钛的冶炼
钛渣的冶炼原理

钛渣的冶炼原理1.钛渣冶炼的原理及工艺流程电炉熔炼钛渣的实质是钛铁矿与固体还原剂无烟煤(或石油焦或叫焦炭)等混合加入电炉中进行还原熔炼,矿中铁的氧化物被选择性地还原为金属铁,钛的氧化物被富集在炉渣中,经渣铁分离后,获得钛渣和副产品金属铁。
钛精矿的主要组成是TiO2和FeO,其余为SiO2、CaO、MgO、Al2O3和V2O5 等,钛渣冶炼就是在高温强还原性条件下,使铁氧化物与碳组分反应,在熔融状态下形成钛渣和金属铁,由于比重和熔点差异实现钛渣与金属铁的有效分离。
期间可能发生的化学反应如下:Fe2O3+C=2FeO+CO (1)FeO+C=Fe+CO (2)以钛精矿为原料,敞口电炉冶炼钛渣的工艺流程如图1所示。
钛渣图1、工艺流程图2. 电炉冶炼的主要特征钛渣是一种高熔点的炉渣,钛渣熔体具有强的腐蚀性、高导电性和其粘度在接近熔点温度时而剧增的特性,而且这些性能在熔炼过程中随其组成的变化而发生剧烈的变化。
2.1钛渣的高电导率和熔炼钛渣的开弧熔炼特征2.1.1钛渣的高电导率钛铁矿在熔化状态具有较大的电导率,在1500℃时为2.0~2.5ks/m,在1800℃为5.5~6.0ks/m,随着还原熔炼钛铁矿过程的进行,熔体组成发生变化,FeO含量减少,而TiO2和低价钛氧化物的含量增加,因此其电导率迅速上升,如加拿大索雷尔钛渣在1750℃电导率为15~20ks/m,而一般的炉渣在1750℃电导率为100s/m,可见钛渣的电导率比普通冶金炉渣的电导率高数十倍甚至几百倍,比普通离子型电解质(如Nacl液体在900℃时的电导率约为400s/m)的电导率都高很多,且温度变化对钛渣电导率影响不大,这些都说明钛渣具有电子型导电体的特征。
2.1.2熔炼钛渣电炉的开弧熔炼特征钛渣的高电导率决定了熔炼钛渣电炉的开弧熔炼特征,即熔炼钛渣的热量来源主要依靠电极末端至熔池表面间的电弧热,这就是所谓的“开弧冶炼”,而在高电阻炉渣的情况下,电极埋入炉渣,熔炼过程的热量来源主要是渣阻热,即所谓的“埋弧熔炼”。
钛的冶炼方法及方程式

钛的冶炼方法及方程式钛是一种重要的金属材料,其具有优异的耐腐蚀性、高强度、低密度等特点,在航空航天、汽车制造、医疗器械等领域有着广泛的应用。
这篇文章将介绍钛的主要冶炼方法及其方程式。
1. 克罗内法克罗内法是目前钛的主要生产方法,其主要原料是钛铁矿。
具体过程如下:(1) 钛铁矿还原:钛铁矿和焦炭在电炉中还原生成钛和铁的合金。
FeTiO3 + 3C → Fe + TiC + 2CO(2) 钛的精炼:将钛铁合金放入反应釜中,加入氯气,生成氯化钛,然后经过精炼分离出纯钛。
TiC + 2Cl2 → TiCl4 + CTiCl4 + 2Mg → Ti + 2MgCl22. 氧化-还原法氧化-还原法是一种较为简单的钛冶炼方法,其主要原料是钛粉。
具体过程如下:(1) 钛粉氧化:将钛粉置于高温氧气中氧化成钛四氧化物。
Ti + 2O2 → TiO4(2) 钛四氧化物还原:将钛四氧化物和还原剂(如铝、镁等)在高温下反应,生成钛金属和氧化物。
TiO4 + 2Al → Ti + 2AlO3. 碘化法碘化法是一种相对较为简单的钛冶炼方法,其主要原料是钛粉和碘。
具体过程如下:(1) 钛粉氧化:将钛粉置于高温氧气中氧化成钛四氧化物。
Ti + 2O2 → TiO4(2) 钛四氧化物碘化:将钛四氧化物和碘在高温下反应,生成碘化钛。
