一元一次不等式概念分析(1)
8年级-上册-数学-第3章《一元一次不等式》3.3一元一次不等式(1)一元一次不等式的概念

浙教版-8年级-上册-数学-第3章《一元一次不等式》3.3一元一次不等式(1)一元一次不等式的概念--每日好题挑选【例1】一元一次不等式2x+1≥3的最小整数解为。
【例2】若关于x 的一元一次方程x-m+2=0的解是负数,则m 的取值范围是。
【例3】将关于x 的不等式-x+a≥2的解表示在数轴上如图所示,则a 的值是。
【例4】已知关于x 的不等式(a-1)x>2的解为x<2a-1a 的取值范围是。
【例5】已知不等式5x-2<6x+1的最小整数解是关于x 的方程2x-ax=4的解,则a=。
【例6】对一个实数x 按图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,那么x 的取值范围是。
【例7】设[x)表示大于x 的最小整数,如[3)=4,[-1.2)=-1,有下列结论:其中正确的是(填序号)。
①[0)=0;②[x)-x 的最小值是0;③[x)-x 的最大值是1;④存在实数x,使[x)-x=0.5成立.【例8】解不等式:7x-2≤9x+3.圆圆同学的求解过程如下:解:移项,得7x-9x≤3-2,合并同类项,得-2x≤1,两边都除以-2,得x≤-12。
请你判断圆圆的求解过程是否正确,若不正确,请你写出正确的求解过程。
【例9】如果关于x 的方程x+2m-3=3x+7的解是不大于2的实数,求m 的取值范围。
【例10】当a取何值时,关于x的方程2(x-2)=4a+6的解比关于x的方程13(x+1)=3-a的解小?【例11】当k取什么值时,关于x的方程3(x-2)+6k=0的解是正数?【例12】已知不等式x≤a的正整数解为1,2,3,4.(1)当a为整数时,求a的值;(2)当a为实数时,求a的取值范围。
【例13】已知关于x的方程x-x+a3=2的解是不等式2x+a<2的一个解,求a的取值范围。
【例14】已知关于x,y的方程组当m为何值时,x>y?【例15】若关于x,y的解满足x+y>1,求k的取值范围.【例16】成都市某超市从生产基地购进200千克水果,每千克进价为2元,运输过程中质量损失5%,假设不计超市其他费用。
一元一次不等式的解集

一元一次不等式的一般形式是 ax + b > c、ax + b < c 或 ax + b ≥ c,其中 a、b、c 是常数,a ≠ 0。
一元一次不等式的标准形式
总结词
一元一次不等式的标准形式是指将不 等式中的常数项移到右边,使左边只 包含未知数和其系数。
详细描述
一元一次不等式的标准形式是 ax > d、 ax < d 或 ax ≥ d,其中 a、d 是常数, a ≠ 0。
配问题等。
与一次函数的联系
01
02
03
定义
一次函数是形如y=kx+b 的函数,其中k、b为常数 且k≠0,x为自变量。
解法
在求解一次函数的值时, 常常需要利用一元一次不 等式的性质来求解,如求 解函数的定义域等。
应用
在实际问题中,一次函数 和一元一次不等式都可用 于解决实际问题,如最优 化问题、决策问题等。
02 将数轴上方的部分作为解集。
同样地,对于一元一次不等式 x 4 < 0,其解集可以通过区间表示 法表示为 (-∞, 4),也可以通过数 轴表示法在数轴上标出临界点4, 并将数轴下方的部分作为解集。
04 一元一次不等式在实际问 题中的应用
最大值最小值问题
总结词
一元一次不等式在解决最大值和最小值问题中具有广泛应用。
05 一元一次不等式与其他数 学知识的联系
与一元一次方程的联系
定义
一元一次不等式和一元一次方程 都是只含有一个未知数,并且未
知数的次数为1的代数式。
解法
一元一次不等式和一元一次方程的 解法有许多相似之处,如去分母、 去括号、移项、合并同类项等。
应用
一元一次不等式组的概念及其解法

