实验6 Sn-Bi二组分固液相图的绘制

合集下载

6.二组分固-液相图的测绘

6.二组分固-液相图的测绘
用几何图形来表示多相平衡体系中有哪些相, 用几何图形来表示多相平衡体系中有哪些相,各相的 成分如何,以及它们随浓度,温度, 成分如何,以及它们随浓度,温度,压力等变量变化的关 系图叫相图. 系图叫相图. 首先将二组分系统加热熔化,置于一定环境下自行冷却, 首先将二组分系统加热熔化,置于一定环境下自行冷却, 记录温度随时间的变化曲线, 步冷曲线. 记录温度随时间的变化曲线,即步冷曲线. 当系统有新相凝聚时,放出相变热,步冷曲线的斜率改变. 当系统有新相凝聚时,放出相变热,步冷曲线的斜率改变. f* =1,出现转折点; f* =2,出现水平线.据此在T – x 图上标 ,出现转折点; ,出现水平线.据此在 出对应的位置,得到低共熔T 出对应的位置,得到低共熔 – x.
Cd – Bi 二元相图的绘制
熔液全部凝固为Cd(s)和Bi(s)后,温度继续下降. 和 熔液全部凝固为 后 温度继续下降. f* = K - Φ + 1 = 2 – 2 + 1=1 的步冷曲线d情况相似 出先析出Cd. 含70%的Cd的步冷曲线 情况相似,只是转折点 出先析出 . 的 的步冷曲线 情况相似,只是转折点F出先析出 将转折点分别标在T-x图上. 将转折点分别标在 图上. 图上 (4)完成 系统的T-x相图 (4)完成Bi-Cd 系统的 相图 完成
二组分固二组分固-液相图的测绘
一,目的要求
液相图的基本特点; ★了解二组分固-液相图的基本特点; 了解二组分固 液相图的基本特点
★掌握二组分固 液相图的绘制方法; 掌握二组分固-液相图的绘制方法 二组分固 液相图的绘制方法;
★用热分析法绘制镉-铋二元金属相图. 用热分析法绘制镉-铋二元金属相图.
二1.0Bi
0.4Cd 1.0Cd 0.2Cd 0.7Cd b c d e a H A' A F C

物理化学实验所有课后习题和思考题答案

物理化学实验所有课后习题和思考题答案

物理化学实验所有课后习题和思考题答案Revised final draft November 26, 2020实验一燃烧热的测定1. 在本实验中,哪些是系统哪些是环境系统和环境间有无热交换这些热交换对实验结果有何影响如何校正提示:盛水桶内部物质及空间为系统,除盛水桶内部物质及空间的热量计其余部分为环境,系统和环境之间有热交换,热交换的存在会影响燃烧热测定的准确值,可通过雷诺校正曲线校正来减小其影响。

2. 固体样品为什么要压成片状萘和苯甲酸的用量是如何确定的提示:压成片状有利于样品充分燃烧;萘和苯甲酸的用量太少测定误差较大,量太多不能充分燃烧,可根据氧弹的体积和内部氧的压力确定来样品的最大用量。

3. 试分析样品燃不着、燃不尽的原因有哪些提示:压片太紧、燃烧丝陷入药片内会造成燃不着;压片太松、氧气不足会造成燃不尽。

4. 试分析测量中影响实验结果的主要因素有哪些本实验成功的关键因素是什么提示:能否保证样品充分燃烧、系统和环境间的热交换是影响本实验结果的主要因素。

本实验成功的关键:药品的量合适,压片松紧合适,雷诺温度校正。

5. 使用氧气钢瓶和氧气减压器时要注意哪些事项?提示:阅读《物理化学实验》教材P217-220实验二凝固点降低法测定相对分子质量1. 什么原因可能造成过冷太甚若过冷太甚,所测溶液凝固点偏低还是偏高由此所得萘的相对分子质量偏低还是偏高说明原因。