TiO4 + 2I2 → TiI4 + 2O2(3) 碘化钛还原:将碘化钛和还原剂(如铝、镁等)在高温下反应,生成钛金属和氧化物。
TiI4 + 2Al → Ti + 2AlI3综上所述,钛的冶炼方法主要有克罗内法、氧化-还原法和碘化法,这些方法各有优劣,可以根据具体情况选择合适的方法进行生产。
钛的冶炼与制备方法

02
在轧制过程中,钛金属经过多道次的轧制和退火处理,以获得
ቤተ መጻሕፍቲ ባይዱ
所需的机械性能和显微组织。
轧制工艺可以生产出各种规格的钛板、钛带、钛箔等产品,广
03
泛应用于航空、航天、医疗等领域。
钛的热处理工艺
1
热处理是钛加工中重要的工艺过程,通过控制加 热、保温和冷却条件,改变钛金属的内部结构和 性能。
2
钛的热处理工艺主要包括退火、固溶处理、时效 处理等,可以改善钛金属的强度、韧性、耐腐蚀 性等性能。
体育用品领域
钛可以用于制造高尔夫球杆、自行车架等高性能 体育器材。
02
钛的冶炼方法
镁还原法
总结词
利用镁还原四氯化钛制备海绵钛的方 法,具有工艺成熟、操作简单等优点 。
详细描述
将四氯化钛与镁反应,生成钛和氯化 镁,再通过蒸馏分离氯化镁,得到海 绵钛。该方法是目前工业上制备海绵 钛的主要方法之一。
钠还原法
05
钛的应用领域
航空航天领域
要点一
飞机制造
钛合金由于其高强度、低密度和良好的耐腐蚀性,广泛应 用于飞机机身、机翼、发动机部件等制造。
要点二
卫星与火箭
钛也用于卫星和火箭的结构部件,如燃料箱、支架和连接 件等。
医疗领域
医疗器械
钛由于其生物相容性和耐腐蚀性,被用于制造医疗器械 ,如牙科植入物、手术器械和矫形设备等。
医疗植入物
钛合金广泛用于制造人工关节、骨板和骨钉等医疗植入 物,因为它们与人体相容性好,不易引起排异反应。
化工领域
化学反应容器
钛耐腐蚀性强,可用于制造化学反应 容器和管道,用于运输和储存各种化 学物质。
石油和天然气开采
钛用于制造石油和天然气开采过程中 的管道、阀门和泵等设备,能够承受 高腐蚀性的工作环境。
钛冶炼中的炉渣处理与利用

碱处理法
用碱溶解炉渣中的有价值 矿物,再通过沉淀、结晶 等方法将其从溶液中分离 出来。
还原处理法
通过加入还原剂将炉渣中 的有价值矿物还原成易分 离的形态。
生物处理法
微生物浸出法
利用微生物的代谢产物将炉渣中的有价值矿物溶解出来,再通过提取、沉淀等 方法将其回收。
微生物吸附法
利用微生物的吸附作用将有价值矿物从炉渣中吸附出来,再通过分离、回收的 方法进行处理。
复合材料。
增强材料性能
02
通过添加钛渣作为填料,可以改善复合材料的物理和机械性能
,如强度、耐磨性等。
拓宽应用领域
03
钛渣复合材料在航空航天、汽车、化工等领域具有广泛的应用
前景,有助于推动相关产业的发展。
04
案例分析
某钛业公司的炉渣处理方案
方案概述
该方案主要采用高温熔融技术, 将炉渣进行高温处理,提取其中 的有价金属,同时将废渣进行环
02
炉渣处理技术
物理处理法
01
02
03
磁选法
利用不同矿物之间的磁性 差异,通过磁场分离出有 价值的矿物。
重力分选法
根据炉渣中不同矿物密度 的差异,通过重力作用将 其分离。
浮选法
通过向炉渣中加入特定的 化学药剂,使有价值矿物 附着在气泡上,再将其分 离。
化学处理法
酸处理法
用酸溶解炉渣中的有价值 矿物,再通过沉淀、结晶 等方法将其从溶液中分离 出来。
