【答案】27°13.【答案】9°14.【答案】解:设这个多边形的边数为n,则内角和为180°(n−2),依题意得:180(n−2)=360×3+180解得n=9=27对角线条数:9×(9−3)2答:这个多边形的边数是9,对角线有27条15.【答案】解:∵∠C=∠ABC=2∠A∴∠C+∠ABC+∠A=5∠A=180°∴∠A=36°则∠C=∠ABC=2∠A=72°又BD是AC边上的高则∠DBC=90°-∠C=18°16.【答案】解:∵AD是△ABC的高.即AD⊥BC∴∠ADB=90°∵在Rt△EBD中∠BED=70°∴∠DBE=20°∵BE平分∠ABC∴∠ABE=∠DBE=20°∴∠ABD=40°∴∠BAC=180°−∠ABD−∠C=180°−40°−60°=80°17.【答案】(1)解:在△BCD中BC=3,BD=5∴2<CD<8∵CD的长是偶数∴CD的长为4或6故答案为:4或6;(2)解:∵AE∥BD∴∠CBD=∠A=55°∵∠BDE=∠C+∠CBD=125°∴∠C=∠BDE−∠CBD=125°−55°=70°18.【答案】(1)解:∵AE∥CD∴∠D+∠E=180°∴∠E=180°−∠D=180°−110°=70°(2)解:五边形ABCDE中∵∠D+∠E=180°,∠A=100°∴∠C=540°−(∠D+∠E)−∠A−∠B=140°。
人教版八年级数学第十一章《三角形》单元测试题(含答案)

人教版八年级数学第十一章《三角形》单元测试题(含答案)时间:120分钟满分:120分一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图,在四边形ABCD中,AB>AD,对角线AC平分∠BAD,下列结论正确的是()A.AB﹣AD>|CB﹣CD|B.AB﹣AD=|CB﹣CD|C.AB﹣AD<|CB﹣CD|D.AB﹣AD与|CB﹣CD|的大小关系不确定2.(3分)有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.(3分)如图,为了估计池塘两岸A,B间的距离,在池塘的一侧选取点P,测得P A=15米,PB=11米那么A,B间的距离不可能是()A.5米B.8.7米C.27米D.18米4.(3分)一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是()A.11B.12C.13D.145.(3分)如图,在△ABC中,AF平分∠BAC交BC于点F、BE平分∠ABC交AC于点E,AF与BE相交于点O,AD是BC边上的高,若∠C=50°,BE⊥AC,则∠DAF的度数为()A.10°B.12°C.15°D.20°6.(3分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC,②∠ACB=∠ADB,③∠ADC+∠ABD=90°,④∠ADB=45°﹣∠CDB,其中正确的结论有()A.1个B.2个C.3个D.4个7.(3分)如图,在三角形ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论:①AH⊥EF;②∠ABF=∠EFB;③AC∥BE;④∠E=∠ABE.其中正确的结论有()A.4个B.3个C.2个D.1个8.(3分)如图,四边形ABCD为一长方形纸带,AD∥BC,将四边形ABCD沿EF折叠,C、D两点分别与C′、D′对应,若∠1=2∠2,则∠3的度数为()A.50°B.54°C.58°D.62°9.(3分)若n边形的内角和与外角和相加为1800°,则n的值为()A.7B.8.C.9D.1010.(3分)如图,大建从A点出发沿直线前进8米到达B点后向左旋转的角度为α,再沿直线前进8米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了72米,则每次旋转的角度α为()A.30°B.40°C.45°D.60°二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为.12.(3分)如图,在△ABC中,∠B=80°,∠C=42°,AD⊥BC于点D,AE平分∠BAC,则∠DAE=.13.(3分)如图,在△ABC中,∠A=65°,则∠1+∠2=°.14.(3分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=10,则它的周长等于.15.(3分)如图,在△ABC中,AD是中线,DE⊥AB于E,DF⊥AC于F,若AB=6cm,AC=4cm,则.三、解答题(共10小题,满分75分)16.(7分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC =10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.17.(7分)如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.18.(7分)已知a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为12,求c的值.19.(7分)如图所示,在△ABC中,CD⊥AB于点D,EF⊥CD于点G,∠ADE=∠EFC.(1)证明AB∥EF.(2)请说明∠AED=∠ACB的理由.(3)若∠BDE=2∠B+36°,求∠DEF的度数.20.(7分)已知:在△ABC中,AE平分∠BAC,BF平分∠ABC,AE、BF交于点G.(1)如图1:若∠C=60°,求∠AGB的度数;(2)如图2:点D是AE延长线上一点,连接BD、CD,∠ADC=∠ABG+∠BAG,求证:CD∥BF;(3)如图3:在(2)的条件下,过点G作GK∥AB,交BD于点K,点M在线段DC 的延长线上,连接KM,若∠ACB=∠BDA,∠ABC+∠BAE=2∠DKM,∠M=16°,求∠BAC的度数.21.(7分)如图所示,在△ABC中,AD平分∠BAC交BC于点D,BE平分∠ABC交AD 于点E.(1)若∠C=60°,∠BAC=80°,求∠ADB的度数;(2)若∠BED=60°,求∠C的度数.22.(7分)如图,在三角形ABC中,点D是BC上一点,点F是AC上一点,连接AD、DF,点E是AD上一点,连接EF,且∠1+∠2=180°,∠B=∠3.(1)求证:AB∥DF;(2)若FD平分∠CFE,∠BAD=50°,∠3=70°,求∠CAD的度数.23.(8分)如图,四边形ABCD中,∠A=75°,∠C=105°,BE平分∠ABC,DF平分∠ADC.求:(1)∠ABC+∠ADC的值;(2)∠BED+∠BFD的值.24.(9分)已知如图1,线段AB,CD相交于O点,连接AD,CB,我们把如图1的图形称之为“8字形”.那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)在图1中,请写出∠A,∠B,∠C,∠D之间的数量关系,并说明理由;(2)如图2,计算∠A+∠B+∠C+∠D+∠E+∠F的度数.25.(9分)△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.参考答案一、选择题(共10小题,满分30分,每小题3分)1.A;2.C;3.C;4.C;5.C;6.B;7.B;8.B;9.D;10.B;二、填空题(共5小题,满分15分,每小题3分)11.4;12.19°;13.245;14.10+10或610;15.;三、解答题(共10小题,满分75分)16.解:∵∠BAC=90°,AD是边BC上的高,∴AB•AC BC•AD,∴AD 4.8(cm),即AD的长度为4.8cm;(2)方法一:如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,∴S△ABC AB•AC6×8=24(cm2).