答:寒剂温度过低会造成过冷太甚。

若过冷太甚,则所测溶液凝固点偏低。

根据公式和可知由于溶液凝固点偏低,T f偏大,由此所得萘的相对分子质量偏低。

2. 寒剂温度过高或过低有什么不好?答:寒剂温度过高一方面不会出现过冷现象,也就不能产生大量细小晶体析出的这个实验现象,会导致实验失败,另一方面会使实验的整个时间延长,不利于实验的顺利完成;而寒剂温度过低则会造成过冷太甚,影响萘的相对分子质量的测定,具体见思考题1答案。

3. 加入溶剂中的溶质量应如何确定加入量过多或过少将会有何影响?答:溶质的加入量应该根据它在溶剂中的溶解度来确定,因为凝固点降低是稀溶液的依数性,所以应当保证溶质的量既能使溶液的凝固点降低值不是太小,容易测定,又要保证是稀溶液这个前提。

二组分固液系统相图的测定

二组分固液系统相图的测定

二组分固液系统相图的测定一、实验目的1、利用步冷曲线建立二组分铅---锡固液系统相图的方法。

2、介绍PID 温度控制技术和热电阻的使用。

二、实验原理本实验的目的是通过热分析法获得的数据来构建一个相图,用于表示不同温度、组成下的固相、液相平衡。

不同组成的二组分溶液在冷却过程中析出固相的温度可以通过观察温度 – 时间曲线的斜率变化进行检测。

当固相析出时,冷却速率会变得比较慢,这可归因于固化过程释放的热量部分抵消了系统向低温环境辐射和传导的热量。

A BB%abce fB (c )%I II IIII II III BT/K t(a ) (b )图8.1 二元简单低共熔物相图(a ) 及其步冷曲线(b )图8.1(a )是典型的二元简单低共熔物相图。

图中A 、B 表示二个组分的名称,纵轴是物理量温度T ,横轴是组分B 的百分含量B %。

在acb 线的上方,系统只有一个相(液相)存在;在ecf 线以下,系统有两个相(固相A 和固相B )存在;在ace 所包围的区域内,一个固相(固体A )和一个液相(A 在B 中的饱和熔化物)共存;在bcf 所包围的区域内,一个固相(固体B )和一个液相(B 在A 中的饱和熔化物)共存。

c 点有三相(互不相溶的固体A 和固体B ,以及A 、B 的饱和熔化物液相)共存,根据相律,在压力确定的情况下,三相共存时系统的自由度为零,即三相共存的温度为一定值,在相图上表现为一条通过c 点的水平线,处于这个平衡状态下的系统温度T c 、系统组成A 、B 和B (c )%均不可改变,T c 和B (c )%构成的这一点称为低共熔点。

热分析法是绘制相图的常用实验方法,将系统加热熔融成一个均匀的液相,然后让系统缓慢冷却,以系统温度对时间作图得到一条曲线,称为步冷曲线或冷却曲线。

曲线的转折点表征了某一温度下发生相变的信息,由系统组成和相变点温度可以确定相图上的一个点,多个实验点的合理连接就形成了相图上的相线,并构成若干相区。

二组分固---液相图的绘制

二组分固---液相图的绘制

《物理化学实验》讲义 第三部分 实验 德州学院化学系 王敦青二组分固---液相图的绘制一、实验目的1.学会用热分析法测绘Sn —Bi 二组分金属相图。

2.了解热分析法测量技术。

3.掌握SWKY 数字控温仪和KWL-08可控升降温电炉的基本原理和使用。

二、预习要求了解纯物质的步冷曲线和混合物的步冷曲线的形状有何不同,其相变点的温度应如何确定。

三、实验原理测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线叫步冷曲线。

当熔融体系在均匀冷却过程中无相变化时,其温度将连续均匀下降得到一光滑的冷却曲线;当体系内发生相变时,则因体系产生之相变热与自然冷却时体系放出的热量相抵偿,冷却曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成合金的相变温度。