加强钛渣资源循环利用研究,提高资 源利用率,降低对原生资源的依赖。
智能化发展
利用信息技术和自动化技术,实现钛 渣冶炼过程的智能化控制和管理,提 高生产效率和产品质量。
新材料应用
探索新型的钛渣冶炼材料和技术,提 高冶炼效果和产品质量,推动钛工业 的可持续发展。
钛矿石重要的钛金属来源

钛矿石重要的钛金属来源钛金属是一种广泛应用于航空航天、航海船舶、汽车制造、化工等行业的轻质高强度金属材料。
它具有优异的耐腐蚀性、高温强度、低密度等特点,因此在现代工业中受到广泛关注。
而钛矿石是获得这种重要金属的主要来源之一。
钛矿石主要指的是含有钛元素的矿石矿物,常见的有铁钛矿、钛磁铁矿、富钛铁矿等。
在全球范围内,目前主要的钛矿石产地包括澳大利亚、南非、中国等国家。
这些国家拥有丰富的钛矿石资源,并通过采矿、选矿等工艺将其转化为纯度较高的钛金属。
钛矿石的采矿工艺一般分为两个步骤:矿石选矿和冶炼提取。
矿石选矿是指通过物理或化学方法将矿石中的杂质和有用矿物分离,以提高钛金属的纯度。
矿石选矿过程中常用的方法有重选、浮选、磁选等。
选择适当的选矿方法可以有效地提高钛金属的含量和质量。
选矿后的钛矿石需要进行冶炼提取,以将其中的钛金属分离出来。
常用的冶炼方法有熔融法、氧化法、还原法等。
在熔融法中,钛矿石通过高温熔炼,使钛金属与熔剂分离,然后通过物理或化学分离获得纯度较高的钛金属。
氧化法则是将钛矿石转化为氯化钛等化合物,再通过还原反应得到钛金属。
钛矿石转化为钛金属后,进一步的加工工艺可以将其制成各种形状和规格的制品。
常见的加工方法包括锻造、轧制、拉伸、粉末冶金等。
通过这些加工工艺,钛金属可以制成钛合金、钛板、钛管等形式,并广泛应用于各个领域。
除了作为钛金属的重要来源外,钛矿石还具有其他的利用价值。
其中,钛矿石中的钛元素可以用于制取氧化钛、钛酸盐等多种化工产品。
这些产品在涂料、塑料、陶瓷等行业中有着广泛的应用。
此外,钛矿石中的其他金属元素如铁、镁等也具有一定的经济价值,可以通过适当的提取和加工利用。
综上所述,钛矿石是钛金属的重要来源之一。
钛金属作为一种重要的轻质高强度金属材料,广泛应用于多个行业。
钛矿石的采矿、选矿、冶炼等工艺将其转化为纯度较高的钛金属,进一步的加工工艺则将其制成各种形态的制品。
除了作为钛金属的来源,钛矿石中的其他元素也有着一定的利用价值。
钛冶炼的新方法

钛及其化合物性质

钛及其化合物性质1、钛单质,自然界存在:钛的主要钛铁矿(FeTiO3)和金红石(TiO2)。
钛耐高温,熔点1942K,比黄金高近1000K,比钢高近500K。
钛属于化学性质比较活泼的金属。
加热时能与O2、N2、H2、S和卤素等非金属作用。
但在常温下,钛表面易生成一层极薄的致密的氧化物保护膜,可以抵抗强酸甚至王水的作用,表现出强的抗腐蚀性。
液态钛几乎能溶解所有的金属,因此可以和多种金属形成合金。
钛加入钢中制得的钛钢坚韧而富有弹性。
钛与金属Al、Sb、Be、Cr、Fe等生成填隙式化合物或金属间化合物。
2、钛的冶炼工业上常用硫酸分解钛铁矿的方法制取二氧化钛,再由二氧化钛制取金属钛。