一元一次不等式组的概念及其解法在代数学中,不等式组是一种包含有两个或更多个不等式的数学表达式。
这些不等式之间可以通过逻辑连接诸如“且”或者“或者”等来关联起来,形成一个不等式组。
而一元一次不等式组则是其中一种特殊形式的不等式组,其中每个不等式均为一元一次不等式。
为了更清晰地理解一元一次不等式组的概念及其解法,让我们从简单的例子开始。
假设我们有一个一元一次不等式组:1. 2x + 3 > 72. x - 5 < 2在这个不等式组中,我们有两个一元一次不等式,分别为2x + 3 > 7和x - 5 < 2。
要解决这个不等式组,我们需要先单独解决每个不等式,然后将它们的解集合起来,以得出整个不等式组的解。
我们来解决第一个不等式2x + 3 > 7。
要解这个不等式,我们可以按照以下步骤进行:1. 将2x + 3 > 7化简为2x > 42. 再将2x > 4化简为x > 2第一个不等式2x + 3 > 7的解为x > 2。
接下来,我们来解决第二个不等式x - 5 < 2。
解决这个不等式的步骤如下:1. 将x - 5 < 2化简为x < 7第二个不等式x - 5 < 2的解为x < 7。
现在,我们得到了每个不等式的解,即第一个不等式的解为x > 2,第二个不等式的解为x < 7。
要得到整个不等式组的解,我们需要将这两个不等式的解进行合并。
由于这是一个“且”的关系,所以整个不等式组的解为同时满足这两个不等式的解,即2 < x < 7。
通过以上例子,我们可以看到解决一元一次不等式组的关键步骤。
首先是单独解决每个不等式,然后根据逻辑连接的关系合并这些解来得到整个不等式组的解。
在实际应用中,一元一次不等式组常常出现在数学建模和实际问题的求解中。
比如在工程、经济学、物理学等领域,人们经常需要通过建立不等式组来描述某一问题的限制条件,然后利用不等式组的解来得出问题的答案。
一元一次不等式的解法和应用

一元一次不等式的解法和应用一、不等式的基本概念不等式是数学中用于表示两个数之间大小关系的符号表达式,常用的不等式符号包括小于(<)、大于(>)、小于等于(≤)和大于等于(≥)。
二、一元一次不等式的解法一元一次不等式是指形如ax+b>c或ax+b<c的不等式,其中a、b、c为已知实数,x为未知数。
解一元一次不等式的关键是确定x的取值范围。
我们可以通过以下几种方法来求解一元一次不等式:1. 图解法图解法是通过在数轴上绘制相关的直线和点来找到不等式的解。
其中,大于(>)或小于(<)的不等式以虚线表示,大于等于(≥)或小于等于(≤)的不等式以实线表示。
例如,对于不等式2x+3>5,我们首先画出直线y=2x+3。
然后,我们要找到使得2x+3>5成立的x的取值范围,在数轴上标记点A(1, 5)。
由于不等式的符号是大于,所以我们需要找到大于点A的所有点,即x>1。
因此,不等式2x+3>5的解为x>1。
2. 代数法代数法通过代数运算的方式求解一元一次不等式。
我们可以按照下列步骤进行:步骤一:将不等式转化为简化形式,即将不等式中的系数化简为最简形式。
步骤二:根据不等式的符号,进行分析和变换。
当不等式为大于(>)或小于(<)时,不改变符号直接进行下一步;当不等式为大于等于(≥)或小于等于(≤)时,需要在两边同时加上或减去同一个数,然后不改变符号,进行下一步。
步骤三:根据最简形式确定解的范围,并写出解的形式。
例如,对于不等式2x+3>5,我们首先将系数化简为最简形式,即2x>2。
然后,通过减去3这一常数项,不改变符号,得到2x>2-3,即2x>-1。
最后,根据最简形式确定解的范围,即x>-1/2。
因此,不等式2x+3>5的解为x>-1/2。
三、一元一次不等式的应用一元一次不等式在实际生活中有许多应用,特别是在解决实际问题时。
一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。
有些问题用方程不能解决,而用不等式却能轻易解决。
一元一次不等式的基本概念