又∵AE是边BC的中线,∴BE=EC,∴BE•AD EC•AD,即S△ABE=S△AEC,∴S△ABE S△ABC=12(cm2).∴△ABE的面积是12cm2.方法二:因为BE BC=5,由(1)知AD=4.8,所以S△ABE BE•AD5×4.8=12(cm2).∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=8﹣6=2(cm),即△ACE和△ABE的周长的差是2cm.17.证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.18.解:(1)∵a,b,c分别为△ABC的三边,a+b=3c﹣2,a﹣b=2c﹣6,∴,解得:1<c<6.故c的取值范围为1<c<6;(2)∵△ABC的周长为12,a+b=3c﹣2,∴a+b+c=4c﹣2=12,解得c=3.5.故c的值是3.5.19.解:(1)证明:∵CD⊥AB于点D,EF⊥CD于点G,∴∠BDC=∠FGC,=90°,∴AB∥EF(同位角相等,两直线平行).(2)证明:由(1)得AB∥EF,∴∠B=∠EFC(两直线平行,同位角相等),又∵∠ADE=∠EFC.∴∠B=∠ADE;(3)由(2)得∠B=∠ADE,∴DE∥BC,由(1)得AB∥EF,∴四边形BDEF是平行四边形(两组对边平行的四边形是平行四边形),∴∠DEF=∠B(平行四边形对角相等),∵∠B=∠ADE,∠BDE=2∠B+36°,∴180°﹣∠B=2∠B+36°,∴∠B=48°,∴∠DEF=48°.20.(1)证明:如图1,∵AE、BF分别平分∠BAC与∠ABC,∴,,在△ABC中,∠ABC+∠ACB+∠C=180°,∠C=60°,∴∠ABC+∠BAC=180°﹣60°=120°,∴∠ABF+∠BAE∠ABC∠BAC(∠ABC+∠BAC)120°=60°,∴∠AGB=180°﹣60°=120°;(2)证明:如图2,∵∠BGD是△ABG得一个外角,∴∠BGD=∠BAG+∠ABG,∵∠ADC=∠BAG+∠ABG,∴∠BGD=∠ADC,∴CD∥BF;(3)解:如图3,∵∠BED=∠AEC,∠ACB=∠BDA,∴∠CAE=∠DBE,∵AE平分∠BAC,BF平分∠ABC,设∠ABF=∠CBF=α,∠BAD=∠CAD=∠DBC=β,∴∠AEC=2α+β,∵∠ABC+∠BAE=2∠DKM,∴,∵GK∥AB,∴∠BGK=∠ABG=α,∴∠GKD=∠GBK+∠BGK=2α+β,∴,∵GB∥DM,∠M=16°,∴∠GBK+∠MDK=180°,∵∠GBK+∠GKB+∠BGK+∠MKD+∠KDM+∠M=360°,∠BKG+∠MKD=180°﹣∠GKM,∴180°+180°﹣∠GKM+∠BGK+∠M=360°,∴∠GKM=∠BGK+∠M,∴,∴β=32°,∴∠BAC=2×32°=64°.21.解:(1)∵AD平分∠BAC,∠BAC=80°,∴∠DAC∠BAC=40°,∵∠ADB是△ADC的外角,∠C=60°,∴∠ADB=∠C+∠DAC=100°;(2)∵∠BED是△ABE的外角,∠BED=60°,∴∠BAD+∠ABE=∠BED=60°,∵AD平分∠BAC,BE平分∠ABC,∴∠BAC=2∠BAD,∠ABC=2∠ABE,∴∠BAC+∠ABC=2(∠BAD+∠ABE)=120°,∵∠BAC+∠ABC+∠C=180°,∴∠C=180°﹣(∠BAC+∠ABC)=60°.22.(1)证明:∵∠1+∠2=180°,∠1+∠DEF=180°,∴∠DEF=∠2.∴EF∥BC.∴∠3=∠FDC.∵∠B=∠3,∴∠B=∠FDC.∴AB∥DF.(2)解:∵AB∥DF,∴∠BAD=∠EDF=50°.∵FD平分∠CFE,∴∠EFC=2∠3=140°.∴∠AFE=180°﹣∠EFC=40°,∠1=∠3+∠EDF=70°+50°=120°.∴∠CAD=180°﹣∠1﹣∠AFE=20°.23.解:(1)∵四边形ABCD中,∠A=75°,∠C=105°,∴∠ABC+∠ADC=360°﹣75°﹣105°=180°;(2)如图,∵BE平分∠ABC,DF平分∠ADC,∴∠1∠ABC,∠2∠ADC,∴∠1+∠2(∠ABC+∠ADC)=90°,由三角形外角的性质可得,∠BED=∠1+∠A,∠BFD=∠2+∠A,∴∠BED+∠BFD=∠1+∠A+∠2+∠A=∠1+∠2+2∠A=90°+150°=240°.24.解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(对顶角相等),∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;(2)如图3,连接AD,则∠BAD+∠B+∠C+∠ADC=360°,根据“8字形”数量关系,∠E+∠F=∠EDA+∠F AD,所以,∠A+∠B+∠C+∠D+∠E+∠F=360°.25.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE∠BAC﹣(90°﹣∠C)(180°﹣∠B﹣∠C)﹣90°+∠C∠C∠B,即∠DAE∠C∠B;(3)不变,理由:连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,∵AE是∠BAC的角平分线,AM是高,∴∠EAM(∠ACB﹣∠ABC),同理,∠ADN(∠BCD﹣∠CBD),∵∠AFM=∠DFN,∠AMF=∠DNF=90°,∴∠MAD=∠ADN,∴∠DAE=∠EAM+∠MAD=∠EAM+∠ADN(∠ACB﹣∠ABC)(∠BCD﹣∠CBD)(∠ACD﹣∠ABD).。
八年级数学上册第十一章《三角形》单元测试题附答案

八年级数学上册第十一章《三角形》单元测试题一、选择题(每小题只有一个正确答案)1.下列说法正确的是()A.三角形分为等边三角形和三边不相等的三角形B.等边三角形不是等腰三角形C.等腰三角形是等边三角形D.三角形分为锐角三角形,直角三角形,钝角三角形2.如图,△ABC中,△ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若△A=24°,则△BDC等于()A. 42°B. 66°C. 69°D. 77°3.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为()A. 7B. 8C. 9D. 104.如图,在△BDF和△ABC中,它们相同的角是()A. △AB. △CC. △ABCD. △ACB5.如图,AB△CD,AD与BC相交于点O,已知角α、β,则用角α、β表示△AOC,则△AOC=()A.α+βB. 180°-α+βC. 2α-βD. 180°+α-β6.若三角形的三边长分别为3,4,x,则x的值可能是()A. 1B. 6C. 7D. 107.如图所示的图形中,属于多边形的有()个.A. 3个B. 4个C. 5个D. 6个8.如图,△ABC中,△1=△2,△3=△4,若△D=25°,则△A=()A. 25°B. 65°C. 50°D. 75°9.适合条件△A=△B=△C的三角形一定是()A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形10.八边形的内角和是()A. 1440°B. 1080°C. 900°D. 720°11.如图,点D在BC的延长线上,连接AD,则△EAD是()的外角.A. △ABCB.△ACDC. △ABDD.以上都不对12.如图,在△ABC中,EF△AC,BD△AC,BD交EF于G,则下面说法中错误的是()A.BD是△BDC的高B.CD是△BCD的高C.EG是△BEF的高D.BE是△BEF的高二、填空题13.