金属材料弯曲试验方法

合集下载

合金侧面弯曲试验

合金侧面弯曲试验

合金侧面弯曲试验合金材料在工程应用中具有广泛的用途,而对其力学性能的测试和评估则是确保其工程可靠性的重要步骤之一。

本文将介绍合金侧面弯曲试验,探讨其原理、试验方法以及结果分析,以期对合金材料的性能评估提供参考。

1. 弯曲试验原理合金侧面弯曲试验是一种常用的力学性能测试方法,通过作用于合金材料的外力,使其发生弯曲变形,进而推断出其力学性能。

在侧面弯曲试验中,合金试样被夹持在两个固定端点上,施加力矩使得试样发生弯曲变形。

通过对试样的弯曲变形进行测量,可以获取一系列力学参数,如弹性模量、屈服强度等,用于评估合金材料的性能。

2. 试样制备在进行合金侧面弯曲试验之前,需要对试样进行制备。

一般情况下,试样采用矩形截面或者圆柱形状,具体尺寸和几何形状需要根据试验标准或研究需求进行确定。

试样的制备过程需要确保材料的均匀性和一致性,防止试验结果的误差。

3. 试验设备和步骤进行合金侧面弯曲试验需要借助相应的设备。

试验机一般采用万能材料试验机,其具有较高的载荷能力和变形测量精度。

试验的步骤如下:(1)将试样安装在试验机上,使其处于水平状态,并保证两个固定端点的位置正确。

(2)施加外力使试样发生弯曲变形,同时通过试验机上的传感器实时监测试样的变形情况。

(3)施加力的大小和速率需要根据研究目的或试验标准进行选择。

(4)记录试验过程中试样的变形情况,并及时停止施力,以避免试样破坏。

4. 结果分析在合金侧面弯曲试验完成后,需要对测试结果进行处理和分析。

主要的结果包括试样的应力-应变曲线和力学参数的计算。

应力-应变曲线能够反映合金材料的力学性能,包括弹性阶段、屈服点、塑性阶段和断裂点等。

通过分析曲线的形状和斜率的变化,可以获得合金的强度、韧性等力学参数。

此外,还可以通过对不同试样的测试结果进行比较,评估不同合金材料的性能差异,并对合金材料的适用范围和工程应用提出建议。

结论合金侧面弯曲试验是一种重要的合金力学性能测试方法,通过对试样的弯曲变形进行测量,获得合金的力学参数,用于评估合金材料的性能。

金属材料 弯曲试验方法

金属材料 弯曲试验方法

金属材料弯曲试验方法
金属材料的弯曲试验方法分为静弯试验和动弯试验。

静弯试验是将金属材料制作成一定尺寸和形状的试样,在测试机上施加静态加载作用力,使其在跨度中弯曲,测量与控制加载力和试样变形,从而得到金属材料的抗弯强度、弯曲模量等力学性能指标。

动弯试验则是在金属材料试样上施加动态加载,如冲击加载或疲劳加载,使材料在动态载荷作用下发生弯曲,通过测量与控制加载力、位移、时间等参数反映材料的弯曲行为和耐久性能,如材料的动态弯曲寿命、断裂韧性等。