浓硫酸处理磨碎的钛铁矿(精矿):FeTiO3+3H2SO4 == Ti(SO4)2+FeSO4+3H2O FeTiO3+2H2SO4 == TiOSO4+FeSO4+2H2O FeO+H2SO4 == FeSO4+H2O Fe2O3+3H2SO4 == Fe2(SO4)3+3H2O 为了除去杂质Fe2(SO4)3,加入铁屑,Fe3+还原为Fe2+,然后将溶液冷却至273K以下,使得FeSO4·7H2O(绿矾)作为副产品结晶析出。
Ti(SO4)2和TiOSO4水解析出白色的偏钛酸沉淀,反应是:Ti(SO4)2+H2O == TiOSO4+H2SO4 TiOSO4+2H2O == H2TiO3+H2SO4锻烧偏钛酸即制得二氧化钛: H2TiO3 == TiO2+H2O工业上制金属钛采用金属热还原法还原四氯化钛。
将TiO2(或天然的金红石)和炭粉混合加热至1000~1100K,进行氯化处理,并使生成的TiCl4,蒸气冷凝。
TiO2+2C+2Cl2=TiCl4+2CO在1070K 用熔融的镁在氩气中还原TiCl4可得多孔的海绵钛: TiCl4+2Mg=2MgC12+Ti13、钛常见化合物(1) 二氧化钛钛白是经过化学处理制造出来的纯净的二氧化钛,它是重要的化工原料。
钛合金冶炼的原理与应用

汇报人:可编辑 2024-01-05
• 钛合金简介 • 钛合金冶炼原理 • 钛合金冶炼技术 • 钛合金的应用 • 钛合金冶炼的挑战与前景
目录
01
钛合金简介
钛合金的定义与特性
定义
钛合金是由纯钛元素与其它金属元素 (如铝、锡、锆等)经过熔炼结合而 成的合金。
特性
具有高强度、低密度、良好的耐腐蚀 性和高温性能,以及优良的塑性和韧 性。
钛合金的分类与用途
分类
根据钛合金中添加的金属元素不同, 可以分为α钛合金、β钛合金和α+β钛 合金等。
用途
广泛应用于航空航天、医疗、化工、 体育等领域,如飞机发动机部件、人 造关节、高尔夫球杆等。
02
钛合金冶炼原理
钛合金冶炼方法
01
02
03
真空熔炼法
在真空条件下,将钛合金 原料放入感应炉或电弧炉 中进行熔炼,去除杂质和 气体,提高合金纯度。
电渣重熔过程控制
通过控制电流、电压、渣系等参数,实现对钛合金熔炼过程的精确控制,提高产品质量和稳定性。
连铸技术
连续铸造
通过连续铸造的方式,将液态钛合金铸成各种规格的铸锭。该技术具有生产效率高、成 本低等优点。
连铸过程控制
通过控制浇注温度、速度、冷却强度等参数,实现对钛合金铸锭组织和性能的调控,满 足不同应用需求。
感谢观看
THANKS
废气和废水的处理
钛合金冶炼过程中会产生大量的废气和废水,需要采取有效的处 理措施,以降低对环境的污染。
能源消耗与节能减排
冶炼过程中需要消耗大量的能源,应采取节能减排措施,降低能源 消耗和碳排放。
固体废弃物的处理
冶炼过程中会产生大量的固体废弃物,需要进行合理的处理和利用 ,以减少对环境的压力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属钛的冶炼更新时间:2013/04/25 10:57:25 浏览次数: 2957金属钛的冶炼:钛在地壳中的含量十分丰富,按丰度值算占第九位。
解放前,我国的钛锆铪冶炼工业是空白,虽然资源丰富,但未得到利用。
解放后,开始建立我国的钛锆铪冶炼和加工工业,适应了我国尖端技术和相关工业部门对这些金属和化合物的需要。
现在,我国的钛锆铪工业都在积极发展中。
化学性质钛位于元素周期表中第四周期第IV副族,原子序数为22。
钛的化学性质相当活泼,可与很多元素反应或形成固溶体。