一副三角板,如图所示叠放在一起,则图中△α的度数是.14.如图,点D、E为△ABC边BC、AC上的两点,将△ABC沿线段DE折叠,点C落在BD上的C′处,若△C=30°,则△AEC′=.15.如图,写出△ADE的外角.16.在图中过点P任意画一条直线,最多可以得到____________个三角形.17.如图,已知△A=30°,△B=40°,△C=50°,那么△AOB=度.三、解答题18.如图,点D是△ABC的边BC上的一点,△B=△BAD=△C,△ADC=72°.试求△DAC的度数.19.如图,已知AB△CD,EF与AB、CD分别相交于点E、F,△BEF与△EFD的平分线相交于点P,求证:△EPF为直角三角形.20.多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N,则变量N与n之间的关系可以表示为N=(n-2)•180°.例如:如图四边形ABCD的内角和:N=△A+△B+△C+△D=(4-2)×180°=360°问:(1)利用这个关系式计算五边形的内角和;(2)当一个多边形的内角和N=720°时,求其边数n.21.已知:在△ABC中,△BAC=90°,AD△BC于点D,△ABC的平分线BE交AD于F,试说明△AEF=△AFE.22.已知凸四边形ABCD中,△A=△C=90°.(1)如图1,若DE平分△ADC,BF平分△ABC的邻补角,判断DE与BF位置关系并证明;(2)如图2,若BF、DE分别平分△ABC、△ADC的邻补角,判断DE与BF位置关系并证明.答案解析1.【答案】D【解析】A.三角形分为等腰三角形和三边不相等的三角形,故本选项错误,B.等边三角形是等腰三角形,故本选项错误,C.等腰三角形不一定是等边三角形,故本选项错误,D.三角形分为锐角三角形,直角三角形,钝角三角形,故本选项正确,故选D.2.【答案】C【解析】在△ABC中,△ACB=90°,△A=24°,△△B=90°-△A=66°.由折叠的性质可得:△BCD=△ACB=45°,△△BDC=180°-△BC D-△B=69°.故选C.3.【答案】A【解析】设这个多边形的边数为n,根据题意得,(n-2)•180°=360°×2+180°,解得n=7.故选A.4.【答案】C【解析】△BDF的角有△D,△DBF,△DFB;△ABC的角有△A,△ACB,△ABC;它们相同的角是△ABC.5.【答案】A【解析】△AB△CD,△△ABO=β.在△AOB中,利用三角形的外角性质得到△AOC=△A+△ABO=α+β.故选A.6.【答案】B【解析】△4﹣3=1,4+3=7,△1<x<7,△x的值可能是6.故选B.7.【答案】A【解析】根据多边形的定义:平面内不在同一条直线上的几条线段首尾顺次相接组成的图形叫多边形.显然只有第一个、第二个、第五个.故选A8.【答案】C【解析】△BD是△ABC的平分线,△△DBC=△ABC,△CD是△ABC的外角平分线,△△ACD=(△A+△ABC),△△D+△DBC+△ACB+△ACD=180°,即△ABC+△ACB+(△A+△ABC)=155°△,△A+△ABC+△ACB=180°△,△△ABC+△ACB=130°,△△A=50°.故选C.9.【答案】B【解析】设△A=x°,则△B=x°,△C=3x°.根据三角形的内角和定理,得x+x+3x=180,x=36.则△C=108°.则该三角形是钝角三角形.故选B.10.【答案】B【解析】由题意得:180°(8-2)=1080°,故选B.11.【答案】C【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中△EAD是△ABD的外角,所以正确的选项是C.12.【答案】D【解析】A.BD△AC,则BD是△BDC的高,故命题正确;B.CD△BD,则CD是△BCD的高,故命题正确;C.EG△BG,则EG是△BEF的高,故命题正确;D.错误;13.【答案】75°【解析】如图,△1=45°-30°=15°, △α=90°-△1=90°-15°=75°.故答案为:75°14.【答案】60°【解析】根据折叠可得:EC=EC′, △△EC′D=△C,△△C=30°, △△EC′D=30°,△△AEC′=30°+30°=60°,故答案为:60°.15.【答案】△BDF、△DEC和△AEF【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中符合条件的角是△BDF、△DEC和△AEF.16.【答案】6【解析】如图1,有2个三角形;如图2,有4个三角形;如图3,有4个三角形;如图4,有5个三角形;如图5,有6个三角形.综上所述,最多有6个三角形.17.【答案】120【解析】延长BO交AC于D, △△B=40°,△C=50°,△△ADO=40°+50°=90°,△△A=30°, △△AOB=30°+90°=120°,故答案为:120.18.【答案】解:△△ADC是△ABD的外角,△ADC=72°,△△ADC=△B+△BAD.又△△B=△BAD,△△B=△BAD=36°.△△B=△BAD=△C,△△C=36°.在△ADC中,△△DAC+△ADC+△C=180°△△DAC=180°-△ADC-△C=180°-72°-36°=72°.【解析】先根据三角形外角的性质得出△ADC=△B+△BAD,再由△B=△BAD可知△B=△BAD=36°,在△ADC中,根据三角形内角和定理即可得出结论.19.【答案】证明:△AB△CD, △△BEF+△EFD=180°,又EP、FP分别是△BEF、△EFD的平分线,△△PEF=△BEF,△EFP=△EFD,△△PEF+△EFP=(△BEF+△EFD)=90°,△△P=180°-(△PEF+△EFP)=180°-90°=90°,△△EPF为直角三角形.【解析】要证△EPF为直角三角形,只要证△PEF+△EFP=90°,由角平分线的性质和平行线的性质可知,△PEF+△EFP=(△BEF+△EFD)=90°.20.【答案】解:(1)N=(5-2)×180°=540°(2)根据题意得:(n-2)×180°=720°解得n=6.【解析】(1)将n=5代入公式,依据公式计算即可;(2)将N=720°代入公式,得到关于n的方程,然后求解即可.21.【答案】证明:△BE平分△ABC,△△CBE=△ABE,△△BAC=90°,△△ABE+△AEF=90°,△DA△BC,△△CBE+△BFD=90°,△△AEF=△BFD,△△BFD=△AFE(对顶角相等),△△AEF=△AFE【解析】根据角平分线的定义求出△ABE=△EBC,再利用△BAC=90°,AD△BC于点D推出△AEF=△AFE.22.【答案】解:(1)DE△BF,延长DE交BF于点G△△A+△ABC+△C+△ADC=360°又△△A=△C=90°,△△ABC+△ADC=180°△△ABC+△MBC=180°△△ADC=△MBC,△DE、BF分别平分△ADC、△MBC△△EDC=△ADC,△EBG=△MBC,△△EDC=△EBG,△△EDC+△DEC+△C=180°△EBG+△BEG+△EGB=180°又△△DEC=△BEG△△EGB=△C=90△DE△BF;(2)DE△BF,连接BD,△DE、BF分别平分△NDC、△MBC△△EDC=△NDC,△FBC=△MBC,△△ADC+△NDC=180°又△△ADC=△MBC△△MBC+△NDC=180°△△EDC+△FBC=90°,△△C=90°△△CDB+△CBD=90°△△EDC+△CDB+△FBC+△CBD=180°即△EDB+△FBD=180°,△DE△BF.【解析】(1)DE△BF,延长DE交BF于G.易证△ADC=△CBM.可得△CDE=△EBF.即可得△EGB=△C=90゜,则可证得DE△BF;(2)DE△BF,连接BD,易证△NDC+△MBC=180゜,则可得△EDC+△CBF=90゜,继而可证得△EDC+△CDB+△CBD+△FBC=180゜,则可得DE△BF.。