利用冷却曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接起来,就可绘出相图。

二元简单低共熔体系的冷却曲线具有图1所示的形状。

图1 根据步冷曲线绘制相图 拐点后,开始有固体凝固出来,液相成分不断变化,平衡温度也不断随之改变,直到达到其低共熔点温度,体系平衡,温度保持不变(平台);直到液相完全凝固后,温度又迅速下降。

用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足够慢才能得到较好的效果。

此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,轻微过冷则有利于测量相变温度;但严重过冷现象,却会使折点发生起伏,使相变温度的确定产生困难。

见图2。

遇此情况,可延长DC 线与AB 线相交,交点E 即为转折点。

图3是二元金属体系一种常见的步冷曲线。

当金属混合物加热熔化后冷却时,由于无相变发生,体系的温度随时间变化较大,冷却较快(1~2段)。

若冷却过程中发生放热凝固,产生固相,将减小温度随时间的变化,使体系的冷却速度减慢(2~3段)。

二组分金属相图的绘制

二组分金属相图的绘制

二组分金属相图的绘制一、实验目的1.了解固-液相图的基本特点;2.学会用热分析法测绘Sn—Bi二组分金属相图;3.了解热电偶测量温度和进行热电偶校正的方法。

二、实验原理测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线叫步冷曲线。

当熔融体系在均匀冷却过程中无相变化时,其温度将连续均匀下降得到一光滑的冷却曲线;当体系内发生相变时,则因体系产生之相变热与自然冷却时体系放出的热量相抵偿,冷却曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成合金的相变温度。

利用冷却曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接起来,就可绘出相图。

二元简单低共熔体系的冷却曲线具有图1所示的形状。

图1 根据步冷曲线绘制相图将步冷曲线的转折温度与对应的组成描点,连结这些点得液相单相区与固液双相区的分界线;由各组成样品平台温度的平均值做低共熔线;从低共熔线往下作垂线,垂线长度对应的平台长度,连接这些点得塔曼三角形,从而确定固溶体区的边界和低共熔点。

用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足够慢才能得到较好的效果。

此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,轻微过冷则有利于测量相变温度;但严重过冷现象,却会使折点发生起伏,使相变温度的确定产生困难,见图2。

遇此情况,可延长dc 线与ab 线相交,交点e 即为转折点。

三、仪器及试剂1.仪器: 数字控温仪;KWL-08可控升降温电炉;铂电阻温度传感器;计算机2.药品: Sn(化学纯);Bi(化学纯);石墨粉。

四、实验步骤1. 配制Bi 质量百分数为5%、20%、40%、60%、70%、80%、95%的Bi-Sn 混合物 克,分别装入金属样品管中,再加入少许石墨(约 克),以防金属加热过程中接触空气而氧化。

实验7 二组分固-液相图的绘制

实验7 二组分固-液相图的绘制

实验评注与拓展
绘制固液二组分相图的方法通常有溶解度法和热分析法。
溶解度法
指在确定的温度下,直接测定固液两相平衡时溶液的 浓度,然后根据测得的温度和相应的溶解度数据绘制相图, 这种方法使用于常温下易测定组成的体系,如水-盐二组分体 系等。 热分析法 适用于常温下不便直接测定固液平衡时溶液组成的体系(如合 金和有机化合物凝聚体系),通常利用相变时的热效应来测定组 成以确定体系的温度,然后根据选定的一系列不同组成的二组 分体系所测定的温度绘制相图.此种方法简单、易于推广,对 于一些二组分金属体系,若挥发的蒸汽对人体健康有害,则 可采用热分析法的另一种差热分析(DTA)或差示扫描( DSC)法绘制相图。
定压下将体系熔融后,使之从高温逐渐冷却,每隔一定时间记录一次温 度,作温度对时间的变化曲线,即步冷曲线。
当熔融体系在冷却过程中无相变化时,其温度将连续均匀下降并得到一 条光滑的步冷曲线;若冷却过程中体系发生相变,则体系中产生的相变热将与 自然冷却时体系放出的热量相抵偿,步冷曲线会出现转折点,转折点所对应 的温度即为体系发生相变的温度。 测定一系列组成不同样品的步冷曲线,利用步冷曲线所得到的一系列组 成和所对应的相变温度数据,以横轴表示样品的组成,纵轴表示开始出现相 变的温度,把这些点连接起来,可绘制出金属相图。
数据处理
(1)用已知纯Pb、纯Sn的熔点及水 的沸点作横坐标,以各纯物质相变 点的热电势为纵坐标,画出热电偶的 T-E工作曲线. (2)找出各步冷曲线中拐点和平台对 应的热电势. (3)从热电偶的工作曲线上查出各拐 点温度和平台温度,以温度为纵坐 标,以组成为横坐标,绘出Sn—Pb 二元金属相图. (4)从所得相图中求出低共溶点的温度 以及低共溶混合物的组成
提问与思考