主要物理性质,熔点;钛的熔点为1660℃。
沸点钛的沸点为3302℃。
超导性,耐蚀性:不锈钢;机械性质纯钛的机械强度比铁大一倍,比铝大5倍。
钛具有可塑性,钛合金在航天航空工业上的应用,钛具有质轻、强度高,耐热、耐低温性能。
钛合金在化工、冶金上的应用:钛的耐蚀性能好,日常生活领域,钛和钛合金具有质轻、强度高、耐腐蚀并兼有外观漂亮等综合性能。
人造关节,假肢。
超导材料,钛镍合金具有形状记忆功能,在镍含量xNi为49.5%~51.5%的组成范围内,xNi每变化0.01,相变温度约变化10℃。
钛镍合金还具有超弹性,它的耐磨性能也很优异。
钛铁合金具有储氢功能,FeTi合金的吸放氢气可在接近常温﹑常压条件下进行,而且,储氢容量也很大。
钛铌合金具有超导性,钛在地壳中的丰度为0.56%,按元素丰度排列居第九位,仅次于氧、硅、铝、铁、钙、钠、钾和镁。
钛属于典型的亲岩石元素,存在于所有的岩浆岩中。
钛的分布极广,遍布于岩石、砂土、粘土、海水、动植物,甚至存在于月球和陨石中。
钛的化学活性很强,所以自然界中没有钛的单质存在,总是和氧结合在一起。
在矿物中,钛以氧化物(金红石)形式和钛酸盐形式存在,钛还经常与铁共生(钛铁矿)。
金红石是一种黄色至红棕色的矿物,其主要成分是TiO2,还含有一定量的铁、铌和钽。
铁是由于它与钛铁矿共生的结果。
由于Ti4+与Ni+、Ta5+ 离子的相似性,铌和钽常伴生在钛矿石中。
93%~98%,钛铁矿理论分子式为FeTiO3,其中TiO2理论含量为52.63%。
但钛铁矿的实际组成是与其成矿原因和经历的自然条件有关。
可以把自然界的钛铁矿看成是FeO-TiO2和其他杂质氧化物组成的固溶体。
40%~60%。
岩矿床是原生矿,这里是指块状钛矿床,属于岩浆分化矿床,主要矿物是钛铁矿,金红石很少。
岩矿产地集中,贮量大,可大规模开采,但岩矿的结构致密,脉石含量高,可选性差,精矿的TiO2品位一般在44%~48%之间,且选矿的回收率较低;由于岩矿的可选性差,目前世界上许多岩矿仍未被利用。
钛砂矿床是次生矿,属沉积矿床,它来自岩矿床,由于海浪和河流带到各地,在海岸和河滩附近沉积成砂矿,矿物结构比较疏松,且矿物颗粒较大,脉石含量较少,选矿后金红石精矿TiO2品位可达96%,钛铁矿精矿TiO2品位可达50%~60%;但砂矿钛铁矿往往含有较高的MnO。
用钛精矿生产海绵钛工艺可分为三大步骤:(1)富钛料的制取,(2) TiCl4的制备(粗TiCl4的制备以及纯TiCl4的制备)(3) TiCl4的还原从采矿到制成钛材的工艺钛矿→采矿→选矿→钛精矿→富集→富钛料→氯化→粗TiCl4 →精制→纯TiCl4 →镁还原→海绵钛→熔铸→钛锭→加工→钛材或钛部件富集: 还原熔炼氯化: 氯化冶金精制: 精馏镁还原: 镁还原+蒸馏减少其它原料消耗,降低生产成本;减轻后续分离、净化和处理副产物工序的负担,简化工艺过程;增大设备单位容积的产能。
TiO2直接还原法无法实现大规模的工业生产。
金属钙、镁、锂、锰和钡等,它们都可把TiCl4还原成金属钛。
氯化物容易实现金属的分离、富集、提取和精炼,在稀有金属冶炼中有广泛应用。
能满足△GoMeClx<△GoTiCl4的活性金属比较多,有钾、钠。
钛铁矿富集方法概述富钛料:由钛铁矿等精矿(含二氧化钛43%~60%)经处理后获得的钛品位较高的物料(含二氧化钛80%~85%),主要包括人造金红石和高钛渣。