人教版八年级数学上册《第11章三角形》单元测试题含答案

第十一章三角形测试题一、选择题(每小题3分,共30分)1.三角形按边分类可分为( )A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2.如图1,图中三角形的个数是( )图1A.6 B.7 C.8 D.93.如图2,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )图2A.△AGC中,CF是AG边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高4.如图3,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案( )图3图45.如图5,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为( )图5A.118° B.119° C.120° D.121°6.如图6是六边形ABCDEF,则该图形的对角线的条数是( )图6A.6 B.9 C.12 D.187.如图7,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字型通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是( )图7A.75° B.80° C.85° D.90°8.如图8,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是( )图8A.x=y+z B.x=y-zC.x=z-y D.x+y+z=1809.如图9,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形(含三角形).若这两个多边形的内角和分别为M和N,则M+N不可能是( )图9A.360° B.540° C.720° D.630°10.某木材市场上木棒规格与对应价格如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m价格(元/根)101520253035小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场上购买一根木棒.则小明的爷爷至少带的钱数应为( )A.10元 B.15元 C.20元 D.25元请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是________.12.如图10,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为________cm.图1013.如图11,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是________.1114.有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图12方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为________.图1215.有一程序,如果机器人在平地上按如图13所示的步骤行走,那么机器人回到A点处行走的路程是________.图1316.如图14所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,D,E分别为垂足.若∠AFD=158°,则∠EDF=________°.图14三、解答题(共52分)17.(6分)如图15,佳佳和音音住在同一小区(A点),每天一块去学校(B点)上学.一天,佳佳要先去文具店(C点)买练习本再去学校,音音要先去书店(D点)买书再去学校.这天两人从家到学校谁走的路远?为什么?图1518.(6分)已知一个多边形的内角和与外角和之比为11∶2.(1)求这个多边形的内角和;(2)求这个多边形的边数.19.(6分)如图16,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB =60°,∠ADB=97°,求∠A和∠ACE的度数.图1620.(6分)如图17,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出橡皮筋长x的取值范围吗?图1721.(6分)如图18,它是一个大型模板,设计要求BA与CD相交成20°角,DA与CB 相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?图1822.(7分)已知△ABC的周长是20,三边分别为a,b,c.(1)若b是最大边,求b的取值范围;(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c 均为整数,求△ABC的三边长.23.(7分)如图19,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)如图①,作∠BAC的平分线AD,分别交CB,BE于点D,F.求证:∠EFD=∠ADC;(2)如图②,作△ABC的外角∠BAG的平分线AD,交CB的延长线于点D,反向延长AD 交BE的延长线于点F,则(1)中的结论是否仍然成立?为什么?图1924.(8分)已知:如图20,在四边形ABCD中,∠D=90°,∠ABC=∠BCD,点E在直线BC上,点F在直线CD上,且∠AEB=∠CEF.(1)如图20①,若AE平分∠BAD,求证:EF⊥AE;(2)如图20②,若AE平分四边形ABCD的外角,其余条件不变,则(1)中的结论是否仍然成立?并说明理由.图20答案1.D 2.C 3.C . 4.B . 5.C 6.B . 7.C 8.A . 9.D 10.C 11.15 12.19 13.190° 14.105° . 15.30米 16.68 .17.解:佳佳从家到学校走的路远. 理由:佳佳从家到学校走的路是AC +CD +BD ,音音从家到学校走的路是AD +BD.∵在△ACD 中,AC +CD >AD ,∴AC +CD +BD >AD +BD ,即佳佳从家到学校走的路远.18.解:(1)360°×112=1980°.即这个多边形的内角和为1980°.(2)设该多边形的边数为n,则(n-2)×180°=1980°,解得n=13.即这个多边形的边数为13.19.解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是∠ABC的平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.20.解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得橡皮筋长x的取值范围为3<x<19.21.解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∵∠C+∠ADC=85°+55°=140°,∴∠F=180°-140°=40°.∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°.符合设计要求,故这块模板是合格的.22.解:(1)依题意有b≥a,b≥c.∵a +c >b ,∴a +b +c ≤3b 且a +b +c >2b ,则2b <20≤3b ,解得203≤b <10. (2)∵203≤b <10,b 为整数, ∴b =7,8,9.