实验6 Sn-Bi二组分固液相图的绘制

实验6 Sn-Bi二组分固液相图的绘制

实验6 Sn-Bi二组分固液相图的绘制【实验目的】1.掌握热分析法绘制二组分固液相图的原理及方法;2.了解纯物质与混合物步冷曲线的区别并掌握相变点温度的确定方法;3.了解简单二组分固液相图的特点;4.掌握数字控温仪及KWL-80可控升温电炉的使用方法。

【实验原理】凝聚系统受压力影响很小,因此通常讨论其定压下相平衡图。

根据相律,定压下二组分系统f mix=2,最多有温度和组成两个独立变量,其相图为温度-组成图。

凝聚系统相图绘制:常用溶解度法和热分析法。

溶解度法:定温度下,直接测定固-液两相平衡时溶液的浓度,依据测得的温度和溶解度数据绘制成相图,适用于常温下易测定组成的系统,如水盐系统。

热分析法:绘制金属相图最常用的实验方法。

原理:测定系统由高温均匀冷却过程中的时间、温度数据,绘制冷却曲线。

根据冷却曲线可分析相态变化(若在均匀冷却过程无相变化,系统温度将随时间均匀下降。

若系统在均匀冷却过程中有相变化,由于体系产生的相变热与自然冷却时体系放出的热量相抵消,步冷曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成体系的相变温度。

)。

简单二组分凝聚系统,其步冷曲线有三种类型。

图 6.1(a)为纯物质的步冷曲线。

冷却过程中无相变发生时,系统温度随时间均匀降低,至b点开始有固体析出,建立单组分两相平衡,f=0,温度不变,步冷曲线出现水平段bc,直至液体全部凝固(c点),温度又继续均匀下降。

水平段所对应的温度为纯物质凝固点。

图6.1(b)为二组分混合物的冷却曲线。

冷却过程中无相变发生时,系统温度随时间均匀降低,至b点开始有一种固体析出,随着该固体析出,液相组成不断变化,凝固点逐渐降低,到c点,两种固体同时析出,固液相组成不变,系统建立三相平衡,此时f=0,温度不随时间变化,步冷曲线出现水平段cd,当液体全部凝固(d点),温度又继续均匀下降。

水平段cd所对应的温度为二组分的低共熔点温度。

图6.1(c)为二组分低共熔混合物的步冷曲线。

二组分固液相图的测绘实验报告思考题答案

二组分固液相图的测绘实验报告思考题答案

二组分固液相图的测绘实验报告思考题答案专业:xxxx 学号:xxxxx实验人:xxx 同实验人:xxx实验名称:物化实验气压:101.325Kpa 温度:25℃二组分金属固液相图的绘制实验目的1. 掌握热分析法(步冷曲线法)测绘Bi-Sn二组分固-液相图的原理和方法。

