讨论二元函数连续性_偏导存在性及可微性间的关系.

合集下载

二元函数连续可微偏导之间的关系解读

二元函数连续可微偏导之间的关系解读

一、引言对于一元函数而言,函数y=f(x在点x0处连续、导数存在、可微这三个概念的关系是很清楚的,即可微一定连续,但连续不一定可微,可微和导数存在是等价的。

对多元函数而言,由于偏导数的出现,使得他们之间的关系要复杂的多。

下面以二元函数为例,探讨其在点(x0,y0处连续、偏导数存在、可微、偏导数连续之间的关系。

二、二元函数连续、偏导数存在、可微、偏导数连续之间的关系1.可微与连续的关系假设函数f(x,y在点(x0,y0处可微,那么在该点连续,但反之不成立(同一元函数。

证明:因为f(x,y在点(x0,y0处可微,因此有0≤f(x0+△x,y0+△y-f(x0,y0≤A△x+B△y+O(O→(△x→0,△y→0,所以lim(△x,△y→(0,0f(x0+△x,y0+△y=f(x0,y0,故f(x,y在点(x0,y0处连续。

反之不成立。

例1.f(x,y=x2yx2+y2,x2+y2≠00,x2+y2=$在点(0,0处连续,但在该点不可微。

2.偏导数存在与可微的关系由定理17.1[1](可微的必要条件,函数f(x,y在点(x0,y0处可微,那么f(x,y在点(x0,y0的偏导数一定存在;但反之不成立,如例1中函数f(x,y在点(0,0处偏导数存在,但在此点不可微。

3.偏导数连续与可微的关系由定理17.2[2](可微的充分条件知,函数f(x,y在点(x0,y0处偏导数连续,那么f(x,y 在点(x0,y0处可微;但反之不成立,例2.f(x,y=(x2+y2sin1x2+y2,x2+y2≠00,x2+y2=%’’’&’’(0在点(0,0处可微,但偏导数在点(0,0不连续。

4.连续与偏导数存在之间的关系二元函数连续与偏导数存在之间没有必然的联系。

例3f(x,y=x2+y2(圆锥在点(0,0连续但在该点不存在偏导数。

更值得注意的是,即使函数在某点存在对所有自变量的偏导数,也不能保证函数在该点连续。

例4.f(x,yxyx2+y2,x2+y2≠00,x2+y2=$在点(0,0不连续,但f y(0,0=lim△y→∞0-0=0,f y(0,0=lim△y→∞0-0△y=0。