常用的金属材料弯曲试验方法有以下几种:
1. 三点弯曲试验:将试样放在两个支座上,施加力在试样中间点进行弯曲,常用于测量材料的弯曲强度和弯曲模量。

2. 四点弯曲试验:将试样放在四个支座上,施加力在试样两个中间点进行弯曲,可以获得更准确的材料弯曲性能指标。

3. 悬臂梁弯曲试验:将试样一端固定在支座上,施加力在另一端进行弯曲,适用于测量材料的断裂韧性和弯曲寿命。

以上是常见的金属材料弯曲试验方法,根据具体需要选择合适的试验方法进行金属材料的力学性能分析和评估。

金属弯曲试验方法

金属弯曲试验方法

金属弯曲试验方法金属弯曲试验是一种常用的金属材料力学性能测试方法,主要用于评估材料的弯曲性能。

在弯曲试验中,对金属试样施加一定的外力,在试验过程中记录外力与试样的变形情况,进而得到弯曲试验的结果。

金属弯曲试验通常有三种常见的方法:三点弯曲试验、四点弯曲试验和拉伸弯曲试验。

下面将逐一介绍这三种方法。

首先是三点弯曲试验。

这是最常用的弯曲试验方法之一。

试验中将金属试样放在两个支撑点之间,然后在试样的中央位置施加一个垂直负载。

在测试过程中,通过测量试样的变形和逐渐增大的载荷,可以获得试样的应力-应变曲线和屈服强度等力学性能参数。

接下来是四点弯曲试验。

四点弯曲试验相比于三点弯曲试验增加了一个额外的支撑点,从而能够更准确地评估金属材料的弯曲性能。

试验中,金属试样同样被放置在两个支撑点之间,但在中央位置施加两个对称的负载。

这种试验方法可以减小试样在支撑点处的剪切力,更好地模拟真实应力状态。

最后是拉伸弯曲试验。

这种试验方法要求试样同时承受拉伸和弯曲载荷。

试验中,金属试样被夹在两个拉伸夹具之间并施加拉力,同时在试样两端施加弯曲载荷。

这种试验方法能够同时测试材料的拉伸性能和弯曲性能,特别适用于某些工程应用中需要同时考虑这两种载荷的材料。

无论是哪种方法,进行金属弯曲试验需要考虑一些关键因素。

首先是试样的准备。

试样的尺寸和形状对试验结果具有重要影响,需要根据具体要求进行选择。

其次是加载方式。

试样通常是静态加载,但在某些情况下也可以进行动态加载。

然后是试验过程中的数据采集。

通过合适的传感器和测量设备,及时记录载荷和试样变形等数据,以获得准确的试验结果和力学性能参数。

在执行金属弯曲试验时,还需注意一些实验操作细节。

例如避免试样与夹具之间的摩擦影响试验结果,做好试样和载荷的对齐工作,确保试样受力均匀等。

此外,还应根据试验需求选择合适的试验速度,保证试验结果的可重复性。

金属弯曲试验是一种常用的金属材料力学性能测试方法,能够准确评估材料的弯曲性能。

iso 1143金属材料旋转弯曲疲劳试验方法

iso 1143金属材料旋转弯曲疲劳试验方法

iso 1143金属材料旋转弯曲疲劳试验方法
ISO 1143是一项关于金属材料旋转弯曲疲劳试验方法的国际标准。

该标准的目的是确定金属材料在旋转弯曲载荷下的疲劳强度和寿命。

金属材料旋转弯曲疲劳试验是一种常用的测试方法,用于评估金属材料在不断施加旋转弯曲载荷下的耐久性能。

这种试验方法可以模拟材料在实际使用过程中受到的循环载荷,如摩擦、振动和机械应力等。

根据ISO 1143标准,进行金属材料旋转弯曲疲劳试验的基本步骤如下:
1. 根据试验要求,选择适合的试验设备和样品。

确保样品具有规定的几何形状和尺寸。

2. 在试验设备上安装好样品,并根据标准规定的试验频率和幅值施加旋转弯曲载荷。

