材料科学基础基本第五章 材料的相结构及相图

合集下载

材料科学基础(第2版)石德珂-第5章材料的相结构及相图

材料科学基础(第2版)石德珂-第5章材料的相结构及相图
第五章 材料的相结构与相图
THE PHASE STRUCTURE AND PHASE DIAGRAMS OF MATERIALS
材料的相结构 二元相图及其类型 复杂相图分析 相图的热力学基础 三元相图及其类型
1
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
12
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
4. 固溶体中溶质原子的偏聚与有序
1) 溶质原子分布的微观不均匀性
A, B原子 间结合能
13
E AB
1 2 (EAA
EBB )
EAB
1 2
(EAA
EBB )
3. 陶瓷材料中的固溶方式
可间隙方式固溶 也可置换方式固溶
如: Mg[CO3]→(Mg,Fe)[CO3]→(Fe,Mg)[CO3]→Fe[CO3] 菱镁矿 含铁菱镁矿 含镁菱铁矿 菱铁矿
8
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
24
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
第二节 二元相图及其类型
THE BINARY PHASE DIAGRAM AND ITS TYPE
相图的基本知识 一元系相图 二元系相图 材料性能与相图的关系
一些溶质元素在一价Cu中的最大溶解度
溶质元素

大学材料科学基础 第五章材料的相结构和相图(1)

大学材料科学基础 第五章材料的相结构和相图(1)

弗兰克尔空位
肖脱基空位
2) 为了保持电中性,离子间数量不等的置换会 在晶体内部形成点缺陷。 如:2Ca2+→Zr4+ ,形成氧离子空缺。 3) 陶瓷化合物中存在变价离子,当其电价改变 时,也会在晶体中产生空位。 如:方铁矿中,部分Fe2+被氧化为Fe3+时, 2FeO+O → Fe2O3中,产生阳离子空缺。 同理,TiO2中,部分Ti4+被还原为Ti3+时,产 生阴离子空缺。 这种由于维持电中性而出现的空位,可以 当作电子空穴。欠缺或多出的电子具有一定的 自由活动性,因而降低了化合物的电阻。这种 现象在材料的电性能方面有重要意义。
3.陶瓷材料中的固溶方式
陶瓷材料——一般不具备金属特性,属无机非金属。 无机非金属化合物可以置换或间隙固溶的方式溶入其 它元素而形成固溶体,甚至无限固溶体,但是一般形 成有限固溶体。 如:Mg[CO3] → (Mg,Fe)[CO3] →(Fe,Mg)[CO3] →Fe[CO3] 菱镁矿 含铁菱镁矿 含镁菱铁矿 菱铁矿 不改变原来的晶格类型,晶格常数略有改变。
(3) 多为金属间或金属与类金属间的化合物, 以金属键为主,具有金属性,所以也称金属 间化合物。 (4) 晶体结构复杂。 (5) 在材料中是少数相,分布在固溶体基体 上,起到改善材料性能、强化基体的作用。 中间相可分为以下几类: 正常价化合物;电子化合物;间隙相;间隙 化合物;拓扑密堆相。
1. 正常价化合物 • 通常是由金属元素与周期表中第Ⅳ、Ⅴ、 Ⅵ族元素形成,它们具有严格的化合比, 成分固定不变,符合化合价规律,常具有 AB、AB2、A2B3分子式。 • 它的结构与相应分子式的离子化合物晶体 结构相同,如分子式具有AB型的正常价化 合物其晶体结构为NaCl型。正常价化合物 常见于陶瓷材料,多为离子化合物。如 Mg2Si、Mg2Pb、MgS、AuAl2等。 • 在合金材料中,起弥散强化的作用。