富集含钛物的原因:减少其它原料消耗,降低生产成本;减轻后续分离、净化和处理副产物工序的负担,简化工艺过程;增大设备单位容积的产能。
生产工艺分类:火法:还原熔炼法、选择氯化法,湿法:酸浸法、锈蚀法等。
按照最终产物分类:生产钛渣的方法:还原熔炼法,生产人造金红石的方法:包括其余各种方法还原熔炼法方法概述:以无烟煤或石油焦为还原剂,在1600~1800℃高温下还原熔融的钛铁矿。
由于密度不同,渣相浮在上面,熔融铁水位于下面。
优点:工艺简单,副产品金属铁可以直接应用,不产生固体和液体废料,电炉煤气可以回收利用,三废少,工厂占地面积小,是一种高效的冶炼方法。
缺点:主要是分离除铁,除去非铁杂质能力差,耗电量大,限于电力充足地区使用。
酸浸法;方法概述:用酸浸出,以实现铁与钛的初步分离。
由于氧化钛比较稳定,因此残留在固相。
优点:可有效的除去杂质铁和大部分氧化物杂质,获得含TiO290%~96%的高品位人造金红石。
缺点:设备腐蚀严重,三废量大,副流程复杂。
还原熔炼的实质钛铁矿精矿中铁氧化物的还原并伴随钛氧化物还原为低价。
初始还原在固态下进行,随着原料的渣化及温度的提高,还原过程在熔融炉料中进行。
最终达到熔融生铁和高钛渣的分层分离。
还原过程中产生复杂的物理化学变化和晶型转化。
2.2.1还原机理:固态还原反应l FeTiO3+C=Fe+TiO2+CO(3/4)FeTiO3+C=(3/4)Fe+(1/4)Ti3O5+CO (2/3)FeTiO3+C=(2/3) Fe+(1/3)Ti2O3+CO (1/2)FeTiO3+C=(1/2)Fe+(1/2)TiO+COl (1/3)FeTiO3+C=(1/3)Fe+(1/3)Ti+CO(1/4)FeTiO3+C=(1/4)Fe+(1/4)TiC+COl (1/3)Fe2O3+C=(2/3)Fe+COl 电炉还原熔炼钛铁矿的最高温度约达2000K。
从热力学上这些反应均可进行;并随温度的升高,反应的倾向均增大。
~1500k :固相反应;主要是氧化铁被还原为铁,TiO2还原很少,1500k~1800k:液相还原反应,除氧化铁被还原为铁,部分TiO2还原为低价氧化钛,1800k~:TiO2还原为低价氧化钛的量增加,并生成TiC和Ti-Fe合金l 在熔炼过程中,不同价的钛化合物是共存的,它们的数量的相互比例是随熔炼温度和还原度大小而变化。
碳矿比对熔炼过程的影响l 碳是还原铁矿石不可少的还原剂,但配比不合适将直接影响还原效果及冶炼过程。
配碳量增大,转化率升高,增大到1:3时,再增加碳含量,对转化率影响不大;配碳量过低,氧化铁还原不完全,渣中FeO过高,钛渣的品位不高;配碳量过高,氧化铁还原完全,渣中FeO 过低,钛渣的黏度增高,不利于铁和渣相分离,操作困难。
熔炼钛渣的工艺和设备l还原剂:无烟煤沥青碎块等周期性操作:捣炉加料放下电极。
送电熔炼。
放渣。
下一周期两段还原熔炼法:为提高电弧炉的生产效率和降低电耗,可采用两段还原熔炼法。
首先在回转炉或沸腾炉中让钛铁矿中大部分氧化铁在固相中被还原。
而后送入电炉进行造渣与熔化分离。
这可提高生产能力,降低电耗20%~30%。