载荷的施加应符合标准的要求,并确保载荷的稳定性和准确性。

3. 进行预先设定的试验循环数或持续时间。

循环数和持续时间的设定应根据材料的特性和试验要求确定。

4. 在试验过程中,记录样品的应变和载荷数据。

这些数据可以用于分析材料的疲劳性能和寿命。

5. 在试验完成后,对样品进行质量评估和疲劳寿命分析。

根据需要,可以对样品进行断口分析、金相观察和硬度测试等。

通过ISO 1143金属材料旋转弯曲疲劳试验方法的应用,我们可以评估金属材料在循环载荷下的耐久性能,并为设计和生产过程提供相关数据参考。

这可以帮助我们选择合适的材料,预测材料的使用寿命,优化产品设计,以及改进相关工艺和制造过程。

金属内弯曲实验报告

金属内弯曲实验报告

金属内弯曲实验报告1. 引言金属内弯曲是一种常见的金属加工方法,在制造业中得到广泛应用。

通过内弯曲可以使金属件获得所需的形状和结构,提高其刚度和强度,满足特定工程要求。

为了探究金属内弯曲的原理与影响因素,本实验旨在研究不同参数下金属内弯曲的变形特征与力学性能。

2. 实验目的1. 研究不同金属材料在内弯曲过程中的变形特征。

2. 分析材料性能与弯曲角度、半径、厚度之间的关系。

3. 探究金属内弯曲在工程中的应用前景。

3. 实验装置与试样准备3.1 实验装置本实验使用的金属内弯曲实验装置包括弯曲机、力传感器、位移传感器、控制系统等。

其中弯曲机用于施加力与变形,力传感器和位移传感器分别用于测量施加的力和金属材料的位移。

3.2 试样准备本实验使用的试样为不同材料的金属板,包括铝、铜和钢等。

试样的准备包括切割、去毛刺、打磨与清洗等工序,以保证试样的表面质量与尺寸精度。

4. 实验步骤1. 根据实验方案设置不同参数,包括弯曲角度、半径和厚度等。

2. 将试样置于弯曲机上,固定好位置并调整力传感器和位移传感器的位置。

3. 执行弯曲操作,记录施加的力和试样的位移数据。

4. 按照实验设计修改参数,重复步骤2-3。

5. 完成所有试验后,整理数据并进行分析。

5. 结果与讨论根据实验数据记录和数据处理,得到如下结果和讨论:1. 在相同的弯曲角度下,不同材料试样的变形特征有所差异。

铝材料的弯曲变形较为明显,而铜材料和钢材料的变形较小。

2. 在相同的半径和厚度下,随着弯曲角度的增加,金属试样的变形程度增加。

3. 随着金属材料的厚度增加,其在弯曲过程中的韧性和变形能力增强。

4. 弯曲角度、半径和厚度是影响金属弯曲的重要参数,对于不同金属材料要选择合适的参数来控制变形。

5. 金属内弯曲在工程中具有广泛应用,可用于制造弯曲构件、管道、车身零件等。

6. 实验结论本实验通过研究金属内弯曲的变形特征和力学性能,得出以下结论:1. 不同金属材料在内弯曲过程中的变形特征不同,需根据材料的性能选择相应的参数。

GB232金属弯曲试验方法

GB232金属弯曲试验方法

金属弯曲试验‎方法 GB232–88 本标准参照采‎用国际标准l‎S O 7438–1985《金属材料–弯曲试验》。

1 主题内容与适‎用范围本标准规定了‎金属材料弯曲‎试验方法的适‎用范围、试验原理、试样、试验设备、试验程序及试‎验结果评定。

本标准适用于‎检验金属材料‎承受规定弯曲‎角度的弯曲变‎形性能。

2 引用标准GB 2975钢材‎力学及工艺性‎能试验取样规‎定3 试验原理将一定形状和‎尺寸的试样放‎置于弯曲装置‎上,以规定直径的‎弯心将试样弯‎曲到所要求的‎角度后,卸除试验力检‎查试样承受变‎形性能。