《材料科学基础》课件——第五章相平衡与相图第一节第二节第三节第四节

《材料科学基础》课件——第五章相平衡与相图第一节第二节第三节第四节

相和相平衡
Байду номын сангаас四、自由度与相律
1、自由度:平衡系统中独立可变的因素
自由度数:独立可变的强度变量的最大数目
(强度变量与广度变量的区别)
2、相律:自然规律
在平衡系统中由于受平衡条件的制约,系统内
存在的相数有一定限制。 组元数 相数P≥1
吉布斯相律:不可为负数
f=c-p+n
外界影 响因素
通常外界影响因素只考虑T、P,所以f=c-p+2
• 掌握匀晶,包晶,共晶相图的特点,进而了解二元合金的一些平衡凝固,固 相转变的规律。
• 重点难点: • 二元系相图的建立,杠杆定律 • 包晶相图,共晶相图,共晶合金 • 相图分析,各种液固,固相转变的判断
材料的性能决定于内部的组织结构,而组织结构
又由基本的相所组成。
相:均匀而具有物理特性的部分,并和体系的其他 部分有明显界面。
晶型转变过程都是在恒温下进行,并伴随有体 积、密度的变化。 2、SiO2系统相图 α-石英与β-石英相变相当慢, β-石英常因冷却过快而被保留 到室温,在常压下,低于573℃
单元系相图
β-石英很稳定,所以自然界或低温时最常见的是 β-石英。晶型转变时,体积效应特别显著。 Al2O3、ZrO2也具有多晶型转变。 3、聚合物相图 (1)状态由分子间作用力决定,分子间约束力弱
共晶相图,平衡凝固,共晶合金,包晶相图,形成化合物的相图,含有双液 共存区的相图,熔晶相图等 ,二元相图的几何规律 ,单相,双相及三相共 存区,相图特征 ,二元系相图的分析,分析的方法与步骤,分析举例。
• 教学目的: • 学习相平衡与相图的基本知识,了解相图在材料科学学习中的重要性,学会
相图的使用。

第五章 材料的相结构及相图

第五章 材料的相结构及相图

11924F
第一节
材料的相结构
表5-4 钢中常见的间隙化合物
表5-5 钢中常见间隙化合物的硬度及熔点
11924F
第一节
材料的相结构
图5-7 MgCu结构
11924F
第一节
材料的相结构
图5-8 拉弗斯相中B原子分布和四面体堆垛方式
11924F
第二节
二元相图及其类型
一、相图的基本知识 1.相律 2.二元相图的成分表示方法与相图的建立
11924F
第一节
材料的相结构
图5-5 铜金合金电阻率与成分的关系
11924F
第一节
材料的相结构

图5-6 Ni-Mn合金的饱和磁矩
11924F
第一节
二、中间相 1.正常价化合物 2.电子化合物
材料的相结构
表5-2 铜合金中常见的电子化合物
3.尺寸因素化合物
11924F
第一节
材料的相结构
表5-3 简单结构的间隙化合物成分范围
11924F
第三节
复杂相图分析
图5-35 Cu-Sn相图
11924F
第三节
复杂相图分析
图5-36
Mg2SiO4-SiO2系相图
11924F
第三节
复杂相图分析
图5-37 ZrO2-SiO2系相图
11924F
第三节
复杂相图分析
三、铁-碳合金相图
图5-38 铁-碳相图
11924F
第三节
复杂相图分析
11924F
第三节
复杂相图分析
一、分析方法 1)相图中若有稳定中间相,可依此把相图分为几个部分, 根据需要选取某一部分进行分析。 2)许多相图往往只标注单相区,为了便于分析相图,应 根据“相区接触法则”填写各空白相区,也可用组织 组成物填写相图。 3)利用典型成分分析合金的结晶过程及组织转变,并利 用杠杆定律分析各相相对量随温度的变化情况。 二、复杂相图分析举例 1. Cu-Sn合金系相图(图5-44) 2. Mg2SiO4-SiO2系相图