二元函数的连续、偏导数、可微之间的关系

二元函数的连续、偏导数、可微之间的关系

摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1二元函数连续、偏导数、可微三个概念的定义 (1)2二元函数连续、偏导数、可微三个概念之间的关系 (2)二元函数连续与偏导数存在之间的关系 (2)二元函数连续与可微之间的关系 (3)二元函数可微与偏导数存在之间的关系 (3)二元函数可微与偏导数连续之间的关系 (4)二元函数连续、偏导数、可微的关系图 (6)参考文献 (7)致谢 (8)二元函数的连续、偏导数、可微之间的关系摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性.关键词 二元函数 连续 偏导数 可微The Relationship among Continuation, Partial Derivativesand Differentiability in Binary FunctionAbstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common..Key words binary function continuation partial derivatives differentiability引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系.1 二元函数连续、偏导数、可微三个概念的定义定义1 设f 为定义在点集2D R ⊂上的二元函数,0D P ∈(0P 或者是D 的聚点,或者是D 的孤立点),对于任给的正数ε,总存在相应的正数δ,只要0,)(D P U P δ⋂∈,就有0)||()(f P f P ε<-,则称f 关于集合D 在点0P 连续.定义2 设函数(,),(,)z f x y x y D =∈,若00,)(y D x ∈且0,)(y f x 在0x 的某一邻域内有定义,则当极限00000000(,))(,)(,limlimx x x f x y f x y f x x y x x∆→∆→+-=∆∆∆∆存在时,则称这个极限为函数f 在点00,)(y x 关于x 的偏导数,记作0(,)|x y fx∂∂.定义3 设函数(,)z f x y =在点000,)(y P x 某邻域0()U P 内有定义,对于0()U P 中的点00,)(,)(y P x y x x y ++=∆∆,若函数f 在点0P 处的全增量可表示为0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+,其中A 、B 是仅与点0P 有关的常数,()ορρ=是较ρ高阶的无穷小量,则称函数f 在点0P 处可微.2 二元函数连续、偏导数、可微三个概念之间的关系二元函数连续与偏导数存在之间的关系例[1]122,(,)(0,0)(,)0,(,)(0,0)xyx y x yf x y x y ⎧≠⎪+=⎨⎪=⎩在(0,0)偏导数存在但不连续. 证明 因为 00(,0)(0,0)00(0,0)limlim 0x x x f x f f x x→→--===, 同理可知 (0,0)0y f =. 所以 (,)f x y 在(0,0)偏导数存在. 因为220,0limx y xyx y →→+ 极限不存在,所以 (,)f x y 在(0,0)不连续.例2[2](,)f x y =在(0,0)点连续,但不存在偏导数. 证明 因为0,00,lim (,)lim0(0,0)x y x y f x y f →→→→===,所以(,)f x y =在(0,0)点连续,因为00(,0)(0,0)(0,0)lim x x x f x f f x →→-== ,该极限不存在,同理 (0,0)y f 也不存在.所以(,)f x y =在点(0,0)连续,但不存在偏导数.此二例说明: 二元函数连续与偏导数存在不等价,偏导数存在不一定连续,连续不一定偏导数存在.这与一元函数不同.一元函数中,可导一定连续,连续不一定可导. 二元函数连续与可微之间的关系定理1[3] 若(,)z f x y =在点(,)x y 可微,则(,)z f x y =在点(,)x y 一定连续. 证明 (,)z f x y =在点(,)x y 可微,0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+ (1)所以 当0,0x y ∆→∆→时,有0z ∆→,即 (,)z f x y =在该点连续.例3[4]证明(,)(0,0)(,)0,(,)(0,0)x y f x y x y ≠==⎩在(0,0)点连续,但在(0,0)点不可微.证明 令cos ,sin x r y r θθ==,则(,)00x y r →⇔→.因为2cos sin |||cos sin |0(0)r r r r r θθθθ==≤→→,所以(,)f x y 在(0,0)点连续.按偏导数定义00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx ∆→∆→∆-===∆∆, 同理 (0,0)0y f = .若(,)f x y 在点(0,0)可微,则(0,0)(0,0)(0,0)(0,0)x y z dz f x y f f x f y ∆-=+∆+∆--∆-∆=应是ρ=较高阶的无穷小量. 因为220limlimz dzx yx y ρρρ→→∆-∆∆=∆+∆ 该极限不存在,所以(,)f x y 在点(0,0)不可微.此例说明: 二元函数在某点连续,不一定可微,但可微一定连续.这与一元函数有相同的结论.二元函数可微与偏导数存在之间的关系定理2[5] 若二元函数f 在其定义域内一点00,)(y x 处可微,则f 在该点关于每个自变量的偏导数都存在,且(1)式中的0000,),,)((x y A f y B f y x x ==.证明 因为 (,)z f x y =在点(,)x y 可微,则0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+.若令上式中0y ∆= ,则0000(,)(,)(||)z f x x y f x y A x x ο=+∆∆-=∆+∆, 所以 000000(,)(,)(||)lim lim x x A xf x x y f x y x A x ο∆→∆→=∆+∆-∆+=∆. 即A zx=∂∂.类似可证B z y =∂∂. 例4[6]设2222222,0(,)0,0x y x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩,则(,)f x y 在点(0,0)偏导数存在,但在该点不可微.解 事实上(1)0(,0)(0,0)(0,0)lim0x x f x f f x →-==,(0,)(0,0)(0,0)lim0y y f y f f y→-==,故 (,)f x y 在点(0,0)偏导数存在. (2)因为200,limlimx y f dfρρ→∆→∆→∆-=,此时若令y k x ∆=∆,则230,0,lim limx y x y ∆→∆→∆→∆→=此极限显然不存在,所以0limf dfρρ→∆-不存在,所以 (,)f x y 在点(0,0)不可微.此例说明: 二元函数中,偏导数存在不一定可微;可微则偏导数存在.这与一元函数中,可微与可导等价有区别. 函数可微与偏导数连续之间的关系定理3[7] 若二元函数(,)z f x y =的偏导数在点00(,)x y 的某邻域内存在,且x f 与yf 在点00(,)x y 处连续,则函数f 在点00(,)x y 处可微.证明 我们把全增量0000,)(,)(y f x y z f x x y ++-∆=∆∆00000000[,),)][,)(,)](((y y y f x y f x x y f x y f x y =++-+++-∆∆∆∆在第一个括号里,它是函数0,)(y f x y +∆关于x 的偏增量;在第二个括号里,则是函数0(,)f x y 关于y 的偏增量.对它们分别应用一元函数的拉格朗日中值定理,得 010002,),(()x y y y z f x x y x f x y y θθ++++∆=∆∆∆∆∆ 12,10θθ<< (2) 由于x f 与y f 在点00(,)x y 处连续,因此有 01000,)(,)(x x y x y f x x y f θα++=+∆∆, (3)00200,(,)()y y y x y f x y f θβ++∆= ,(4)其中 当0,0x y ∆→∆→时,有0,0αβ→→. 将(3) ,(4)代入(2)式,则得0000(,)(,)x y x y x y z f x f y x y αβ=+∆∆∆+∆+∆. 所以 函数f 在点00(,)x y 处可微.例5[8]22()sin (,)(0,0)(,)0,(,)(0,0)x y x y f x y x y ⎧+≠⎪=⎨⎪=⎩在(0,0)处可微,但(,)x f x y 与(,)y f x y 均在(0,0)处不连续.解因为220,0lim ()sin0(0,0)x y x y f →→+==,所以 (,)f x y 在(0,0)处连续.00(,0)(0,0)(0,0)lim 0x x x f x f f x→→-===,同理 (0,0)0y f =.当220x y +≠时,0,0lim 2sinx x y f x →→=极限不存在,故(,)x f x y 在点(0,0)不连续. 同理可证(,)y f x y 在(0,0)处不连续.lim0f dfρρρ→→∆-==,所以(,)f x y 在(0,0)处可微.此例说明 二元函数偏导数连续并不是可微的必要条件.由此可知定理3是可微的充分条件.由此引出定理4,降低函数可微的条件.定理4[9] 若(,)f x y 在0()U P 内(,)x f x y 存在,且(,)x f x y 在00(,)o P x y 连续,(,)y f x y 在0P 存在,证明:f 在0P 可微.证明 0000(,)(,)f f x x y y f x y ∆=+∆+∆-00000000[(,)(,)][(,)(,)]f x x y y f x y y f x y y f x y =+∆+∆-+∆++∆- 由已知 (,)x f x y 存在,且在0(,)o x y 连续,有0000010(,)(,)(,)x f x x y y f x y y f x x y y xθ+∆+∆-+∆=+∆+∆∆11(,)(0)xf x y x x αα=∆+∆→,因为 0000000(,)(,)lim(,)y y f x y y f x y f x y y∆→+∆-=∆,所以 00000022(,)(,)(,)(0)y f x y y f x y f x y y y αα+∆-=∆+∆→ , 又因 1212||||||0x yααααρ∆+∆≤+→,所以 f 在点0P 可微. 注 此定理中(,)x f x y 与(,)y f x y 互换,结论仍然成立. 二元函数连续、偏导数、可微的关系如图二元函数连续二元函数偏导数存在二元函数可微二元函数偏导数连续参考文献[1]常庚哲,史济怀,数学分析[M].北京:高等教育出版社,:97[2]刘文灿,刘夜英,数学分析[M].西安:陕西人民出版社,:116[3]朱正佑,数学分析[M].上海:上海大学出版社,:188[4]黄玉民,李成章,数学分析[M].北京:科学出版社,:61-62[5]华东师范大学数学系. 数学分析(第二版)[M].北京:高等教育出版社,110[6]周良金,王爱国,函数连续及可微的关系[J].高等函授学报,19(5):35[7]陈纪修,於崇华,金路,数学分析(第二版)[M].北京:高等教育出版社,:142-143[8]刘新波,数学分析选讲[M].哈尔滨:哈尔滨工业大学出版社,:151[9]《大学数学名师导学丛书》编写组,数学分析名师导学[M].北京:中国水利水电出版社,2004:147-148致谢感谢老师对本论文从选题、构思、资料收集到最后定稿的各个环节给予的指引和教导,使我对分段函数的分析性质有了更深刻的认识,并最终得以完成毕业论文,对此我表示衷心的感谢,老师严谨的治学态度、丰富渊博的知识、敏锐的学术思维、精益求精的工作态度、积极进取的科研精神以及诲人不倦的师者风范是我毕生的学习楷模.通过这一阶段的努力,我的毕业论文已接近尾声,作为一个本科生的毕业论文,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有老师的亲切关怀和悉心指导,完成本次毕业论文将变得十分困难.老师平日工作繁多,但在这篇论文的写作过程中,老师不辞辛劳,多次就论文中许多核心的问题做深入细致的探讨并给我提出切实可行的指导性建议,才最终得以完成本次毕业论文.老师的这种一丝不苟的负责精神,使我深受感动.在此,请允许我向尊敬的老师表示真挚的谢意.最后,还要感谢我的辅导员在这四年来对我的帮助与鼓励,以及院系的所有领导对我的栽培与支持.并向在百忙中抽出时间对本论文进行评审,并提出宝贵意见的各位老师表示衷心的感谢,致以最崇高的敬意.。

多元函数的连续性,偏导数,方向导数及可微性之间的关系

多元函数的连续性,偏导数,方向导数及可微性之间的关系

多元函数的连续性,偏导数,方向导数及可微性之间的关

多元函数这些性质之间的关系是:可微分是最强的性质,即可微必然
可以推出偏导数存在,必然可以推出连续。

反之偏导数存在与连续之间是
不能相互推出的(没有直接关系),即连续多元函数偏导数可以不存在;
偏导数都存在多元函数也可以不连续。

偏导数连续强于函数可微分,是可
微分的充分不必要条件,相关例子可以在数学分析书籍中找到。

其中可微分的定义是:
以二元函数为例(n元类似)
扩展:可微分可以直观地理解为用线性函数逼近函数时的情况(一元
函数用一次函数即切线替代函数增量,二元函数可以看做是用平面来代替,更多元可以看做是超平面来的代替函数增量,当点P距离定点P0的距离
p趋于零时,函数增量与线性函数增量的差是自变量与定点差的高阶无穷
小(函数增量差距缩小的速度快与自变量P靠近P0的速度))。