4 符号和名称弯曲试验中使‎用的符号和名‎称如下表和图‎1、图2所示。

5 试验设备5.1弯曲试验可‎在压力机或万‎能试验机上进‎行。

试验机应具备‎下列装置。

5.1.1应有足够硬‎度的支承辊,其长度应大于‎试样的宽度或‎直径。

支辊间的距离‎可以调节。

5.1.2具有不同直‎径的弯心,弯心直径由有‎关标准规定,其宽度应大于‎试样的宽度或‎直径,弯心应有足够‎的硬度。

5.2厚度不大于‎4m m的试样‎,可在虎钳上进‎行弯曲试验,弯心直径按有‎关标准规定。

6 试样6.1试验时用圆‎形、方形、长方形或多边‎形横截面的试‎样。

弯曲外表面不‎得有划痕。

方形和长方形‎试样的棱边应‎锉圆,其半径不应大‎于2mm。

6.2试样加工时‎,应去除剪切或‎火焰切割等形‎成的影响区域‎。

6.3圆形或多边‎形横截面的材‎料作弯曲试验‎时,如果圆形横截‎面直径或多边‎形横截面的内‎切圆直径不大‎于35mm,试样与材料的‎横截面相同。

若试验机能量‎允许时,直径不大于5‎0mm的材料‎亦可用全截面‎的试样进行试‎验。

当材料的直径‎大于35mm‎,则加工成直径‎为25mm的‎试样,或如图3加工‎成试样。

并保留一侧原‎表面。

弯曲试验时,原表面应位于‎弯曲的外侧。

6.4当有关标准‎未作具体规定‎时,板材厚度不大‎于3mm,试样宽度为2‎0±5mm。

钢材冷弯试验方法

钢材冷弯试验方法
6.3裂纹:试样弯曲外表面金属基体上出现开裂,其长度大于2mm,而小于5mm,宽度大于0.2mm,而小于等于0.5mm时称为裂纹。
6.4裂缝:试样弯曲外表面金属基体上出现明显开裂,其长度大于5mm,宽度大于0.5mm,而小于等于0.5mm时称为裂缝。
6.5裂断:试样弯曲外表面出现沿宽度贯穿的开裂,其深度值超过试样厚度的1/3时,称为裂断。
钢材冷弯试验方法
1.依据标准:《金属材料弯曲试验方法》GB/T232-2010;
2.试验目的及适用范围:
2.1目的:以检验金属规定弯曲程度的弯曲变形性能,并显示其缺陷。
2.2适用范围:公路工程中常用的钢筋线材及棒材塑性及工艺性能的评价。
3.试验环境:进入试验室内先检查室温,一般试样要求室温在10℃-35℃范围内时可以进行试验,对温度要求严格的试样要求室温在23℃±5℃范围内时可以进行试验,如达不到要求,须开启空调暖气设备,使环境温度达到要求后再进行试验
6.6根据上述检验结果,如果相关产品标准未规定具体要求,则一般试样无裂纹、断裂或裂断,则评定为合格
7.试验报告:试验报告应包括内容:
①标准编号;②试样标识;③材料名称牌号;④试样类型;⑤试样的取样方向和位置;⑥所测性能结果。
8.注意事项:
8.1弯曲试验时,应缓慢施加弯曲力。
8.2相关产品标准中规定的弯曲角度认作为最小值,规定的弯曲半径认作为最大值。
4.2.3必要时对样坯及不加工试样允许校直或校平,但在操作中必须保证不因此而显著影响金属的性能。不测伸长率的较细线材可不经校直进行试验;
4.2.4不切削加工的单铸圆形试样表面上的夹砂、夹渣、毛刺、飞边等必须清除;
4.2.5试样在机床上进行切削加工磨削时,不得因受热或冷加工而影响试样的性能,最后一道磨削深度不应过大。

金属材料弯曲试验方法

金属材料弯曲试验方法

金属材料弯曲试验方法 Last revised by LE LE in 2021金属材料弯曲试验方法1.范围本标准规定了弯曲试验方法的原理、符号、试验设备、试样、试验程序、试验结果评定和试验报告本标准适用于金属材料相关产品标准规定试样的弯曲试验,测定其弯曲塑性变形能力。