第五章材料相结构和相图

第五章材料相结构和相图
材料科学基础材料的相结构固溶体中间相置换固溶体间隙固溶体正常价化合物电子化合物尺寸因素化合物间隙化合物置换固溶体间隙固溶体有限固溶体无限固溶体无序固溶体有序固溶体间隙相间隙化合物理解重点理解重点影响置换固溶体溶解度的因素陶瓷与金属固溶体的差别中间相和固溶体的区间隙固溶体间隙相间隙化合物的区别典型材料的相结构的辨别材料科学基础陶瓷与金属固溶体的差别形成弗兰克尔空位的可能性较小形成肖脱基空位时移出的正负离子总电价为零
一般认为热力学上平衡状态的无序固溶体溶质原子 分布在宏观上是均匀的,在微观上是不均匀的。
在一定条件下,溶质原子和溶剂原子在整个晶体中按 一定的顺序排列起来,形成有序固溶体。有序固溶体 中溶质原子和溶剂原子之比是固定的,可以用化学分 子式来表示,因此把有序固溶体结构称为超点阵。
例如:在Cu-Al合金中,Cu:Al原子比是1:1或3:1 时从液态缓冷条件下可形成有序的超点阵结构,用 CuAl或Cu3Al来表示。
HRTEM for Ni precipitate in 8YSZ/Ni Nanocomposites
size of precipitated Ni nanoparticle ~ 20 nm
pore Ni
10 nm
Ni nanoparticle and accompanied nano-pore in 8YSZ/0.6 vol%Ni Nanocomposite
中间相分类:正常价化合物、电子化合物(电子 相)、间隙化合物
材料科学基础
1. 材料的相结构
材料的 相结构
固溶体
置换固溶体 间隙固溶体 正常价化合物
中间相
电子化合物 尺寸因素化合物
间隙化合物 拉弗斯相
2.1 正常价化合物
材料科学基础

第五章材料的相结构及相图

第五章材料的相结构及相图

电子浓度为21/13时,为复杂立方结构,或称γ黄铜结构
电子浓度为21/12时,为密排六方结构,或称ε黄铜结构。 其他影响因数:尺寸因素及组元的电负性差。 例:电子浓度21/14的电子化合物,当组元原子尺寸差较小时,倾向于形成密排六方 结构;当尺寸差较大时,倾向于形成体心立方结构;若电负性差较大,则倾向于形 成复杂立方及密排六方结构。 性能:结合键为金属键,具有明显的金属特性。电子化合物的熔点及硬度较高 ,脆性较大
有些与金属固溶体类似,如原子半径差越小,温度越高,电负性差越小,离子间的 代换越易进行 ,其固溶度也就越大。当两化合物的晶体结构相同,且在其他条件 有利的情况下 ,相同电价的离子间有可能完全互换而形成无限固溶体 。
此外,必须考虑以下情况 (1) 保持晶格的电中性 ,代换前后离子的总电价必须相等 若相互代换的离子间电价相等,称为等价代换, 例 钾 长 石 K [AlSi303]与钠长石Na [AlSi303〕中的K+与Na+的代换及上例中Si4+代 换 Ti4+, Mg2+与Fe2+的互换等。
eC、eA分别为在非电离状态下正离子及负离子的价电子数
类型:一般有AB、A2B(或AB2)等类型 特点:种类繁多,晶体结构十分复杂,包括从离子键、共价键过渡到 金属键为主的一系列化合物 如: Mg2Si 电负性影响大,较强的离子键
Mg2Sn 电负性差减小,共价键为主,呈半导体特征 Mg2Pb 金属键占主导地位
之差超过14%~15%,则固溶度(摩尔分数)极为有限;
原因:点阵畸变导致能量升高,Δ r越大,点阵畸变能越高
2
r
rA rB rA
按弹性力学方法计算
2 3 r rB 3 8 G rB A 8 G rB r rA