二元函数的连续偏导可微

二元函数的连续偏导可微

二元函数的连续性、偏导及可微之间的联系二元函数连续性、偏导数存在性、及可微的定义 1.二元函数的连续性定义 设f 为定义在D 上的二元函数,0P D ∈(它或者是D 的聚点,或者是D 的孤立点) ,对于任给的正数ε,总存在相应的正数δ,只要()0;P P D δ∈⋂,就有()()0f P f P ε-<, 则称f 在P 点连续2.二元函数的偏导数定义 设函数(,)z f x y =在点000(,)P x y 的某一邻域内有定义,当y 固定在0y 而x 在0x 处有增量x ∆ 时,相应地函数有增量x z ∆=0000(,)(,)f x x y f x y +∆-如果 00000(,)(,)limx f x x y f x y x∆→+∆-∆存在,则称此极限为函数z (,)f x y =在点000(,)P x y 处对x 的偏导数,记作00(,)x f x y 或()00,x y fx ∂∂对y 的偏导数同理 3.二元函数的可微性定义 设函数(,)z f x y =在点()000,P x y 的某邻域()0U P 内有定义,对于()0U P 中的点()00,(,)P x y f x x y y =+∆+∆,若函数f 在0P 处的全增量z ∆可表示为:()()0000(,),z f x x y y f x y A x B y o ρ∆=+∆+∆-=∆+∆+, (1)其中AB 是仅与点P 0有关的常数,ρ=,()o ρ是较高阶的无穷小量,则称函数f 在点P 0可微.并称(1)中A x B y ∆+∆为f 在点P 0的全微分,记作000(,)P dz df x y A x B y ==∆+∆说明:1)A 、B 是与x ∆y ∆无关的常数,但与0P 可能有关;2) dz 是z ∆的线性主部0lim0z dzρρ→∆-=二元函数连续性、偏导数存在性、及可微的联系多元函数是一元函数的推广,因此它保留着一元函数的许多性质,但也有些差异,这些差异主要是由多元函数的“多元”而产生的.对于多元函数,我们着重讨论二元函数,在掌握了二元函数的有关理论和研究方法之后,在将它推广到一般的多元函数中去.本文将通过具体实例来讨论二元函数连续性、偏导数存在性、及可微的联系. 一、二元函数连续性与偏导存在性间的关系偏导存在不一定连续,反之连续不一定有偏导存在 1)函数(,)f x y 在点000(,)p x y 连续,但偏导不一定存在. 例1.证明函数(,)f xy =(0,0)连续偏导数不存在.证明:∵(,)(0,0)(,)lim (,)lim0(0,0)x y x y f x y f →→===,故函数(,)f x y =(0,0)连续.由偏导数定义:001,(0,0)(0,0)(0,0)limlim 1,x x x x f x f f x x ∆→∆→∆>⎧+∆-===⎨-∆<∆⎩故(0,0)x f 不存在.同理可证(0,0)y f 也不存在.2)函数(,)f x y 在点000(,)P x y 偏导存在,但不一定连续.例 2.证明函数22,0(,)1,0x y xy f x y xy ⎧+==⎨≠⎩在点(0,0)处(0,0)x f ,(0,0)y f 存在,但不连续证明 : 由偏导数定义:00(0,0)(0,0)(0,0)lim lim 0x x x f x f f x x→∆→+∆-==∆=∆ 同理可求得(0,0)0y f =∵22(,)(0,0)(,)(0,0)lim (,)lim ()1(0,0)0x y x y f x y x y f →→=+=≠=故函数22,0(,)1,0x y xy f x y xy ⎧+==⎨≠⎩在点(0,0)处不连续.综上可见,二元函数的连续性与偏导存在性间不存在必然的联系. 二、二元函数的可微性与偏导间的关系1.可微性与偏导存在性1) 可微则偏导存在(可微的必要条件1)若二元函数(,)f x y 在其定义域内一点000(,)P x y 处可微,则f 在该点关于每个自变量的偏导都存在,且000000(,)(,)(,)x y df x y f x y dx f x y dy =+注1 定理1的逆命题不成立,2)偏导存在,不一定可微.例3证明函数22220(,)0,0x y f x y x y +≠=+=⎩在原点两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)lim lim 0x x x f x f f xx ∆→∆→+∆--===∆∆同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性. 用反证法.若函数f 在原点可微,则[](0,0)(0,0)(0,0)(0,0)x y f df f x y f f dx f dy ⎡⎤∆-=+∆+∆--+=⎣⎦应是较ρ=2200lim lim f df x y x y ρρρ→→∆-∆∆=∆+∆ 当动点(,)x y 沿直线y mx =趋于(0,0)时,则(,)(0,0)2222(,)(0,0)lim lim 11x y y mxx y xy m mx y m m →=→==+++ 这一结果说明动点沿不同斜率m 的直线趋于原点时,对应的极限值也不同.因此所讨论的极限不存在.故函数f 在原点不可微.例4. 22220(,)0,x y f x y x y +≠=+=⎪⎩在(0,0)处两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)limlim 0x x x f x f f x x∆→∆→+∆--===∆∆ 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性.[](0,0)(0,0)(0,0)(0,0)x y f df f x y f f dx f dy ⎡⎤∆-=+∆+∆--+=⎣⎦为此考察极限limf dfρρρ→→∆-=当动点(,)x y 沿直线y =趋于时,则(,)(0,0)(,)limlim x y y mxx y →=→==0≠因此f 在原点不可微例5. 证明函数2222222,0(,)0,0x y x y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在(0,0)两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)limlim 0x x x f x f f x x∆→∆→+∆--===∆∆ 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性.(0,0)(0,0)0,x y df f dx f dy =+= 222(,)(0,0)x yf f x y f x y ∆∆∆=∆∆-=∆+∆从而()222230,(0,0)222limlimlim0()()x y x y f dfx y x y x y x y ρρρρ→→∆∆→∆∆∆-∆∆∆+∆==≠=∆+∆取因此f 在原点不可微注:本题还可以说明连续不一定可微例6.证明函数2222322222,0(,)()0,0x y x y f x y x y x y ⎧+≠⎪=⎨+⎪+=⎩在(0,0)连续,且两个偏导数都存在但不可微.证明(1)∵223222()x y x y ≤+∴0,4,εδεδε∀>∃=<<∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2)又00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0)0,x y df f x f y =∆+∆=(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而222220limlim ()()f dfx y x y x y ρρρ→→∆-∆∆=∆=∆∆+∆取不存在 故 f 在原点不可微注:本题还可以说明连续不一定可微2. 偏导连续与可微1)偏导连续,一定可微.(可微的充分条件)若二元函数(,)z f x y =的偏导在点000(,)P x y 的某邻域内存在,且x f 与y f 在点000(,)P x y 处连续,则函数(,)f x y 在点000(,)P x y 可微.注2 偏导连续是函数可微的充分而非必要条件.2)可微,偏导不一定连续例7.证明函数()222222221sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有222222121(,)2sincos x x f x y x x y x y x y =-+++222222121(,)2sin cos y y f x y y x y x y x y =-+++ (1)当y=x 时,极限2200111lim (,)lim(2sin cos )22x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点不连续.同理可证(,)y f x y 在(0,0)点不连续.(2)∵ 200(,0)(0,0)1(0,0)limlim sin 0x x x f x f f x x x→→-===200(0,)(0,0)1(0,0)lim lim sin 0y y y f y f f y y y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=2222222211(,)(0,0)()sinsin ((,):0)f f x y f x y x y x y x y ρρ∆=-=+=∀+≠+ 从而2221sin1limlimlim sin0f dfρρρρρρρρρ→→→∆-===即函数(,)f x y 在点(0,0)可微.例8. 证明函数()2222220(,)0,0x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有(,)2x f x y x =(,)2y f x y y = (1)当y=x时,极限00lim (,)lim(2x x x f x x x →→=不存在,则(,)x f x y 在(0,0)点间断.同理可证(,)y f x y 在(0,0)点间断.(2)∵00(,0)(0,0)(0,0)limlim 0x x x f x f f x x→→-===00(0,)(0,0)(0,0)lim lim 0y y y f y f f y y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=(,)(0,0)(,)f f x y f f x y ∆=-=从而201cos1limlimlim cos0f dfρρρρρρρρρ→→→∆-===即函数(,)f x y 在点(0,0)可微.例9.证明函数2222221sin ,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有22222222121(,)sin cos ()x x y f x y y x y x y x y =-+++22222222121(,)sin cos ()y xy f x y x x y x y x y =-+++(1)当y=x 时,极限2200111lim (,)lim(sin cos )222x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点不连续.同理可证(,)y f x y 在(0,0)点不连续.(2)∵ 00(,0)(0,0)(0,0)limlim00x x x f x f f x→→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=221(,)(0,0)sinf f x y f x y x y ∆=∆∆-=∆∆∆+∆从而()22,1limlimx y f dfx y ρρ→∆∆→∆-=∆+∆=0即函数(,)f x y 在点(0,0)可微.三、二元函数的连续性与可微性间的关系 1)可微,一定连续(可微的必要条件2)二元函数(,)f x y 在000(,)P x y 可微,则必然连续,反之不然.2)连续,不一定可微例10.证明函数3222222,0(,)0,0x x y f x y x yx y ⎧+≠⎪=+⎨⎪+=⎩在(0,0)连续,且偏导存在但不可微. 证明:(1)∵322222,x x x x x y x y=⋅≤++ ∴0,,,x y x εδεδδε∀>∃=<<<当时, ∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2) 00(,0)(0,0)(0,0)limlim 1x x x f x f xf xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0),x y df f x f y x =∆+∆=∆(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而20limf dfρρρ→→∆-=不存在即函数(,)f x y 在点(0,0)不可微. 注:本题也可以说明偏导存在但不一定可微.例11.证明函数222222sin(),0(,)0,0x y xy x y x y f x y x y +⎧+≠⎪+=⎨⎪+=⎩在(0,0)连续,且偏导存在但不可微. 证明:(1)∵22sin(),222x y x y x y x y xy xy x y xy ++++≤⋅=≤+∴0,,,2x yx y εδεδδε+∀>∃=<<<当时, ∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2) 00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0)0,x y df f x f y =∆+∆=(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而0limf dfρρρ→→∆-=取y k x ∆=∆则23320022221sin (1)limlim (1)(1)x f dfk kx k k xk k ρρ→∆→∆-++=⋅=++ 不存在 故函数(,)f x y 在点(0,0)不可微.注:本题也可以说明偏导存在但不一定可微. 例12 .证明函数(,)f x y xy =在点(0,0)连续,但它在点(0,0)不可微.证明:(1)∵00lim (,)lim 0(0,0)x x y y f x y xy f →→→→===故函数(,)f x y xy =在点(0,0)连续.例13.证明函数222222,0(,)0,0xy x y x yf x y x y ⎧+≠⎪+⎪=⎨⎪⎪+=⎩在(0,0)连续 ,但不可微.证明:(1)∵2222222222x y xyx y x y x y++≤=++ ∴00lim (,)0(0,0)x y f x y f →→== 故函数(,)f x y 在点(0,0)连续.(2)不可微见例4综上所述二元函数连续性、偏导存在性及可微性间的关系如图所示:偏导连续可微连续 偏导存在补充1.确定α的值,使得函数()222222221sin ,0(,)0,0x y x y x y f x y x y α⎧++≠⎪+=⎨⎪+=⎩在点(0,0)处可微.2.设函数2222(,)sin 0(,)0,0g x y x y f x y x y ⎧+≠⎪=⎨⎪+=⎩, 证明:(1)若(0,0)0g =,g 在点(0,0)处可微,且(0,0)0dg =,则 f 在点(0,0)处可微,且(0,0)0df =.(2)若g 在点(0,0)处可导,且f 在点(0,0)处可微,则(0,0)0df =.3.确定正整数α的值,使得函数()22220(,)0,0x y x y f x y x y α⎧++≠⎪=⎨⎪+=⎩在点(0,0)处(1)连续,(2)偏导存在,(3)存在一阶连续偏导.4.设函数222222,0()(,)00,0px x y x y f x y p x y ⎧+≠⎪+=>⎨⎪+=⎩,试讨论它在(0,0)点处的连续性.。