但小适用金属管材和金属焊接接头的弯曲试验。

2 试验设备应在配备下列弯曲装置之一的试验机或压力机上完成试验。

a)支辊式弯曲装置;b)V 形模具式弯曲装置;c)虎钳式弯曲装置;2.1支辊式弯曲装置2.1.1 支辊长度应大于试样宽度或直径。

支辊半径应为1-10倍试样厚度支辊应具有足够的硬度。

2.1.2 除非另有规定,支辊间距离应按照式(1)确定:l= (d + 3a ) ±2a ( 1 ) 此距离在试验期间应保持不变。

2.1.3 弯曲压头直径应在相关产品标准中规定。

弯曲压头宽度应大于试样宽度或直径弯曲压头应具有足够的硬度2.2 V 形模具式弯曲装置模具的V 形槽其角度应为1800-α。

弯曲角度应在相关产品标准中规定。

弯曲压头的圆角半径为d/2。

模具的支承棱边应倒圆,其倒圆半径应为1~10倍试样厚度。

模具和弯曲压头宽度应大于试样宽度或直径。

弯曲压头应具有足够的硬度。

2.3 虎钳式弯曲装置装置由虎钳配备足够硬度的弯心组成。

可以配置加力杠杆。

弯心直径应按照相关产品标准要求,弯心宽度应人于试样宽度或直径。

2.4.3 弯曲压头直径应在相关产品标准中规定弯曲压头宽度应大于试样宽度或直径。

弯曲压头的压杆其厚度应略小于弯曲压头直径。

弯曲压头应具有足够的硬度。

3 试样3.1 试验使用圆形、方形、矩形或多边形横截面的试样样坯的切取位置和方向应按照相关产品标准的要求。

如未具体规定,对于钢产品,应按照GB/T 2975的要求试样应通过机加工去除由于剪切或火焰切割等影响了材料性能的部分。

3.2 试样表面不得有划痕和损伤。

方形、矩形和多边形横截面试样的棱边应倒圆,倒圆半径不超过以下数值:----1mm ,当试件厚度小于10mm----1.5mm 当试件厚度大于或等于10mm 且小于50mm-----3mm 当试件厚度不小于50mm棱边倒圆时不应形成影响试验结果的横向毛刺、伤痕或刻痕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L=0.5π(d+a)+140mm
金属材料弯曲试验方法新旧规范比对表
7
修改了试样厚度的规定:直径(圆形横截面)或切圆直径(多边形横截面)不大于30mm的产品,其试样横截面应为原产品的横截面。对于直径或多边形横截面内切圆直径超过30mm但不大于50mm的产品,可以将其机加工或横截面内切圆直径不小于25mm的试样。直径或多边形横截面内切圆直径大于50mm的产品,应将其机加工成横截面内切圆直径不小于25mm的试样。试验时,试样未经机加工的原表面应置于受拉变形的一侧。
6.2试样表面不得有划痕和损伤,方形、矩形和多边形横截面试样的棱边应倒圆,倒圆半径不超过试样厚度的1/10。棱边倒圆时不应形成影响试验结果的横向毛刺,伤痕或刻痕。
9
增加了试验过程中应采取足够的安全措施和防护装置的规定。
没规定安全措施和防护装置。
10
增加了弯曲试验:当出现争议时试验速率应为(1±0.2)mm/S。弯曲试验时,应当缓慢地施加弯曲力,以使材料能够自由地进行塑性变形。
直径或多边形横截面内切圆直径不大于50mm的产品,其试样横截面应为产品的横截面。如试验设备能力不足,对于直径或多边形横截面内切圆直径超过30mm~50mm的产品,可以按标准中图5将其机加工成横截面内切圆直径为不小于25mm的试样。直径或多边形横截面内切圆直径大于50mm的产品,应按照标准中图5将其机加工成横截面内切圆直径为不小于25mm的试样,试验时试样未经机加工的原表面置于受拉变形的一侧,除非另有规定,钢筋产品均以其全截面进行试验。
金属材料弯曲试验方法新旧规范比对表
序号
GB/T232-2010
GB/T232-1999
1
增加了第2章“规范性引用文件”
第2章:引用标准
2
在第3章中增加了图B.1由于直接测量弯曲角度a比较困难,因此推荐使用通过测量弯曲压头位移f计算弯曲角度a由弯曲压头的位移来确定。
弯曲压头在两Байду номын сангаас座之间的中点处对试样连续施加力使其弯曲,直至达到规定的弯曲角度。
样坯的切取位置和方向应按照相关产品标准的要求。对于钢产品,应按照GB/T2975的要求,试验应通过机加工去除由于剪切或火焰切割等影响了材料性能的部分。
5
取消了“弯心”术语弯曲压头直径。
弯曲压头或弯心直径。
6
取消了确定试验长度的公式:试样长度应根据试样厚度或直径和所使用的试验设备确定。
试样长度应根据试样厚度和所使用的试验设备确定,采用图1和图4的方法时,可以按照公式确定。
金属材料弯曲试验方法新旧规范比对表
8
增加民矩形试样圆角半径数值的规定:6.2矩形试样的棱边,试样表面不得有划痕和损伤,方形、矩形和多边形横截面试样的棱边应倒圆,倒圆半径不能超过以下数值。1mm,当试样厚度小于10mm;1.5mm,当试样厚度大于10mm且小于50mm;3mm,当试样厚度不小于50mm。棱边倒圆是时不应形成影响试验结果的横向毛刺,伤痕或刻痕。如果试验结果不受影响,允许试样的棱边不倒圆。
3
5.5符合弯曲试验原理的其他弯曲装置(例如翻板式弯曲装置等)亦可使用。
翻板式弯曲装置为弯曲装置配备之一
4
6.1一般要求:样坯的切取位置和方向应按照相关产品标准的要求。如未具体规定,对于钢产品应按照GB/T2975的要求,试样应去除由于剪切或火焰切割或类似的操作而影响了材料性能的部分。如果试验结果不受影响,允许不去除试样受影响的部分。
弯曲试验时,应缓慢施加弯曲力。
11
增加了附录A,附录B。
/
审核:编制:日期:
相关文档
最新文档