∵b =3c ,且c 为整数,∴b =9,c =3,∴a =20-b -c =8.故△ABC 的三边长分别为a =8,b =9,c =3.23.解:(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.(2)∠EFD =∠ADC 仍然成立.理由:∵AD 平分∠BAG ,∴∠BAD =∠GAD.∵∠FAE =∠GAD ,∴∠FAE =∠BAD.∵∠EFD =∠AEB -∠FAE ,∠ADC =∠ABC -∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.24.解:(1)证明:∵∠BAE =180°-∠ABC -∠AEB ,∠EFC =180°-∠BCD -∠CEF ,且∠ABC =∠BCD ,∠AEB =∠CEF ,∴∠BAE =∠EFC.∵AE 平分∠BAD ,∴∠BAE=∠DAE,∴∠EFC=∠DAE.∵∠EFC+∠EFD=180°,∴∠DAE+∠EFD=180°,∴∠AEF+∠D=360°-(∠DAE+∠EFD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.(2)EF⊥AE仍成立.理由如下:如图.∵∠1=∠ABC-∠AEB,∠F=∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠1=∠F.∵AE平分四边形ABCD的外角,∴∠1=∠2,∴∠F=∠2.∵∠2+∠EAD=180°,∴∠F+∠EAD=180°,∴∠AEF+∠D=360°-(∠F+∠EAD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.。
人教版八年级上册第十一章《三角形》单元测试(附答案)(5)

87654321DCBA八年级数学人教上第11章·三角形单元检测第Ⅰ卷(选择题 共24分)一、选择题:(每小题3分,共24分) 1、下列各组线段,能组成三角形的是( )A 、2 cm ,3 cm ,5 cmB 、5 cm ,6 cm ,10 cmC 、1 cm ,1 cm ,3 cmD 、3 cm ,4 cm ,8 cm2、在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是( ) A 、150° B 、135° C 、120° D 、100°3、如图4,△ABC 中,AD 为△ABC 的角平分线,BE 为 △ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( ) A 、59° B 、60° C 、56° D 、22° 4、在下列条件中:①∠A+∠B=∠C;②∠A:∠B ∠:∠C=1:2:3;③∠A=90°-∠B;④∠A=∠B=∠C,能确定△ABC 是直角三角形的条件有( )个.A.1B.2C.3D.45、.坐标平面内下列个点中,在坐标轴上的是( ) A.(3,3) B.(-3,0) C.(-1,2) D.(-2,-3)6.将某图中的横坐标都减去2,纵坐标不变,则该图形( ) A. 向上平移2个单位 B. 向下平移2个单位 C. 向右平移2个单位 D. 向左平移2个单位7.点P (x,y )在第三象限,且点P 到x 轴、y 轴的距离分别为5,3,则P 点的坐标为( ) A.(-5,3) B.(3,-5) C.(-3,-5) D.(5,-3)8、如图6,如果AB ∥CD ,那么下面说法错误的是( ) A .∠3=∠7; B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠8第Ⅱ卷(非选择题 共76分)二、填空题:(每小题4分,共32分)9、如图1,△ABC 中,AD ⊥BC ,AE 平分∠BAC , ∠B=70°,∠C=34°,则∠DAE= 度。
八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版

八年级数学上册《第十一章三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.给出下列长度的三条线段,不能构成三角形的是()A.10,8,6 B.4,8,7 C.2,3,4 D.3,4,72.把一副三角板按如图所示平放在桌面上,点E恰好落在CB的延长线上FE⊥CE,则∠BDE的大小为()A.10°B.15°C.20°D.25°3.一个正多边形的每个内角都等于135°,那么它是()A.正六边形B.正十边形C.正八边形D.正十二边形4.如图,点D、E分别是△ABC边BC、AC上一点BD=2CD,AE=CE连接AD、BE交于点F,若△ABC 的面积为12,则△BDF与△AEF的面积之差S△BDF−S△AEF等于()A.1 B.2 C.3 D.45.如图,足球的表面是由正五边形和正六边形拼接而成,其中黑皮的正五边形有12块,白皮的正六边形有20块.如图,足球图片中的一块黑皮正五边形的内角和是()A.180°B.360°C.540°D.720°6.如图AD,AE,AF分别是△ABC的中线、角平分线、高线,下列结论中错误的是()BC B.2∠BAE=∠BACA.CD=12C.∠C+∠CAF=90°D.AE=AC7.如图,在直角三角形ABC中∠BAC=90°,∠B=56°,AD⊥BC,DE//AC则∠ADE的度数为( )A.56°B.46°C.44°D.34°8.某市为了方便市民绿色出行,推出了共享单车服务,图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行∠BCD=62°,∠BAC=54°当∠MAC为()度时,AM与CB平行.A.54 B.64 C.74 D.114二、填空题9.若一个三角形两边的长分别为8cm和9cm(三边长均为整厘米数),则这个三角形第三边最长可以是cm.10.已知一个正多边形的一个外角为36°,则这个正多边形的边数是.11.将一副三角板按如图所示的位置摆放,图中∠2−∠1=°.12.如图,将一把直尺摆放在含30°角的三角尺(∠A=30°,∠C=90°)上,其中顶点B在直尺的一边上,已知∠1=55°,则∠2的度数为.13.如图,在△ABC中,AD是BC边上的中线,若S△ABC=12,AC=3则点D到AC的距离为.三、解答题14.如图,在△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠DCE=10°,∠B=60°,求∠A的度数.15.如图,在△ABC中DE∥BC,F是AC上一点,FD的延长线与CB的延长线交于点G.求证:∠DGH>∠AED.16.如图,在△ABC中,D是AB上一点,E是AC上一点,BE、CD相交于点F,∠A=62°,∠ACD= 35°,∠ABE=20°求∠BFD的度数.17.如图,DE∥AB(1)判断AD与BE是否平行,并说明理由.(2)若∠A=∠C=2∠ABC,求∠E的度数.18.如图AC∥EF,∠1+∠3=180°.(1)求证AF∥CD;(2)若AC平分∠FAB,AC⊥EB于点C,∠4=78°求∠BCD的度数.参考答案1.D2.B3.C4.B5.C6.D7.A8.B9.1610.1011.3012.25°13.414.解:∵CE是AB边上的高∴∠A+∠ACE=90°,∠B+∠BCE=90°.∵CD是∠ACB的角平分线∠ACB∴∠ACD=∠BCD= 12又∵∠DCE=10°,∠B=60°∴∠BCE=90°﹣∠B=30°,∠BCD=∠BCE+∠DCE=40°∴∠ACE=∠ACD+∠DCE=∠BCD+∠DCE=50°∴∠A=90°﹣∠ACE=40°.15.证明:∵∠DGH是△DBG的一个外角∴∠DGH>∠DBG∵∠DBG是△ABC的一个外角∴∠DBG>∠C∴∠DGH>∠C∵DE∥BC∴∠AED=∠C∴∠DGH>∠AED.16.解:∵∠A=62°∴∠BDC=∠A+∠ACD=62°+35°=97°在△BDF中∵∠ABE=20°∴∠BFD=180°−∠ABE−∠BDC=180°−20°−97°=63°. 17.(1)解:AD∥BE,理由为:∵DE∥AB∴∠ABE+∠E=180°∵∠ABE+∠CDF=180°∴∠E=∠CDF∴AD∥BE;(2)解:∵∠A=∠C=2∠ABC∴5∠ABC=180°,则∠ABC=36°∴∠A=2∠ABC=72°∴∠E=∠CDF=∠A=72°.18.(1)证明:∵AC∥EF∴∠1+∠2=180°.又∵∠1+∠3=180°∴∠2=∠3.∴AF∥CD.(2)解:∵AC平分∠FAB∴∠2=∠CAD.∵∠2=∠3∴∠CAD=∠3.∵∠4+∠ADC=180°且∠4=78°∴∠ADC=180°−78°=102°.∴∠CAD=∠3=180°−102°=39°2∵AC⊥EB ∴∠ACB=90°.∴∠BCD=90°−∠3=90°−39°=51°.。