二元函数连续可微偏导之间的关系解读

二元函数连续可微偏导之间的关系解读
三、可微性判别步骤
1.如果f在点(x0,y0处不连续或偏导数不存在,则f在点(x0,y0处不可微。
2.如果f在点(x0,y0处连续,存在f x(x0,y0、fy(x0,y0,则f在点(x0,y0处可微的充分必要条件是满足下列等价的任一式:
(1△z=f(x0+△x,y0+△y-f(x0,y0
=f x(x0,y0△x+f y(x0,y0△y+o((△x2+(△y2
4.连续与偏导数存在之间的关系
二元函数连续与偏导数存在之间没有必然的联系。
例3f(x,y=x2+y2
(圆锥在点(0,0连续但在该点不存在偏导数。更值得注意的是,即使函数在某点存在对所有自变量的偏导数,也不能保证函数在该点连续。
例4.f(x,y
xy
x2+y2
,x2+y2≠0
0,x2+y2=
$
在点(0,0不连续,但
三、巧妙设计变式训练,促进灵活迁移
所谓“变式”,是指在教学中变化引用的材料内容和形式,从不同角度、用不同方法进行教学,使思维的“触须”伸向不同方位和不向领域。因此,通过变式训练可以实现知识的有效迁移。教师要充分运用“变式”教学,通过“一题多变”、“一图多问”、“多题重组”等形式从多个方面构造问
题,使学生养成多角度、多方位处理问题的习惯。教师提出的问题越多,学生思维越发散,理解越深刻,并通过对所提问题的解答而达到灵活迁移的目的。例如,函数与方程、不等式的结合向来是中考或高考的热点,教师可以通过设计变式训练把三者结合的恰到好处:
(2△z=f(x0+△x,y0+△y-f(x0,y0
=f x(x0,y0△x+f y(x0,y0△y+ε((△x2+(△y2

多元函数的连续性偏导数方向导数及可微性之间的关系

多元函数的连续性偏导数方向导数及可微性之间的关系

多元函数的连续性偏导数方向导数及可微性之间的关系首先,我们来回顾一下这些概念的定义和性质:1.多元函数的连续性:设有一个多元函数f(x1, x2, ..., xn),若对于任意给定的点(x1,x2, ..., xn),当自变量的每一个分量变化时,函数值都趋于其中一个确定的数,则称此函数在点(x1, x2, ..., xn)连续。

多元函数在定义域内的每一个点处都连续时,称此函数在该定义域上连续。

2.多元函数的偏导数:设有一个多元函数f(x1, x2, ..., xn),对于其中的其中一个自变量xi,在其他自变量固定的情况下,当xi取得一个微小的变化Δxi时,相应的函数值f(x1, x2, ..., xn)也会发生变化,偏导数是指函数值的这种变化相对于Δxi的比率的极限。

对于多元函数f(x1, x2, ..., xn),xi的偏导数记作∂f/∂xi。

3.多元函数的方向导数:设有一个多元函数f(x1, x2, ..., xn),对于函数上的其中一点(x1, x2, ..., xn)和以该点为起点的任意方向向量v=(v1, v2, ..., vn),方向的导数是指函数在该点沿着方向v的变化率的极限,记作D_vf(x1,x2, ..., xn)。

4.多元函数的可微性:设有一个多元函数f(x1, x2, ..., xn),若对于给定点(x1,x2, ..., xn)附近的一个小邻域内的任一点(x1+Δx1, x2+Δx2, ...,xn+Δxn),都有一个线性函数L(x1+Δx1, x2+Δx2, ..., xn+Δxn),使得当Δx1, Δx2, ..., Δxn趋于零时,有f(x1+Δx1, x2+Δx2, ...,xn+Δxn) = f(x1, x2, ..., xn) + L(x1+Δx1, x2+Δx2, ..., xn+Δxn) + o(Δxi),则称此函数在点(x1, x2, ..., xn)处可微。