材料科学基础-第五章 材料的相结构及相图

材料科学基础-第五章 材料的相结构及相图

相律在相图中的应用
C
2 二元系
P 1 2
3 1
f 2 1 0
3 2 1 0
含义
单相合金,成分和温度都可变 两相平衡,成分、相对量和温度 等因素中只有一个独立变量 三相平衡,三相的成分、相对 量及温度都确定 单相合金其中两个组元的含量 及温度三个因素均可变 两相平衡,两相的成分、数量 及温度中有两个独立变量 三相平衡,所有变量中只有 一个是独立变量 四相平衡所有因素都确定不变
结构简单的具有极高的硬度及熔点,是合金工具钢和硬 质合金的重要组成相。
I. 间隙化合物
间隙化合物和间隙固溶体的异同点
相同点: 非金属原子以间隙的方式进入晶格。
不同点: 间隙化合物:间隙化合物中的金属组元大多与自 身原来的结构类型不同 间隙固溶体:间隙固溶体中的金属组元仍保持自 身的晶格结构
I. 尺寸因素
II. 晶体结构因素 组元间晶体结构相同时,固溶度一般都较大,而且有可 能形成无限固溶体。若不同只能形成有限固溶体。
III. 电负性差因素
两元素间电负性差越小,越易形成固溶体,且形成的 固溶体的溶解度越大;随两元素间电负性差增大,固 溶度减小。

1)电负性差值ΔX<0.4~0.5时,有利于形成固溶体 2)ΔX>0.4~0.5,倾向于形成稳定的化合物
Mg2Si
Mg—Si相图
(2)电子化合物
由ⅠB族或过渡金属元素与ⅡB,ⅢB,ⅣB族元素 形成的金属化合物。 不遵守化合价规律,晶格类型随化合物电子浓度 而变化。 电子浓度为3/2时: 呈体心立方结构(b相); 电子浓度为21/13时:呈复杂立方结构(g相); 电子浓度为21/12时。呈密排六方结构(e相);
NaCl型 CaF2型 闪锌矿型 硫锌矿型 (面心立方) (面心立方) (立方ZnS) (六方ZnS)

材料科学基础(讲稿5章)

材料科学基础(讲稿5章)

Cu-Ni合金的铸态组织 ×50 树枝状
39
3)特点 (ⅰ) 冷却速度较快. (ⅱ) 开始结晶温度低于液相线. (ⅲ) 结晶中,剩余液相特别是晶粒内部成分不 均匀,先结晶的部分含高熔点组元较多,后 结晶的部分含低熔点组元较多;固相平均成 分偏离固相线,液相平均成分是否偏离液相 线随冷却速度而异. (ⅳ) 结晶终了温度低于固相线. (ⅴ) 通常不能应用杠杆定律. (ⅵ) 室温铸态有晶内偏析,形成树枝状组织.
Zn 2+、Ga 3+、Ge 4+、As 5+在Cu+中的最大固溶度(摩尔分数) 分别为38%、20%、12%、7%
6
Zn 2+、Ga 3+、Ge 4+、As 5+在Cu+中达最大 固溶度时所对应的e/a≈1.4→极限电子浓度