。 。
6+5 < 9+5
6+(-3)
< 9+(-3)Biblioteka 6*5< 9*5
6*(-5)
>
9*(-5)
1.不等式的两边都加上(或等于)同一个数或整式, 不等号的方向不变。 2.不等式的两边都乘(或除以)同一个正数不等号方 向不变。 3.不等式的两边都乘(或除以)同一个负数不等号方 向改变。
一.选择题. 1 若a>b ,则下列不等式一定成立的是( D ) A.b/a<1 B.b/a>1 C.-a>-b D.a-b>0 2 由m>n,则下列各式正确的是(C )。 A。ma的平方>na的平方 B。m/a的平方>n/a的平方 C。-(a的平方+1)m< -(a的平方+1) n D。m的平方>n的平方
方程的基本性质
1.等式两边都加上(或减去)同一个数或整式,所得的等式仍 然成立。 a=b,c表示任意的数或整式,那么a+c=b+c
2.等式两边都乘(或除以)同一个数(除数不为零),所得的 等式仍然成立。 a=b,c表示任意的数 ,那么ac=bc c≠0。
例1: 1.如果a=3,那么a+5=b 2.如果3x=6,那么x=6
• 用">"或"<"填空. • 若x-5>y-5,则(1)x > y • (2)x+5 > y+5 • (3)5-2x < 5-2y •
谢谢观赏
WPS Office
Make Presentation much more fun
@WPS官方微博 @kingsoftwps
一元一次不等式概念

一元一次不等式的基本性质
1 加减法性质
对不等式的两边同时加减一个数,不等式的 关系不改变。
2 乘除法性质
对不等式的两边同时乘除一个正数,不等式 的关系不改变;对不等式的两边同时乘除一 个负数,不等式的关系改变。
3 倒置性质
如果改变不等式两边的位置,不等式的关系 将相反。
4 传递性质
如果 a > b 且 b > c,则 a > c。
一元一次不等式的绝对值不等式
定义
绝对值不等式是一种特殊的一 元一次不等式,其中包含一个 未知数的绝对值表达式。
Байду номын сангаас解法
通过分情况讨论和绝对值的性 质,我们可以求解绝对值不等 式并得到其解集。
示例
例如,|2x + 3| < 7 是一个绝对 值不等式。
一元一次不等式在生活中的应用
1 经济学
不等式可以用来描述资源分配、生产优化和供求平衡等经济学问题。
一元一次不等式的图形表示
数轴
数轴可以帮助我们直观地表示一 元一次不等式中未知数的取值区 间。
阴影区域
阴影区域表示满足一元一次不等 式的所有解的范围。
开圈与实心圈
不等式中使用的开圈和实心圈表 示边界是否包含在解集里。
一元一次不等式的解集概念
一元一次不等式的解集是满足不等式的所有实数的集合。解集可能是一个区 间、一个点或者空集。
一元一次不等式的等效变形
1
消去常数项
通过加减法,将常数项移到不等式的右边,变成0。
2
移项
通过加减法,将未知数的系数移到不等式的右边,变成0。
3
合并同类项
将不等式中同类项的系数相加合并。
一元一次不等式的加减法
一元一次不等式的特点-概述说明以及解释