二元函数的连续、偏导数、可微之间的关系-推荐下载

二元函数的连续、偏导数、可微之间的关系-推荐下载

目录摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1二元函数连续、偏导数、可微三个概念的定义 (1)2二元函数连续、偏导数、可微三个概念之间的关系 (2)2.1二元函数连续与偏导数存在之间的关系 (2)2.2二元函数连续与可微之间的关系 (3)2.3二元函数可微与偏导数存在之间的关系 (3)2.4二元函数可微与偏导数连续之间的关系 (4)二元函数连续、偏导数、可微的关系图 (6)参考文献 (7)致谢 (8)本科生毕业论文2二元函数的连续、偏导数、可微之间的关系摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性.关键词 二元函数 连续 偏导数 可微The Relationship among Continuation, Partial Derivatives andDifferentiability in Binary FunctionAbstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common..Key words binary function continuation partial derivatives differentiability引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系.1 二元函数连续、偏导数、可微三个概念的定义定义1 设为定义在点集上的二元函数,(或者是的聚点,f 2D R ⊂0D P ∈0P D 或者是的孤立点),对于任给的正数,总存在相应的正数,只要D εδ,就有,则称关于集合在点连续.0,)(D P U P δ⋂∈0)||()(f P f P ε<-f D 0P 定义2 设函数,若且在的某一邻域(,),(,)z f x y x y D =∈00,)(y D x ∈0,)(y f x 0x 内有定义,则当极限存在时,则称这个00000000(,))(,)(,limlim x x x f x y f x y f x x y x x∆→∆→+-=∆∆∆∆本科生毕业论文3极限为函数在点关于的偏导数,记作.f 00,)(y x x 0(,)|x y fx∂∂定义3 设函数在点某邻域内有定义,对于中的(,)z f x y =000,)(y P x 0()U P 0()U P 点,若函数在点处的全增量可表示为00,)(,)(y P x y x x y ++=∆∆f 0P ,其中、是仅与点有关0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+A B0P 的常数,是较高阶的无穷小量,则称函数在点处可微.()ορρ=ρf 0P 2 二元函数连续、偏导数、可微三个概念之间的关系2.1 二元函数连续与偏导数存在之间的关系例 在偏导数存在但不连续.[1]122,(,)(0,0)(,)0,(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩(0,0)证明 因为 ,00(,0)(0,0)00(0,0)limlim 0x x x f x f f x x→→--===同理可知 . 所以 在偏导数存在.(0,0)0y f =(,)f x y (0,0)因为 极限不存在,所以 在不连续.220,0limx y xyx y →→+(,)f x y (0,0)例在点连续,但不存在偏导数.2[2](,)f x y =(0,0)证明 因为 ,0,00,lim (,)lim0(0,0)x y x y f x y f →→→→===所以 在点连续,(,)f x y =(0,0)因为 ,该极限不存在,00(,0)(0,0)(0,0)lim x x x f x f f x →→-==同理 也不存在.(0,0)y f 所以 在点连续,但不存在偏导数.(,)f x y =(0,0)此二例说明: 二元函数连续与偏导数存在不等价,偏导数存在不一定连续,连续不一定偏导数存在.这与一元函数不同.一元函数中,可导一定连续,连续不一定可导.2.2 二元函数连续与可微之间的关系本科生毕业论文4定理 若在点可微,则在点一定连续.1[3](,)z f x y =(,)x y (,)z f x y =(,)x y 证明 在点可微,(,)z f x y =(,)x y (1)0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+所以 当时,有,即 在该点连续.0,0x y ∆→∆→0z ∆→(,)z f x y =例 证明在点连续,3[4](,)(0,0)(,)0,(,)(0,0)x y f x y x y ≠==⎩(0,0)但在点不可微.(0,0)证明 令,则.cos ,sin x r y r θθ==(,)00x y r →⇔→因为,2cos sin |||cos sin |0(0)r r r r r θθθθ==≤→→所以在点连续.(,)f x y (0,0)按偏导数定义,00(,0)(0,0)0(0,0)limlim 0x x x f x f f xx ∆→∆→∆-===∆∆同理 .(0,0)0y f =若在点可微,则(,)f x y(0,0)(0,0)(0,0)(0,0)(0,0)x y z dz f x y f f x f y ∆-=+∆+∆--∆-∆=应是较高阶的无穷小量.ρ=因为 该极限不存在,所以在点不可微.220limlimz dzx yx y ρρρ→→∆-∆∆=∆+∆(,)f x y (0,0)此例说明: 二元函数在某点连续,不一定可微,但可微一定连续.这与一元函数有相同的结论.2.3 二元函数可微与偏导数存在之间的关系定理 若二元函数在其定义域内一点处可微,则在该点关于每个2[5]f 00,)(y x f本科生毕业论文5自变量的偏导数都存在,且(1)式中的.0000,),,)((x y A f y B f y x x ==证明 因为 在点可微,则(,)z f x y =(,)x y .0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+若令上式中 ,则,0y ∆=0000(,)(,)(||)z f x x y f x y A x x ο=+∆∆-=∆+∆所以 .000000(,)(,)(||)limlim x x A xf x x y f x y x A x ο∆→∆→=∆+∆-∆+=∆即.类似可证.A zx=∂∂B z y =∂∂例 设,则在点偏导数存在,但在该4[6]2222222,0(,)0,0x y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩(,)f x y (0,0)点不可微.解 事实上(1),(,0)(0,0)(0,0)lim0x x f x f f x→-==,(0,)(0,0)(0,0)lim0y y f y f f y→-==故 在点偏导数存在.(,)f x y (0,0)(2)因为 ,0,limlimx y f dfρρ→∆→∆→∆-=此时若令,则,y kx ∆=∆0,0,limlimx y x y ∆→∆→∆→∆→=此极限显然不存在,所以不存在,limf dfρρ→∆-所以 在点不可微.(,)f x y (0,0)此例说明: 二元函数中,偏导数存在不一定可微;可微则偏导数存在.这与一元函数中,可微与可导等价有区别.2.4 函数可微与偏导数连续之间的关系定理若二元函数的偏导数在点的某邻域内存在,且与3[7](,)z f x y =00(,)x y x f本科生毕业论文6在点处连续,则函数在点处可微.y f 00(,)x y f 00(,)x y 证明 我们把全增量0000,)(,)(y f x y z f x x y ++-∆=∆∆ 00000000[,),)][,)(,)](((y y y f x y f x x y f x y f x y =++-+++-∆∆∆∆在第一个括号里,它是函数关于的偏增量;在第二个括号里,则是函数0,)(y f x y +∆x 关于的偏增量.0(,)f x y y 对它们分别应用一元函数的拉格朗日中值定理,得 (2)010002,),(()x y y y z f x x y x f x y y θθ++++∆=∆∆∆∆∆12,10θθ<<由于与在点处连续,x f y f 00(,)x y 因此有 , (3)01000,)(,)(x x y x y f x x y f θα++=+∆∆ , (4)00200,(,)()y y y x y f x y f θβ++∆=其中 当时,有.0,0x y ∆→∆→0,0αβ→→将(3) ,(4)代入(2)式,则得.0000(,)(,)x y x y x y z f x f y x y αβ=+∆∆∆+∆+∆所以 函数在点处可微.f 00(,)x y 例在处可微,但与5[8]22()sin (,)(0,0)(,)0,(,)(0,0)x y x y f x y x y ⎧+≠⎪=⎨⎪=⎩(0,0)(,)x f x y 均在处不连续.(,)y f x y (0,0) 解 因为,220,0lim ()sin0(0,0)x y x y f →→+==所以 在处连续.(,)f x y (0,0),00(,0)(0,0)(0,0)lim 0x x x f x f f x→→-===本科生毕业论文7同理 .(0,0)0y f =当时,极限不存在,220x y +≠0,0lim 2x x y f x →→=故在点不连续. 同理可证在处不连续.(,)x f x y (0,0)(,)y f x y (0,0),lim0f dfρρρ→→∆-==所以在处可微.(,)f x y (0,0)此例说明 二元函数偏导数连续并不是可微的必要条件.由此可知定理3是可微的充分条件.由此引出定理4,降低函数可微的条件.定理若在内存在,且在连续,4[9](,)f x y 0()U P (,)x f x y (,)x f x y 00(,)o P x y 在存在,证明:在可微.(,)y f x y 0P f 0P 证明 0000(,)(,)f f x x y y f x y ∆=+∆+∆- 00000000[(,)(,)][(,)(,)]f x x y y f x y y f x y y f x y =+∆+∆-+∆++∆-由已知 存在,且在连续,(,)x f x y 0(,)o x y 有0000010(,)(,)(,)x f x x y y f x y y f x x y y xθ+∆+∆-+∆=+∆+∆∆ ,11(,)(0)xf x y x x αα=∆+∆→因为 ,0000000(,)(,)lim(,)y y f x y y f x y f x y y∆→+∆-=∆所以 ,00000022(,)(,)(,)(0)y f x y y f x y f x y y y αα+∆-=∆+∆→又因 ,所以 在点可微.1212||||||0x yααααρ∆+∆≤+→f 0P 注 此定理中与互换,结论仍然成立.(,)x f x y (,)y f x y 二元函数连续、偏导数、可微的关系如图二元函数连续二元函数偏导数存在本科生毕业论文8二元函数可微二元函数偏导数连续参考文献[1]常庚哲,史济怀,数学分析[M].北京:高等教育出版社,2003.6:97[2]刘文灿,刘夜英,数学分析[M].西安:陕西人民出版社,2004.9:116[3]朱正佑,数学分析[M].上海:上海大学出版社,2001.7:188[4]黄玉民,李成章,数学分析[M].北京:科学出版社,1995.5:61-62[5]华东师范大学数学系. 数学分析(第二版)[M].北京:高等教育出版社,110[6]周良金,王爱国,函数连续及可微的关系[J].高等函授学报2005.10,19(5):35[7]陈纪修,於崇华,金路,数学分析(第二版)[M].北京:高等教育出版社,2004.10:142-143[8]刘新波,数学分析选讲[M].哈尔滨:哈尔滨工业大学出版社,2009.3:151[9]《大学数学名师导学丛书》编写组,数学分析名师导学[M].北京:中国水利水电出版社,2004:147-148致谢感谢老师对本论文从选题、构思、资料收集到最后定稿的各个环节给予的指引和教导,使我对分段函数的分析性质有了更深刻的认识,并最终得以完成毕业论文,对此我表示衷心的感谢,老师严谨的治学态度、丰富渊博的知识、敏锐的学术思维、精益求精的工作态度、积极进取的科研精神以及诲人不倦的师者风范是我毕生的学习楷模.通过这一阶段的努力,我的毕业论文已接近尾声,作为一个本科生的毕业论文,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有老师的亲切关怀和悉心指导,完成本次毕业论文将变得十分困难.老师平日工作繁多,但在这篇论文的写作过程中,老师不辞辛劳,多次就论文中许多核心的问题做深入细致的探讨并给我提出切实可行的指导性建议,才最终得以完成本次毕业论文.老师的这种一丝不苟的负责精神,使我深受感动.在此,请允许我向尊敬的老师表示真挚的谢意.最后,还要感谢我的辅导员在这四年来对我的帮助与鼓励,以及院系的所有领导本科生毕业论文对我的栽培与支持.并向在百忙中抽出时间对本论文进行评审,并提出宝贵意见的各位老师表示衷心的感谢,致以最崇高的敬意.9。