超过极限电子浓度,固溶体就不稳定,会 形成新相。 计算电子浓度时,元素的原子价指的是: 原子平均贡献出的共有电子数,与该元素 在化学反应时的价数不完全一致。

不平衡共晶形成原因分析
56
3)离异共晶——合金中 先共晶相的量很多,共晶 体的量很少时,共晶体中 与先共晶相相同的相依附 于先共晶相生长,将共晶 体中的另一相孤立在先共 晶相的晶界处.这种共晶 体两相分离的组织称为离 异共晶.
57ቤተ መጻሕፍቲ ባይዱ
Pb-Sb共晶离异组织(铸态)×400 α 相依附初生晶α 析出,形成离异的 白色网状β
58
3、包晶相图及其结晶
(1)相图分析 液相线 单相区 两相区 固相线 三相区 固溶度曲线 (2)包晶反应 在一定温度下,由一固定成分的液相与一个固定成 分的固相作用,生成另一个成分固定的固相的反应, 称为包晶反应。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TiC 2850 3080
ZrC 2840 3472±20
VC 2010 2650
NbC 2050 3608±20
WC 1370 2785±5
MoC 1840 2527
复杂结构 间隙化合物
Cr23C6 Fe3C 1650 ~800
1577 1227
第二节 二元相图及其类型
一、相平衡与相律 (一)相平衡
在指定的温度和压力下,若多相体系的各相中每一组元的浓度均不随时间 而变化,则体系达到了相平衡。若体系内不发生化学反应,则相平衡的条 件是各组元在它存在的各相中的化学位相等。实际上相平衡是一种动态平 衡,从系统内部看,分子和原子在相界处仍在不停地转换,只不过各相之 间的转换速度相同而已。
(二)相律 吉布斯(Gibbs)相律是表示处于热力学平衡状态下,系统的自由度、组 元数和相数之间的关系。
图4-8 结晶过程示意图
晶核的形成有两种方式。在液体内部,存在大量时聚时散的近程有序的大小 不等的原子集团即晶胚。在过冷的情况下,借助液体中的能量起伏,某些晶胚 的尺寸有可能大于临界尺寸,这些晶胚可自发生长,成为结晶核心,所以这种 形核方式叫自发形核或均匀形核。另一种形核方式为结晶时,依附过冷液相中 的高熔点固态杂质形成晶核,所以称非自发形核或非均匀形核。非均匀形核所 需能量比均匀形核低得多,所以实际金属结晶大多是非均匀形核。 由晶核长成的小晶体叫晶粒,晶粒之间的交界叫晶界。晶粒的二维平衡形貌 为多边形块状,三叉晶界,晶界夹角为120℃。
决定系统平衡状态的变量主要包括成分、温度、压力等。 相律的表达式为 f=c-p+n
对于凝聚系统,可以略去压力这一变数, 此时相律的表达式为f=c-p+1
f自由度, c为组元数, n为影响系统平衡状 态的外界因素数目,
p为平衡相数
二、相图的基本知识
(一)相图的表示方法 对于凝聚系统,相图测量过程中主要控制温度和成分,因此常见的相 图大都以温度和成分为坐标。对于二元系,独立的成分变数只有一个, 所以二元系只需用一个横坐标表示成分,纵坐标为温度,所以二元相图 为一个平面图形;对于三元系,成分变数有两个,所以其成分必须用一 个平面图形来表示,加上温度轴,所以三元相图是一个三维的立体图形。
(二)电子化合物
表4-1 合金中常见的电子化合物 电子浓度
合金系 Cu-Zn
体心立方
3 21 相 2 14
CuZn
Cu-Sn
Cu5Sn
Cu-Al
Cu3Al
Cu-Si
Cu5Si
注:表中分数表示电子浓度
复杂立方
13 相
21
Cu5Zn8
Cu31Sn8
Cu9Al4
Cu31Si8
密排六方
7 21 相
相。中间相的结合键主要为金属键,兼有离子键和共价键。因此中间相 又称金属间化合物。
形成合金相 时起主导的 控制因素