2023-2024学年人教版八年级数学上册第11章三角形 单元同步达标测试题(含答案)

2023年秋人教版八年级数学上册《第11章三角形》同步达标测试题一、单选题(满分40分)1.下列长度的三条线段能组成三角形的是()A.4cm,5cm,9cm B.5cm,5cm,11cmC.8cm,9cm,15cm D.7cm,12cm,20cm2.正十二边形的外角和为( )A.30°B.150°C.360°D.1800°3.如图,在△ABC中,BC边上的高为()A.线段AD B.线段BF C.线段BE D.线段CG4.如图,有一个与水平地面成20°角的斜坡,现要在斜坡上竖起一根与水平地面垂直的电线杆,电线杆与斜坡所夹的角∠1的度数为()A.50°B.60°C.70°D.80°5.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,就是平面图形的镶嵌.只用下面一种图形能够进行平面镶嵌的是()A.正三角形B.正五边形C.正八边形D.正十二边形6.如图,在△ABC中,D是BC中点,E是AD中点,连结BE、CE,若△ABC的面积为20,则△BCE的面积为()A.5B.10C.15D.187.将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND的大小为()A.100°B.105°C.110°D.115°8.如图,∠B=20°,∠C=60°,AD平分∠BAC,AE⊥BC,则∠DAE度数是()A.30°B.25°C.20°D.15°10.一个多边形的内角和是外角和的14.如图,在△ABC中,D为AC边的中点,积为4,则△BFC的面积为.15.如图,在△ABC中,∠ABC∠A的度数为____________.16.图①是一盏可折叠台灯,图为固定支撑杆,∠A是∠B的两倍,灯体旋转到CD′位置(图②中虚线所示∠BCD−∠DCD′=120°,则∠DCD三、解答题(满分40分)17.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?18.如图,在ΔABC中,AD是高,∠DAC=10°,AE是ΔABC外角∠MAC的平分线,交BC 的延长线于点E,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB和∠E的度数.19.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移5格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为__________;(4)在图中能使S△ABC=S△PBC的格点P的个数有__________个(点P异于A).20.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∥EC;(2)若CE⊥AE于点E,∠F=50°,求∠ADF的度数.21.如图,已知△ABC中,点D、E分别在边AB、AC上,点F在BE上.(1)若∠ADE=∠ABC,(2)若D、E、F分别是△ABC的面积.(1)如图1,这是一个五角星,则(2)如图2,将五角星截去一个角后多出一个角,求参考答案∵电线杆与水平地面垂直,∴∠2=90°,∴∠1=∠3=180°−20°−90°故答案为:三角形具有稳定性.10.解:由题意,得:(n−2)180°=2×360°,解得:n=6;∴这个多边形的边数为6;故答案为:611.解:∵a+b>c,b−a<c,c+b>a,∴a+b−c>0,b−a−c<0,c−a+b>0,∴|a+b−c|+|b−a−c|+|c−a+b|=a+b−c+a+c−b+c−a+b=a+b+c故答案为:a+b+c.12.解:由折叠的性质得∠ADE=∠ADC=110°,∵∠ADB=180°−∠ADC=70°,∴∠BDE=110°−∠ADB=110°−70°=40°,∵DE∥AB,∴∠B=∠BDE=40°.故答案为:40.13.解:∵AB∥CD,∠B+∠D=70°,∴∠B=∠HGD,∵∠EHF是△HGD的一个外角,∴∠EHF=∠HGD+∠D,∴∠EHF=∠B+∠D=70°,∵∠1+∠2+∠EHF=180°,∴∠1+∠2=180°−∠EHF=110°.∵CD∥OE,∴OA⊥CD,∵AO⊥OE,D′G⊥AB,∴∠AGC=∠AFC=90°,在四边形AFCG中,∠AGC+∠GCF+∠AFC(4)如图,利用等高模型,在图中能使S△ABC=S△PBC的格点P在直线m,n上(除点A 外),总共有21个;故答案为21.20.(1)证明:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥CE;(2)解:∵CE⊥AE,∴∠CEF=90°,由(1)知AD∥CE,∴∠DAF=∠CEF=90°,在△AFD中,∠F=50°∴∠ADF=180°−90°−50°=40°.21.(1)证明:∵∠ADE=∠ABC,∴DE∥BC,∴∠AED=C,∵∠EDF=∠C,∴∠EDF=∠AED,∴DF∥AC;(2)解:∵点F是BE中点,∴S△DEF=S△DBF,设S△DEF=S△DBF=x,∵D是AB中点,∴S△ADE=S△BDE=2x,∵E是AC中点,∴S△ABE=S△CBE=4x,S△CEF=2x,=3x∴S四边形DECF∵S=9,四边形DECF∴3x=9,x=3,∴S△ABC=2S△ABE=8x=24.22. 解:(1)如图,由三角形的外角性质,得∠A+∠C=∠1,∠B+∠D=∠2,∵∠2+∠1+∠E=180°∴∠A+∠B+∠C+∠D+∠E=180°,故答案为:180°;(2)如图,延长CA与DG相较于点H,∠CAG和∠AGD是△HAG的两个外角,则∠CAG=∠H+∠AGH,∠AGD=∠H+∠HAG,∴∠CAG+∠AGD=∠H+∠HGA+∠H+∠HAG=∠H+180°,∴∠GAC+∠B+∠C+∠D+∠E+∠AGD=180°+180°=360°,故∠A+∠B+∠C+∠D+∠E+∠G的度数为360°.(3)由(2)知,每截去图1中的一个角,剩余角的度数会增加180°,图1中,∠A+∠B+∠C+∠D+∠E=180°,在题图3中,去掉五个角后,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠J =180°+5×180°=1080°.。
第十一章三角形单元测试及答案