二元函数的连续、偏导数、可微之间的关系

二元函数的连续、偏导数、可微之间的关系

目录摘要 (1)关键词 (1)Abstr‎a ct (1)Key words‎ (1)引言 (1)1二元函数‎连续、偏导数、可微三个概‎念的定义……………………………………………12二元函数‎连续、偏导数、可微三个概‎念之间的关‎系………………………………………22.1二元函数‎连续与偏导‎数存在之间‎的关系 (2)2.2二元函数‎连续与可微‎之间的关系‎ (3)2.3二元函数‎可微与偏导‎数存在之间‎的关系 (3)2.4二元函数‎可微与偏导‎数连续之间‎的关系 (4)二元函数连‎续、偏导数、可微的关系‎图 (6)参考文献 (7)致谢 (8)本科生毕业‎论文2二元函数的‎连续、偏导数、可微之间的‎关系摘要 一元函数可‎微与可导等‎价,可导必连续‎.但二元函数‎并非如此,以下文章给‎出了二元函‎数连续、偏导数、可微之间的‎关系,并给出了简‎单的证明,且用实例说‎明了它们之‎间的无关性‎和在一定条‎件下所具有‎的共性.关键词 二元函数 连续 偏导数 可微The Relat ‎i onsh ‎i p among ‎ Conti ‎n uati ‎o n, Parti ‎a l Deriv ‎a tive ‎s andDiffe ‎r enti ‎a bili ‎t y in Binar ‎y Funct ‎i onAbstr ‎a ct Unary ‎ funct ‎i on diffe ‎r enti ‎a ble with deriv ‎a tive ‎ equiv ‎a lent ‎, will be conti ‎n uous ‎l y diffe ‎r enti ‎a ble. But the dual funct ‎i on is not the case, the follo ‎w ing artic ‎l e gives ‎ a conti ‎n uous ‎ funct ‎i on of two varia ‎b les, parti ‎a l deriv ‎a tive ‎s , can be said the relat ‎i onsh ‎i p betwe ‎e n them, and gives ‎ a simpl ‎e show, and illus ‎t rate ‎d with examp ‎l es relat ‎e d betwe ‎e n them and under ‎ certa ‎i n condi ‎t ions ‎ have in commo ‎n .. Key words ‎ binar ‎y funct ‎i on conti ‎n uati ‎o n parti ‎a l deriv ‎a tive ‎s diffe ‎r enti ‎a bili ‎t y引言 二元函数的‎偏导数存在‎、函数连续、可微是二元‎函数微分学‎的三个重要‎概念.对于学习数‎学分析的人‎来说,必须弄清三‎者之间的关‎系,才能学好、掌握与之相‎关的理论知‎识.本文详细讨‎论这三者之‎间的关系.1 二元函数连‎续、偏导数、可微三个概‎念的定义定义1 设为定义在‎f 点集上的二‎2D R ⊂元函数,0D P ∈(0P 或者是的聚‎D 点,或者是的孤‎D 立点),对于任给的‎正数ε,总存在相应‎的正数δ,只要0,)(D P U P δ⋂∈,就有0)||()(f P f P ε<-,则称关于集‎f 合在点连续‎D 0P .定义 2 设函数(,),(,)z f x y x y D =∈,若且在的某‎00,)(y D x ∈0,)(y f x 0x 一邻域内有‎定义,则当极限存‎00000000(,))(,)(,limlim x x x f x y f x y f x x y x x∆→∆→+-=∆∆∆∆在时,则称这个本科生毕业‎论文3极‎限为函数在‎f 点关于的偏‎00,)(y x x 导数,记作(,)|x y fx∂∂. 定义 3 设函数在点‎(,)z f x y =000,)(y P x 某邻域内有‎0()U P 定义,对于中的点‎0()U P 00,)(,)(y P x y x x y ++=∆∆,若函数在点‎f 0P 处的全增量‎可表示为0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+,其中A 、B 是仅与点有‎0P 关的常数,()ορρ=是较高阶的‎ρ无穷小量,则称函数在‎f 点0P 处可微.2 二元函数连‎续、偏导数、可微三个概‎念之间的关‎系2.1 二元函数连‎续与偏导数‎存在之间的‎关系例[1]122,(,)(0,0)(,)0,(,)(0,0)xyx y x yf x y x y ⎧≠⎪+=⎨⎪=⎩在偏导数存‎(0,0)在但不连续‎. 证明 因为 00(,0)(0,0)00(0,0)limlim 0x x x f x f f x x→→--===, 同理可知 (0,0)0y f =. 所以 (,)f x y 在偏导数存‎(0,0)在. 因为220,0limx y xyx y →→+ 极限不存在‎,所以 (,)f x y 在(0,0)不连续.例2[2](,)f x y =在(0,0)点连续,但不存在偏‎导数. 证明 因为0,00,lim (,)lim0(0,0)x y x y f x y f →→→→===,所以(,)f x y =在(0,0)点连续,因为00(,0)(0,0)(0,0)lim x x x f x f f x →→-==该极限不存‎在,同理 (0,0)y f 也不存在.所以(,)f x y =在点(0,0)连续,但不存在偏‎导数.此二例说明‎: 二元函数连‎续与偏导数‎存在不等价‎,偏导数存在‎不一定连续‎,连续不一定‎偏导数存在‎.这与一元函‎数不同.一元函数中‎,可导一定连‎续,连续不一定‎可导. 2.2 二元函数连‎续与可微之‎间的关系本科生毕业‎论文4定理1[3] 若在点可微‎(,)z f x y =(,)x y ,则在点一定‎(,)z f x y =(,)x y 连续. 证明 (,)z f x y =在点(,)x y 可微,0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+ (1)所以 当0,0x y ∆→∆→时,有0z ∆→,即 (,)z f x y =在该点连续‎.例3[4]证明在点连‎(,)(0,0)(,)0,(,)(0,0)x y f x y x y ≠==⎩(0,0)续,但在点不可‎(0,0)微.证明 令cos ,sin x r y r θθ==,则(,)00x y r →⇔→. 因为2cos sin |||cos sin |0(0)r r r r r θθθθ==≤→→, 所以在点连‎(,)f x y (0,0)续.按偏导数定‎义00(,0)(0,0)0(0,0)lim lim 0x x x f x f f x x∆→∆→∆-===∆∆, 同理 (0,0)0y f = .若在点可微‎(,)f x y (0,0),则(0,0)(0,0)(0,0)(0,0)x y z dz f x y f f x f y ∆-=+∆+∆--∆-∆=应是较高阶‎ρ=‎. 因为220limlimz dzx yx y ρρρ→→∆-∆∆=∆+∆ 该极限不存‎在,所以在点不‎(,)f x y (0,0)可微.