主要受电负性控制的正常价化合物 以原子尺寸因素为主要控制因素的间隙相、间隙化合物和拓扑密堆相 以电子浓度为主要控制因素的电子化合物
(一)正常价化合物
负电性差别较大的组元可能形成与离子化合物点阵相同的中间相。这种化合物符 合化合价规律,所以叫正常价化合物。例如,Mg2Si、Mg2Sn、MnS等,其成分 可以用化学式表示。正常价化合物一般有AB、A2B(或AB2)两种类型。其晶体 结构与相应的离子键晶体结构相同。AB型正常价化合物的晶体结构可以是NaCl 型结构、立方ZnS结构或六方ZnS结构。A2B(或AB2)具有CaF2型结构(或反 CaF2型结构)。正常价化合物具有较高的硬度和脆性。在以固溶体为基的合金中, 正常价化合物如果合理分布,可使合金得到强化。
(三)固溶体的微观不均匀性
图4-2 固溶体中溶质原子分布示意图 a)无序分布 b)偏聚分布 c)短程有序分布 图4-3 有序固溶体的晶体结构 a)CuAu b)Cu3Au
二、金属间化合物
• A、B组元间组成合金时,可形成晶体结构不同于A、B两组元的化合物相 。这种相的成分处在A在B中和B在A中的最大溶解度之间,因此也叫中间
4 12
CuZn3
Cu3Sn
Cu5Al3
Cu3Si
决定电子化合物结构的主要因素是电子浓度,但并非唯一因素,其它因 素,特别是尺寸因素仍起一定作用。
(三)复杂结构间隙化合物与间隙相
类型
化学式 硬度 Fe3C晶体结构
表4-2 钢中常见碳化物的熔点和硬度
间隙相
分类
溶质原子在固溶体 中所占的位置
置换固溶体 间隙固溶体
固溶度的大小
有限固溶体 无限固溶体
固溶体中 原子的排 列情况
有序固溶体 无序固溶体
(一)置换固溶体
形成固溶体时,溶质原子置换了溶剂点阵中的溶剂原子,占据了溶剂晶格的结点 位置,以此种方式所形成的固溶体叫置换固溶体。
图4-1形成无限固溶体时两组元原子置换过程示意图
(二)二元相图的建立
热分析法 图4-6 Cu-Ni二元相图的测定
原理:将体系 均匀冷却或加 热,当无相变 发生时,冷却 曲线将连续变 化。当体系内 发生相变时, 冷却曲线上会 出现折点或停 歇点。根据所 测的临界点就 可以绘出相图。
(三)杠杆定律 杠杆定律是相图分析的重要工具,适用于两相区,可用来确定两平衡相的 成分和相对量。在相图中,任意一点都叫“表象点”一个表象点的坐标值 反映一个给定合金的成分和温度。
图4-7 杠杆定律的证明及力学比喻
三、二元匀晶相图
由液相结晶出均一固相的过程称为匀晶转变,具有单一的匀晶转变的相 图称为匀晶相图。现以Cu-Ni二元相图为例进行分析。
(一)相图分析与典型合金结晶过程
1. 相图分析
2. 结晶过程分析
(1)纯组元的结晶
液态纯组元冷至理论结晶温度Tm(熔点)以下某一温度Tn,就要发生结晶。 结晶是由液态的短程有序状态转变为固态的长程有序状态。结晶过程包括生 核和长大过程,如图4-8。
第五章 材料的相结构及相图
第一节 材料的相结构 第二节 二元相图及其类型 第三节 复杂相图分析
第一节 材料的相结构
工业上应用的金属材料主要是合金。合金中的相结构是多种多样的, 但可分为两大类:固溶体和化合物。
一、固溶体
溶质原子完全溶入固态溶剂中,所生成的合金相与溶剂的晶格结构相同, 该合金相叫固溶体。固溶体的成分一般可在一定范围内连续变化,随溶质 的溶入,将引起溶剂晶格畸变,使合金强度硬度升高这便是固溶强化。
显然晶体结构相 同是形成无限固 溶体的必要条件。
(二)间隙固溶体
一些原子半径小于0.1nm的C、N、H、B等非金属元素因受尺寸因素影响,不能 与过渡族金属元素形成置换固溶体,却可固溶于溶剂晶格的间隙位置,形成间隙固溶 体。一般间隙半径比较小,所以形成间隙固溶体时,晶胞要涨大,造成严重的点阵畸 变,使能量增高,故固溶度受到限制。
相关文档
最新文档