2. 了解简单二组分固-液相图的特点。

3. 掌握KWL-07可控升降温电炉及SWKY-Ⅲ数字控温仪的使用方法。

实验原理热分析法则是观察被研究系统温度变化与相变化的关系,这是绘制金属相图最常用的实验方法。

其原理是将系统加热熔融,然后使其缓慢而均匀地冷却,每隔一定时间记录一次温度,绘制温度与时间关系曲线——步冷曲线。

若系统在均匀冷却过程中无相变化,其温度将随时间均匀下降。

若系统在均匀冷却过程中有相变化,由于体系产生的相变热与自然冷却时体系放出的热量相抵消,步冷曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成体系的相变温度。

二组分系统相图有多种类型,其步冷曲线也各不相同,但对于简单二组分凝聚系统,其步冷曲线有三种类型。

实验步骤1. 连接数字控温仪和可控升降温电炉,接通电源。

由于本仪器可同时测量份样品,样品搭配为1号(0%的Bi)和3号(58%的Bi),2号(30%的Bi)和4号(80%的Bi),最后测5号(100%的Bi)。

2. 先取1号和3号样品管放至控温区电炉的两炉膛,传感器1置于传感器插孔测炉温,传感器2置于任一样品管测样品温度。

打开数字控温仪的开关,设定温度,一般为样品全部熔化后再升高50℃为宜。

设好后,将控温仪调制工作状态,控温区电炉开始加热,在样品熔化的过程中,同时对试样进行搅拌,待样品完全熔化后,打开电炉电源开关,调节“加热量调节”旋钮对测温区电炉进行补热,补热大小为比转折点或平台所对应的温度低50℃。

3. 补热合适时,关闭“加热量调节”,用钳子将熔化好的样品管小心移至测温去炉膛,并将两只传感器1和2插入样品管中,记住两支传管器所对应的样品组成,同时将下面要测的2号和4号样品管置于加热区炉膛,进行预热。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验6 Sn-Bi二组分固液相图的绘制
【实验目的】
1.掌握热分析法绘制二组分固液相图的原理及方法;
2.了解纯物质与混合物步冷曲线的区别并掌握相变点温度的确定方法;
3.了解简单二组分固液相图的特点;
4.掌握数字控温仪及KWL-80可控升温电炉的使用方法。

【实验原理】
凝聚系统受压力影响很小,因此通常讨论其定压下相平衡图。

根据相律,定压下二组分系统f mix=2,最多有温度和组成两个独立变量,其相图为温度-组成图。

凝聚系统相图绘制:常用溶解度法和热分析法。

溶解度法:定温度下,直接测定固-液两相平衡时溶液的浓度,依据测得的温度和溶解度数据绘制成相图,适用于常温下易测定组成的系统,如水盐系统。

热分析法:绘制金属相图最常用的实验方法。

原理:测定系统由高温均匀冷却过程中的时间、温度数据,绘制冷却曲线。

根据冷却曲线可分析相态变化(若在均匀冷却过程无相变化,系统温度将随时间均匀下降。

若系统在均匀冷却过程中有相变化,由于体系产生的相变热与自然冷却时体系放出的热量相抵消,步冷曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成体系的相变温度。

)。

简单二组分凝聚系统,其步冷曲线有三种类型。

图 6.1(a)为纯物质的步冷曲线。

冷却过程中无相变发生时,系统温度随时间均匀降低,至b点开始有固体析出,建立单组分两相平衡,f=0,温度不变,步冷曲线出现水平段bc,直至液体全部凝固(c点),温度又继续均匀下降。

水平段所对应的温度为纯物质凝固点。

图6.1(b)为二组分混合物的冷却曲线。

冷却过程中无相变发生
时,系统温度随时间均匀降低,至b点开始有一种固体析出,随着该固体析出,液相组成不断变化,凝固点逐渐降低,到c点,两种固体同时析出,固液相组成不变,系统建立三相平衡,此时f=0,温度不随时间变化,步冷曲线出现水平段cd,当液体全部凝固(d点),温度又继续均匀下降。