一元一次不等式的特点-概述说明以及解释1.引言1.1 概述概述部分的内容应该是对一元一次不等式的特点进行简要介绍和概括。
下面是可能的概述内容:概述:一元一次不等式是数学中的基础概念之一,它描述了未知数在数轴上的取值范围。
不同于一元一次方程,不等式可以有无数个解,从而具有独特的特点和性质。
本文将重点探讨一元一次不等式的特点及其在数学和实际问题中的应用。
一元一次不等式的特点主要体现在以下几个方面:首先,一元一次不等式的解集通常是由一个区间或数轴上的一段区间表示。
这意味着我们可以通过图形表示法直观地看出解集的位置和范围,更方便地理解问题。
其次,一元一次不等式的解集可以用不等式符号表示。
这些符号包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等,用于表示不同类型的不等式。
不等式符号的选择取决于问题本身的条件和要求。
此外,一元一次不等式的解集可以用数集符号表示。
数集符号包括开区间、闭区间、半开半闭区间等,用于更精确地描述解集在数轴上的位置和范围。
数集符号的选择取决于不等式中的不等号类型和边界条件。
最后,一元一次不等式的解集可以通过代数方法求解。
我们可以利用不等式的性质和规律,运用加减乘除、移项合并等运算规则,将不等式转化为等价的形式,从而找到解集的具体表达式。
通过对一元一次不等式的特点的分析和理解,我们可以更好地应用它们解决数学问题,如解决问题的范围限制、找到满足特定条件的解等。
另外,在实际问题中,一元一次不等式也有着广泛的应用,如经济学中的供需关系、物理学中的速度限制等。
因此,深入了解和掌握一元一次不等式的特点对于建立数学思维和解决实际问题都具有重要意义。
这篇文章将通过分析一元一次不等式的特点,并进一步探讨其在数学研究和实际应用中的意义和未来研究方向,旨在帮助读者更全面地理解一元一次不等式并应用于实践。
文章结构部分的内容可以包含以下几个方面:1.2 文章结构:本文按照以下结构进行组织和呈现:引言:首先介绍一元一次不等式的概念和基本定义,并说明其在数学中的重要性和应用领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、解一元一次不等式
解一元一次不等式的步骤与解一元一次方程的步骤大致相同。应用上面的性质(2)和性质(3)解题时,要注意不等号的方向。
3、不等式组解集的确定方法(设a<b)
(1) 的解集是 ,即“小小取小”,如图1。
图1
(2) 的解集为 ,即“大大取大”,如图2。
一元一次不等式概念分析
1、不等式的三条性质
不等式的性质是对不等式进行变形的重要依据,是学好不等式的基础和关键。
(1)不等式两边加上(或减去)同一个数(或式),不等号方向不变,如果a>b,那么 。
(2)不等式两边乘(或除)以同一个正数,不等号的方向不变。如果a>b,c>0,那么 或 。
(3)不等式两边乘(或除)以同一个负数,不等号的方向改变。如果 ,那么 或 。
图2
(3) 的解集为 ,即“小大大小中间找”,如图3。
图3
(4) 无解,即“大大小小解不了”,如图4。
图4
有等号的情况类似。
例1实数a、b、c在数轴上的位置如图5,则下列式子成立的是()
A、ab>bcB、ac>bcC、ac>abD、ab>ac
图5ቤተ መጻሕፍቲ ባይዱ
分析:从a、b、c在数轴上的位置可知,a>0,b<0,c<0。由a>c,不等式两边都乘以b,不等号改变方向,ab<bc,所以A不正确。由a>b,不等式两边都乘以c,不等号改变方向,ac<bc,所以B不正确。由b>c,不等式两边都乘以a,不等号不改变方向,ab>ac,所以C不正确,D正确。
(2)利用不等式的三条性质进行不等式变形,注意不等号的方向。
解:(1)① ;② 。
(2)① ;② 。
例3如图6,对a、b、c三种物体的质量判断正确的是()。
A、a<cB、a<bC、a>cD、b<c
图6
分析:由图6可知,2b=3c,即6b=9c;2a=3b,即4a=6b。
所以4a=6b=9c,即a>b>c
解:选D。
例2(1)用不等式表示:①x的一半与4的差是负数;②x、y两数的平方和不大于2。
(2)①若a>b,则 _______ ;②若a>0,b<0,c<0,则 _______0。(填“>”或“<”)
分析:(1)列不等式时要注意:“非负数”就是正数或零;“不大于”就是小于或等于,用符号“≤”表示;“正数”即大于0的数,可用“>0”表示;“负数”即小于0的数,可用“<0”表示。
解:选C。