八年级数学第11章《三角形》综合测试及答案一、选择题(本大题共10小题,每小题3分,共30分.•在每小题所给出的四个选项中,只有一项是符合题目要求的)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm2.等腰三角形的一边长等于4,一边长等于9,则它的周长是()A.17 B.22 C.17或22 D.133.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形4.已知等腰三角形的一个角为75°,则其顶角为()A.30° B.75° C.105° D.30°或75°5.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.86.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定7.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高 D.直角三角形斜边上的高等于斜边的一半9.已知等腰△ABC的底边BC=8cm,│AC-BC│=2cm,则腰AC的长为()A.10cm或6cm B.10cm C.6cm D.8cm或6cm10.如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是(• )A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)(10题) (13题) (14题) 二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.三角形的三边长分别为5,1+2x,8,则x的取值范围是________.12.四条线段的长分别为5cm、6cm、8cm、13cm,•以其中任意三条线段为边可以构成___个三角形.13.如图:∠A+∠B+∠C+∠D+∠E+∠F等于________.14.如果一个正多边形的内角和是900°,则这个正多边形是正______边形.15.n边形的每个外角都等于45°,则n=________.16.乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要安排______种不同的车票.17.将一个正六边形纸片对折,并完全重合,那么,得到的图形是________边形,•它的内角和(按一层计算)是_______度.18.如图,已知∠1=20°,∠2=25°,∠A=55°,则∠BOC的度数是_____.三、解答题(本大题共6小题,共46分,解答应写出文字说明,•证明过程或演算步骤)19.(6分)如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.20.(8分)如图:(1)画△ABC的外角∠BCD,再画∠BCD的平分线CE.(2)若∠A=∠B,请完成下面的证明:已知:△ABC中,∠A=∠B,CE是外角∠BCD的平分线.求证:CE∥AB.21.(8分)(1)如图4,有一块直角三角形XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_______,∠XBC+∠XCB=_______.(4) (5)(2)如图5,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ•仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.22.(8分)引人入胜的火柴问题,成年人和少年儿童都很熟悉.如图是由火柴搭成的图形,拿去其中的4根火柴,使之留下5个正方形,•且留下的每根火柴都是正方形的边或边的一部分,请你给出两种方案,并将它们分别画在图(1)、(2)中.23.(8分)在平面内,分别用3根、5根、6根……火柴首尾..依次相接,•能搭成什么形状的三角形呢?通过尝试,列表如下所示:问:(1)4根火柴能拾成三角形吗?(2)8根、12根火柴能搭成几种不同形状的三角形?并画出它们的示意图.24.(8分)如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)∠5的度数是多少?(3)求四边形ABCD各内角的度数.答案1.B 2.B 点拨:由题意知,三角形的三边长可能为4,4,9或4,9,9.但4+4<9,说明以4,4,9为边长构不成三角形.所以,这个等腰三角形的周长为22.故选B.3.B 点拨:设∠A=x°,则∠B=2x°,∠C=3x°,由三角形内角和定理,•得x+•2x+3x=180.解得x=30.∴3x=3×30=90.故选B.4 .D 点拨:分顶角为75°和底角为75°两种情况讨论.5.C 点拨:据题意,得(n-2)·180=2×360+180.解得n=7.故选C.6.B 7.B 点拨:若三角形中三个内角都小于60°,则三个内角的和小于180°,•与内角和定理矛盾.所以,三角形中至少有一个内角不小于60°.8.B 9.A 点拨:∵BC=8cm,│AC-BC│=2cm,∴AC=10cm或6cm.•经检验以10cm,•10cm,8cm,或6cm,6cm,8cm为边长均能构成三角形.故选A.10.B 点拨:可根据三角形、四边形内角和定理推证.11.1<x<6 点拨:8-5<1+2x<8+5,解得1<x<6.12.2 点拨:以5cm、6cm、8cm或6cm、8cm、13cm为边长均可构成三角形.13.360°点拨:∵图中正好有两个三角形:△AEC,△BDF,∴∠A+∠B+∠C+∠D+∠E+∠F=36014.七 15.8 点拨:n=36045︒︒=8. 16.10 17.四;36018.100°点拨:连接AO并延长,易知∠BOC=∠BAC+∠1+∠2=55°+20°+25•°=100°.19.解:在△ABD中,∵∠A=90°,∠1=60°,∴∠ABD=90°-∠1=30°.∵BD平分∠ABC,∴∠CBD=∠ABD=30°.在△BDC中,∠C=180°-(∠BDC+∠CBD) =180°-(80°+30°)=70°.20.(1)如答图(2)证明:∵∠A=∠B,∠BCD是△ABC的外角,∴∠BCD=∠A+•∠B=2∠B,∵CE是外角∠BCD的平分线,∴∠BCE=12∠BCD=12×2∠B=∠B,∴CE∥AB(•内错角相等,两直线平行)点拨:如答图所示,要证明两直线平行,只需证内错角∠B=∠BCE即可.21.(1)150°;90°(2)不变化.∵∠A=30°,∴∠ABC+∠ACB=150°,∵∠X=•90°,∴∠XBC+∠XCB=90°,∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+•∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.点拨:此题注意运用整体法计算.22.如答图7-2.23.解:(1)4根火柴不能搭成三角形;(2)8根火柴能搭成一种三角形(3,3,2);12根火柴能搭成三种不同的三角形(4,4,4;5,5,2;3,4,5).图略.24.解:(1)CO是△BCD的高.理由:在△BDC中,∵∠BCD=90°,∠1=∠2,∴∠1=∠2=90°÷2=45°.又∵∠1=∠3,∴∠3=45°.∴∠DOC=180°-(∠1+∠3)=180°-2×45°=90°,∴CO⊥DB.∴CO是△BCD的高.(2)∠5=90°-∠4=90°-60°=30°.(3)∠CDA=∠1+∠4=45°+60°=105°,∠DCB=90°,∠DAB=∠5+∠6=30°+30°=60°,∠ABC=105°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学第十一章单元测试题
(满分100分,90分钟完卷)
班级:_________ 姓名:____________ 学号:_________
一、选择题:本大题共10个小题,每小题3分,共30分.