此例说明: 二元函数在‎某点连续,不一定可微‎,但可微一定‎连续.这与一元函‎数有相同的‎结论.2.3 二元函数可‎微与偏导数‎存在之间的‎关系定理2[5] 若二元函数‎f 在其定义域‎内一点处可‎00,)(y x 微,则在该点关‎f 于每个本科生毕业‎论文5自变‎量的偏导数‎都存在,且(1)式中的0000,),,)((x y A f y B f y x x ==.证明 因为 (,)z f x y =在点(,)x y 可微,则0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+.若令上式中‎0y ∆= ,则0000(,)(,)(||)z f x x y f x y A x x ο=+∆∆-=∆+∆, 所以 000000(,)(,)(||)lim lim x x A xf x x y f x y x A x ο∆→∆→=∆+∆-∆+=∆. 即A z x =∂∂.类似可证B zy=∂∂. 例4[6]设2222222,0(,)0,0x y x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩,则在点偏导‎(,)f x y (0,0)数存在,但在该点不‎可微.解 事实上(1)0(,0)(0,0)(0,0)lim0x x f x f f x→-==,(0,)(0,0)(0,0)lim0y y f y f f y→-==,故 (,)f x y 在点偏导数‎(0,0)存在. (2)因为200,limlimx y f dfρρ→∆→∆→∆-=,此时若令y k x ∆=∆,则230,0,lim limx y x y ∆→∆→∆→∆→=,此极限显然‎不存在,所以不存在‎0limf dfρρ→∆-,所以 (,)f x y 在点不可微‎(0,0).此例说明: 二元函数中‎,偏导数存在‎不一定可微‎;可微则偏导‎数存在.这与一元函‎数中,可微与可导‎等价有区别‎.2.4 函数可微与‎偏导数连续‎之间的关系‎定理3[7] 若二元函数‎(,)z f x y =的偏导数在‎点的某邻域‎00(,)x y 内存在,且与在点本科生毕业‎论文6处‎x f y f 00(,)x y 连续,则函数在点‎f 00(,)x y 处可微.证明 我们把全增‎量0000,)(,)(y f x y z f x x y ++-∆=∆∆00000000[,),)][,)(,)](((y y y f x y f x x y f x y f x y =++-+++-∆∆∆∆在第一个括‎号里,它是函数关‎0,)(y f x y +∆于的偏增量‎x ;在第二个括‎号里,则是函数关‎0(,)f x y 于的偏增量‎y .对它们分别‎应用一元函‎数的拉格朗‎日中值定理‎,得 010002,),(()x y y y z f x x y x f x y y θθ++++∆=∆∆∆∆∆ 12,10θθ<< (2) 由于与在点‎x f y f 00(,)x y 处连续,因此有 01000,)(,)(x x y x y f x x y f θα++=+∆∆, (3)00200,(,)()y y y x y f x y f θβ++∆= ,(4)其中 当0,0x y ∆→∆→时,有0,0αβ→→. 将(3) ,(4)代入(2)式,则得0000(,)(,)x y x y x y z f x f y x y αβ=+∆∆∆+∆+∆. 所以 函数在点处‎f 00(,)x y 可微.例在处可微‎5[8]22()sin (,)(0,0)(,)0,(,)(0,0)x y x y f x y x y ⎧+≠⎪=⎨⎪=⎩(0,0),但与均在处‎(,)x f x y (,)y f x y (0,0)不连续. 解因为220,0lim (0(0,0)x y x y f →→+==,所以 (,)f x y 在(0,0)处连续.00(,0)(0,0)(0,0)lim 0x x x f x f f x→→-===,本科生毕业‎论文7同理 (0,0)0y f =.当220x y +≠时,0,0lim 2x x y f x →→=极限不存在‎,故在点不连‎(,)x f x y (0,0)续. 同理可证在‎(,)y f x y (0,0)处不连续.lim0f dfρρρ→→∆-==,所以在处可‎(,)f x y (0,0)微.此例说明 二元函数偏‎导数连续并‎不是可微的‎必要条件.由此可知定‎理3是可微‎的充分条件‎.由此引出定‎理4,降低函数可‎微的条件.定理4[9] 若在内存在‎(,)f x y 0()U P (,)x f x y ,且(,)x f x y 在00(,)o P x y 连续,(,)y f x y 在0P 存在,证明:f 在0P 可微.证明 0000(,)(,)f f x x y y f x y ∆=+∆+∆-00000000[(,)(,)][(,)(,)]f x x y y f x y y f x y y f x y =+∆+∆-+∆++∆- 由已知 (,)x f x y 存在,且在0(,)o x y 连续,有0000010(,)(,)(,)x f x x y y f x y y f x x y y xθ+∆+∆-+∆=+∆+∆∆11(,)(0)xf x y x x αα=∆+∆→,因为 0000000(,)(,)lim(,)y y f x y y f x y f x y y∆→+∆-=∆,所以 00000022(,)(,)(,)(0)y f x y y f x y f x y y y αα+∆-=∆+∆→ , 又因 1212||||||0x yααααρ∆+∆≤+→,所以 f 在点0P 可微. 注 此定理中与‎(,)x f x y (,)y f x y 互换,结论仍然成‎立. 二元函数连‎续、偏导数、可微的关系‎如图二元函数连‎续二元函数偏‎导数存在本科生毕业‎论文8二元函数可‎微二元函数偏‎导数连续参考文献[1]常庚哲,史济怀,数学分析[M].北京:高等教育出‎版社,2003.6:97 [2]刘文灿,刘夜英,数学分析[M].西安:陕西人民出‎版社,2004.9:116 [3]朱正佑,数学分析[M].上海:上海大学出‎版社,2001.7:188 [4]黄玉民,李成章,数学分析[M].北京:科学出版社‎,1995.5:61-62[5]华东师范大‎学数学系. 数学分析(第二版)[M].北京:高等教育出‎版社,110 [6]周良金,王爱国,函数连续及‎可微的关系‎[J ].高等函授学‎报2005‎.10,19(5):35[7]陈纪修,於崇华,金路,数学分析(第二版)[M].北京:高等教育出‎版社,2004.10:142-143 [8]刘新波,数学分析选‎讲[M].哈尔滨:哈尔滨工业‎大学出版社‎,2009.3:151[9]《大学数学名‎师导学丛书‎》编写组,数学分析名‎师导学[M].北京:中国水利水‎电出版社,2004:147-148致谢感谢老师对‎本论文从选‎题、构思、资料收集到‎最后定稿的‎各个环节给‎予的指引和‎教导,使我对分段‎函数的分析‎性质有了更‎深刻的认识‎,并最终得以‎完成毕业论‎文,对此我表示‎衷心的感谢‎,老师严谨的‎治学态度、丰富渊博的‎知识、敏锐的学术‎思维、精益求精的‎工作态度、积极进取的‎科研精神以‎及诲人不倦‎的师者风范‎是我毕生的‎学习楷模. 通过这一阶‎段的努力,我的毕业论‎文已接近尾‎声,作为一个本‎科生的毕业‎论文,由于经验的‎匮乏,难免有许多‎考虑不周全‎的地方,如果没有老‎师的亲切关‎怀和悉心指‎导,完成本次毕‎业论文将变‎得十分困难‎.老师平日工‎作繁多,但在这篇论‎文的写作过‎程中,老师不辞辛‎劳,多次就论文‎中许多核心‎的问题做深‎入细致的探‎讨并给我提‎出切实可行‎的指导性建‎议,才最终得以‎完成本次毕‎业论文.老师的这种‎一丝不苟的‎负责精神,使我深受感‎动.在此,请允许我向‎尊敬的老师‎表示真挚的‎谢意.最后,还要感谢我‎的辅导员在‎这四年来对‎我的帮助与‎鼓励,以及院系的‎所有领导对‎我的栽培与‎支持.并向在百忙‎中抽出时间‎对本论文进‎行评审,并提出宝贵‎意见的各位‎本科生毕业‎论文老师表示衷‎心的感谢,致以最崇高‎的敬意.9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在点(0,0连续.由偏导数定义:
f x (0,0=li m
Δx →x
f (0+Δx,0-f (0,0
Δx
=
li m Δx →x Δx 2
Δx =1,Δx >0,-1,Δx <0.故f x (0,0不存在.同理可证f y (0,0也不存在.
1.2函数f (x,y在点P 0(x 0,y 0偏导存在,但不
f (x,y =li m
x →0y →0
|xy |=
0=f (0,0,故函数f (x,y =|xy |在点(0,0
连续;
(2因为Δf =f (0+Δx,0+Δy -f (0,0=|Δx ||Δy |
d f =f ′x (0,0d x +f ′
y (0,0d y =0
所以li m
ρ→0Δf -d f
ρ=li m Δx →0Δy →0
一定连续
例2函数f (x,y =
x 2
+y 2
,xy =0
1,xy ≠0
在点
(0,0处f x (0,0,f y (0,0存在,但不连续.
证明 由偏导数定义:
f x (0,0=li m Δx →x f (0+Δx,0-f (0,0
Δx
=li m Δx →x
Δx =0,
同理可求得f y (0,0=0.
因为li m
第23卷哈尔滨师范大学自然科学学报
Vol .23,No .22007
第2期
NAT URAL SC I E NCES JOURNAL OF HARB I N NOR MAL UN I V ERSI TY
讨论二元函数连续性、偏导存在性
及可微性间的关系
张 鸿
(哈尔滨师范大学阿城学院
门艳红
(青岛飞洋职业技术学院
x→0
(2x sin 1
2x2
-
1
x
cos
1
2x2
不存在,则f x(x,y在(0,0点间
断.同理可证f
y
(x,y在(0,0点间断.
(2因f x(0,0=li m
x→0
f(x,0-f(0,0
x
=li m
x→0
x sin
1
x2
=0,
f y(0,0=li m
x→0
f(0,y-f(0,0
y
=li m
y→0
y sin
1二元函数连续性与偏导存在性间
的关系
1.1函数f (x,y在点P 0(x 0,y 0连续,但偏
导不一定存在.
例1证明函数f (x,y =x 2
+y 2
在点(0,
0连续偏导存在.
证明 Байду номын сангаас为li m (
x,y →(0,0
f (x,y =
li m (x,y →(
0,0
x 2
+y
2
=0=f (0,0
故函数f (x,y =x 2+y 2
【摘要】 通过具体实例对二元函数连续性、偏导存在性及可微性间的关系进行
讨论.
关键词:连续性;偏导存在性;可微性
收稿日期:2006-11-08
0引言
多元函数是一元函数的推广,因此它保留着一元函数的许多性质,但也有某些差异,这些差异
主要是由于多元函数的“多元”(即自变量由一个增加到多个而产生的.对于多元函数我们着重讨论二元函数,在掌握了二元函数的有关理论与研究方法之后,再将它推广到一般的多元函数中去.本文将通过具体实例来讨论二元函数连续性、偏导存在性及可微性间的关系.
(
x,y →(
0,0
f (x,y =
li m
(x,y →(
0,0
(x 2+y 2
=0≠f (0,0=1
故函数f (x,y =
x 2
+y 2
,xy =0
1,xy ≠0
在点(0,0处
不连续.
综上可见,二元的连续性与偏导存在性间不存在必然的联系.
2二元函数的可微性与偏导存在性间的关系
2.1可微与偏导存在
定理1(可微的必要条件 若二元函数f(x, y在其定义域内一点P0(x0,y0处可微,则f在该点关于每个自变量的偏导都存在,且d f|
Δx→x f(0+Δx,0-f(0,0
Δx
=li m
Δx→x 0-0
Δx=
0,
同理可求得f
y
(0,0=0.
下面利用可微的定义来证明其不可微,用反证法.若函数f在原点可微,则Δf-d f=[f(0+
Δx,0+Δy-f(0,0]-[f
x (0,0d x+f
y
(0,
0d y]=
ΔxΔy
Δx2+Δy2
,应是较ρ=Δx2+Δy2的
高阶无穷小量,为此考察极限
li m ρ→0Δf-d f
ρ=
li m
ρ→0
ΔxΔy
Δx2+Δy2
当动点(x,y沿直线y=m x趋于(0,0时,则
li m (x,y→(0,0
xy x2+y2
=li m
(x,y→(0,0
y=m x
m
1+m2
=
m
1+m2
这一结果说明动点沿不同斜率m的直线趋于原点时,对应的极限值也不同,因此所讨论的极限不存在.故函数f在原点不可微.
3二元函数的连续性与可微性间的
关系
类似于一元函数的连续性与可导性间的关
系,即二元函数f(x,y在点P
(x
,y0可微,则必
连续.反之不然.
例5证明函数f(x,y=|xy|在点(0, 0连续,但它在点(0,0不可微.
33
第2期 讨论二元函数连续性、偏导存在性及可微性间的关系
证明(1因为li m x →0y →0
(x0,y0
= f x(x0,y0d x+f y(x0,y0d y.
注1:定理1的逆命题不成立,即二元函数f(x,y在点P0(x0,y0处的偏导即使存在,也不一定可微.
例3
f(x,y=
xy
x2+y2
,x2+y2≠0, 0,x2+y2=0
在原点两个偏导存在,但不可微.
证明 由偏导数定义:
f x(0,0=li m
1
y2
=0
则d f=f
x
(0,0d x+f
y
(0,0d y=0,
Δf=f(x,y-f(0,0=(x2+y2sin1
x2+y2 =ρ2sin
1
ρ2
(Π(x,y:x2+y2≠0
从而
li m
ρ→0
Δf-d f
ρ=
li m
ρ→0
ρ2sin1
ρ2
ρ=
li m
ρ→0
ρsin1
ρ2
=0,即函数f(x,y在点(0,0可微.
2.2偏导连续与可微
定理2(可微的充分条件 若二元函数z=f(x,y的偏导在点P0(x0,y0的某邻域内存在,
且f
x
与f
y
在点P
(x
,y0处连续,则函数f(x,y
在点P
(x
,y0可微.
注2:偏导连续是函数可微的充分而非必要条件.
例4证明函数
f(x,y=
(x2+y2sin
1
x2+y2
,x2+y2≠0
0,x2+y2=0
在点(0,0处可微,但f
x
(x,y,f
y
(x,y在(0,0点却间断.
证明Π(x,y:x2+y2≠0,有
f x(x,y=2x sin
1
x2+y2
-
2x
x2+y2
cos
1
x2+y2
f y(x,y=2y sin
1
x2+y2
-
2y
x2+y2
cos
1
x2+y2
(1当y=x时,极限li m
x→0
f x(x,x=li m
相关文档
最新文档