钛渣成分的质量分数大致为:l TiO2 78%~96%l FeO 3.4%~6%l SiO2 0.88%~4%l CaO 0.28%~2%l A12O3 1.25%~3%l MgO 0.4%~8%l MnO 1%~2%l V2O5 0.15%,l Cr2O3 0.2%~1.7%钛的回收率为96%~96.5%,选择性浸出法制取人造金红石,还原锈蚀法,弱还原盐酸浸出法,弱还原硫酸浸出法还原锈蚀法工艺简介先将原料中铁的氧化物选择性地还原为金属铁,在水溶液中,以氧将铁腐蚀,生成Fe2O3·H2O。
水洗后沉积于容器的底部,利用螺旋分级等方法分离氧化铁和氧化钛,氧化钛颗粒再在高温下煅烧即为人造金红石。
锈蚀法最大的优点在于本工艺对环境污染比较轻,能耗少,成本低,因而倍受青睐。
还原焙烧-锈蚀-分离-煅烧锈蚀反应原理锈蚀反应是电化学反应。
以金属铁为基体构成短路原电池。
阳极反应:Fe=Fe2++2e , 阴极反应为:2H2O+O2+4e=4OH-由上述阴、阳极反应可得短路原电池反应。
2Fe+2H2O+O2=2Fe(OH)2Fe(OH)2再进一步被氧化,生成铁锈。
4Fe(OH)2+O2=2Fe2O3·H2O↓+2H2O 酸浸法钛精矿的还原钛精矿与还原剂在回转窑中将矿中Fe3+还原为Fe2+,还原矿中占总铁的80%~95%,然后再用酸浸出。
酸浸,弱还原盐酸浸出法,弱还原硫酸浸出法盐酸浸出法,工艺简介.用稀盐酸浸出,以实现铁与钛的初步分离。
由于氧化钛比较稳定,因此,残留在固相。
清洗固态残余物,并在高温下焙烧即得人造金红石。
浸出液中含有FeCl2,可用来制取铁红粉及再生盐酸。
盐酸返回浸出工序。
弱还原焙烧-盐酸浸出-清洗-分离-煅烧反应:预还原焙烧TiO2+ Fe2TiO5+ C=2FeTiO3+CO 浸出FeTiO3+ 2HCl= FeCl2+TiO2+ H2O 盐酸的再生将浸出液中的FeCl2用喷雾法使其热分解制取铁红粉和HCl,再用水淋洗回收HCl制取稀盐酸。
4FeCl2+4H2O+O2=2Fe2O3+8HCl硫酸浸出法工艺简介用稀硫酸浸出,以实现铁与钛的初步分离。
应将钛铁矿原料中铁的氧化物还原至二价铁含量占总铁含量的95%以上。
浸出母液可用作制取硫酸铵和铁的氧化物原料。
弱还原焙烧-硫酸浸出-清洗-分离-煅烧浸出反应焙烧TiO2+ Fe2TiO5+ C =2FeTiO3+CO浸出FeTiO3+H2SO4=FeSO4+TiO2+2H2O浸出母液处理可用作制取硫酸铵和铁的氧化物原料。
FeSO4+6NH3+(n+3)H2O+0.5O2=3(NH4)2SO4+Fe3O4+nH2O粗四氯化钛的生产l 3.1 采用氯化冶金的原因l 3.2 氯化冶金概念l 3.3 富钛料的氯化冶金原理l 3.4 氯化工艺l 3.5 沸腾氯化富钛料的设备3.1 采用氯化冶金的原因从热力学说有多种元素可以将TiO2还原,如:金属还原,碳还原但由于生产成本和其它技术条件限制了这些方法的实际应用。
正因为TiO2直接还原法无法实现大规模的工业生产,所以,才迫使人们将氯化工艺引入钛提取冶金生产过程。
卤化钛还原法金属热还原法:还原剂:锂、钙、镁、钡、铝。
但由于钛对氧的亲和力非常大,这些金属难将TiO2还原完全。
而且还原过程中新生成的金属钛易于吸收氧生成Ti-O固溶体,使金属钛的纯度不高,难得到氧小于0.10%的钛。
钾和钠还原TiO2只能获得低价氧化钛。
低价钛氧化物的稳定性:在Ti与O形成的化合物中,O原子数越少,化合物越不易被进一步还原,因此,除去这部分氧也就越困难碳还原法.碳是一种最廉价的还原剂。