1、下列函数 (1)π2=C r (2)12-=x y (3)x
y 1= (4)x y 3-= (5)12+=x y 中,是一次函数的有( ) A.4个 B.3个 C.2个 D.1个
2、函数1
2-+=x x y 中自变量x 的取值范围是 ( ) A .2-≥x B.1≠x C.2->x 且1≠x D.2-≥x 且1≠x
3、直线x y 2=,12-=x y ,13+=x y 共同具有的特征是 ( )
A.经过原点
B.与y 轴交于负半轴
C.y 随x 增大而增大
D.y 随x 增大而减小
4、下列图中,不表示某一函数图象的是 ( )
A B C D
5、两直线b ax y +=1与a bx y +=2在同一坐标系内的图象可能是 ( )
A B C D
6、直线a x y +-=2经过),3(1y 和),2(2y -,则1y 与2y 的大小关系是 ( )
A. 21y y >
B. 21y y <
C.21y y =
D.无法确定
7、无论m 为何值,直线m x y 2+=与4+-=x y 的交点不可能在 ( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
8、一辆汽车从江油以40千米/时的速度驶往成都,已知江油与成都相距约160千米,则汽车距成都的距离S(千米)与其行驶的时间t (小时)之间的函数关系是 ( )
A.)0(40160≥+=t t S
B.)4(40160≤-=t t S
C.)40(40160<<-=t t S
D.)40(40160≤≤-=t t S
9、一支蜡烛长20厘米, 点燃后每小时燃烧5厘米, 燃烧时剩下的高度h (厘米)与燃烧时间t (时)的函数关系的图象是 ( )
A B C D
10、如右上图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为3
80千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有 ( )
A 、1个
B 、2个
C 、3个
D 、4个
二、填空题:本大题共8个小题,每小题3分,共24分.
11、若函数22+-=m x y 是正比例函数,则m 的值是 .
12、将直线14+=x y 的图象向下平移3个单位长度,得到直线____________.
13、对于一次函数32--=x y ,当x _______时,图象在x 轴下方.
14、直线l 与直线34-=x y 相交于y 轴,且与直线85+-=x y 平行,则直线l 的解析式 为____________.
15、已知直线12+=x y 和b x y +=3的交点在第一象限,请写出满足条件的b 的值为_____(只写一个).
16、在等式632=-y x 中,若0<y ,则x 的取值范围是___________.
17、一次函数42+-=x y 的图象与坐标轴所围成的三角形面积是 .
18
由上表得y 与x 之间的关系式是 .
三、解答题:本大题共6个小题,共46分. 解答应写出文字说明、证明过程或演算步骤.
19、(本小题8分) 已知2-y 与x 成正比, 且当1=x 时, 6-=y .
(1)求y 与x 之间的函数关系式.(4分) (2)求当1-=x 时y 的值.(2分)
(2)若点)2,(a 在这个函数图象上,求a .(2分)
20、(本小题8分) 已知函数3)12(-++=m x m y
(1)若函数的图象是经过原点的直线, 求m 的值.(2分)
(2)若这个函数是一次函数,且y 随着x 的增大而减小, 求m 的取值范围.(3分)
(3)若这个函数是一次函数,且图象不经过第四象限, 求m 的取值范围.(3分)
21、(本小题7分) 在同一直角坐标系中,
(1)作出函数2+-=x y 和42-=x y 的
图象.(4分)
(2)用图象法求不等式422->+-x x 的
解集.(3分)
22、(本小题6分) 李明准备租用一辆出租车搞个体营运,现有甲乙两家出租车公司可以和他签订合同,设汽车每月行驶x 千米,应付给甲公司的月租费1y 元,应付给乙公司的月租费是2y 元, 1y 、2y 与x 之间的函数关系的图象如图所示,请根据图象回答下列问题:
(1)每月行驶的路程在多少时,租甲、乙两家公司的费用相同?(2分)
(2)每月行驶的路程在什么范围内时,租甲公司的车合算?(2分)
(3)若李明估计每月行驶的路程为2300千米时,租哪家合算?(2分)
23、(本小题7分) 已知正比例函数x y 2=与一次函数2+=x y 相交于点P .问在x 轴上是否存在一点A ,使4=∆POA S .若存在,求出点A 坐标;若不存在,请说明理由.
24、(本小题10分) 一农民带上若干千克自产的土豆进城出售, 为了方便, 他带了一些零钱备用,按市场价售出一些后, 又降价出售, 售出的土豆千克数x 与他手中持有的钱数(含备用零钱)y 的关系, 如图所示, 结合图象回答下列问题:
(1)农民自带的零钱是多少? (2分)
(2)试求降价前y 与x 之间的关系式.(3分)
(3)由表达式你能求出降价前每千克的土豆
价格是多少? (2分)
(4)降价后他按每千克0.4元将剩余土豆售
完, 这时他手中的钱(含备用零钱)是26元, 试
问他一共带了多少千克土豆? (3分)
参 考 答 案
一、选择题:本大题共10个小题,每小题3分,共30分.
1-5 A D C D A 6-10 B C D B B
二、填空题:本大题共8个小题,每小题3分,共24分.
11、1- 12、24-=x y 13、2
3-> 14、35--=x y 15、只需1<b 即可 16、3<x 17、4 18、20.060.3+=x y
三、解答题:本大题共6个小题,共46分. 解答应写出文字说明、证明过程或演算步骤.
19、解:(1)设kx y =-2 (1分) 20、解:(1)由03=-m ,得3=m . (2分) 因为当1=x 时, 6-=y , (2)由012<+m ,得 (2分) 所以k =--26 得8-=k (3分) 2
1-<m (3分) 所以28+-=x y . (4分) (3)由题意,得
(2)当1-=x 时,102)1(8=+-⨯-=y . (2分) (2分) (3)因为点)2,(a 在这个函数图象上, 所以228=+-a (1分) 解得 3m ≥. (3分)
得 0=a . (2分)
21030
m m +>⎧⎨-≥⎩。