水平段cd所对应的温度为二组分的低共熔点温度。

图6.1(c)为二组分低共熔混合物的步冷曲线。

冷却过程中无相变发生时,系统温度随时间均匀降低,至b点,两种固体按液相组成同时析出,系统建立三相平衡,f=0,温度不随时间变化,步冷曲线出现水平段bc,当液体全部凝固(c点),温度又继续均匀下降。

K
/
T
(a) (b) (c)
6.1 生成简单低共熔混合物的二组分系统
由于冷却过程中常常发生过冷现象,其步冷曲线如图6.1虚线所示。

轻微过冷有利于测量相变温度;严重过冷,却会使相变温度难以确定。

以横轴表示混合物的组成,纵轴表示温度,利用步冷曲线所得到的一系列组成和所对应的相变温度数据,就可绘出相图,见图6.2。

图 6.2 简单低共熔二组分系统冷却曲线及相
【仪器试剂】
SWKY数字控温仪1台;KWL—08可控升降温电炉1台;不锈钢样品管1只;炉膛保护筒一个;传感器1只。

纯Bi;纯Sn;石墨粉等。

装置见图。

图 6.3 金属相图测定装置示意
【实验步骤】
1.配制铋的质量百分含量分别为0%、20%、40%、70%、80%、100%的铋锡混合物各100g,分别装入不锈钢样品管中,再加入少
许石墨粉覆盖试样,以防加热过程中试样接触空气而氧化。

2.按图6.3连接SWKY数字控温仪与KWL-08可控升降温电炉,接通电源,将电炉置于外控状态。

3.将炉膛保护筒放进炉膛内,再将盛有试样的不锈钢样品管和传感器放入保护筒内。

将电源开关置于“开”,仪器默认控温仪处于“置数”状态,“设定温度” 默认为320℃。

4.将控温仪调节到“工作”状态,系统开始升温,达到设定温度后,纯Bi、纯Sn两试样保温10 min,其它试样保温5 min,使试样熔化,打开不锈钢管口用玻璃棒将试样搅拌均匀,然后将管口盖好再将传感器放入样品管中心。

5.将控温仪置于“置数”状态,调节“冷风量”旋钮,使体系冷却速度保持在6 ℃/ min~ 8 ℃/min(电压5 V ~6 V)。

6.设定控温仪的定时时间间隔,1 min记录一次温度,从300 ℃
开始记时,纯Bi、纯Sn两试样冷却降温到200 ℃,其它各样品应降温到125 ℃。

7.换其它试样,重复(3)~(6)步操作,依次测出所配试样的步冷曲线数据。

【注意事项】
1.相图为平衡状态图,因此用热分析法测绘相图要尽量使被测系统接近平衡态,故要求冷却不能过快。

为保证测定结果准确,还要注意使用纯度高的试样。

传感器放人样品中的部位和深度要适当。

2.实验中“设定温度”和“实验最高温度”不同,“最高温度”是在仪器达到“设定温度”停止工作后,仪器中的加热电炉继续上升的温度。

3.熔融试样时要搅拌均匀,为确保试样熔融,温度稍高一些为好,但不可过高,以防样品氧化。

搅拌时注意样品管不能离开加热炉。

4.由于炉温较高搅拌时要带上手套,以防烫伤。

5.由于过冷现象的存在,降温过程中会有升温,是正常现象。

【数据记录与处理】
1.设计表格记录各试样的步冷曲线数据,并根据所测数据,绘出相应的步冷曲线及Sn-Bi二组分固液相图。

2.标出相图中各区的相态。

3.根据相图求出低共熔温度及低共熔混合物的组成。

【思考题】
1.绘制二组分固液相图常用哪些方法?
2.对于不同成分的混合物的步冷曲线,其水平段有什么不同?为什么?
3.为什么要缓慢冷却合金作步冷曲线?
4.冷却曲线各段的斜率及水平段的长短与哪些因素有关?。

相关文档
最新文档