三角函数最值值域问题

合集下载

三角函数中的最值问题(4种方法)

三角函数中的最值问题(4种方法)

三角函数中的最值问题(4种方法)基本方法1、直接法:形如f (x )=a sin x +b (或y =a cos x +b ),值域为[-|a |+b ,|a |+b ],形如y=asinx+bcsinx+c 的函数可反解出sinx,利用|sinx|≤1求解,或分离常数法.2、化一法:形如f (x )=a sin x +b cos x ,f (x )=a sin 2x +b cos 2x +c sin x cos x 的函数可化为f (x )=A sin(ωx +φ)的形式,利用正弦函数的有界性求解,给定x 范围时要注意讨论ωx +φ的范围,注意利用单位圆或函数图象.3、换元法:形如f (x )=a sin 2x +b sin x +c 或f (x )=a cos 2x +b sin x +c 或f (x )=a (sin x ±cos x )+b sin x ·cos x 的函数可通过换元转化为二次函数在某区间上的值域求解.4、几何法(数形结合):形如dx c bx a y ++=cos sin 转化为斜率问题,或用反解法.典型例题例1已知函数f (x )=(sin x+cos x )2+cos 2x ,求f (x )在区间.解:(化一法)因为f (x )=sin 2x+cos 2x+2sin x cos x+cos 2x=1+sin 2x+cos 2x=2sin 2 +1,当x ∈0,2 ∈由正弦函数y=sin x 当2x+π4π2,即x=π8时,f (x )取最大值2+1;当2x+π45π4,即x=π2时,f (x )取最小值0.综上,f (x )在0,上的最大值为2+1,最小值为0.例2求函数y =2+sin x +cos x 的最大值.解:(化一法)y =2+2sin(x +π4),当x =π4+2k π(k ∈Z )时,y max =2+2例3求函数f (x )=cos2x +6cos(π2-x )的最大值.解:(换元法)f (x )=1-2sin 2x +6sin x =-2(sin x -32)2+112.令sin x =t ,则t ∈[-1,1],函数y =-2(t -32)2+112在[-1,1]上递增,∴当t =1时,y 最大=5,即f (x )max =5,例4已知x 是三角形的最小内角,求函数y =sin x +cos x -sin x cos x 的最小值.解:(换元法)由0≤x ≤π3,令t =sin x +cos x =2sin(x +π4),又0<x ≤π3,∴π4<x +π4≤712π,得1<t ≤2;又t 2=1+2sin x cos x ,得sin x cos x =t 2-12,得y =t -t 2-12=-12(t -1)2+1,例5已知sin α+sin β=22,求cos α+cos β的取值范围.解:(换元法)令cos α+cos β=t ,则(sin α+sin β)2+(cos α+cos β)2=t 2+12,即2+2cos(α-β)=t 2+12⇒2cos(α-β)=t 2-32,∴-2≤t 2-32≤2⇒-12≤t 2≤72,∴-142≤t ≤142,即-142≤cos α+cos β≤142.例6求函数y =1+sin x3+cos x的值域解法一:(几何法)1+sin x3+cos x可理解为点P (-cos x ,-sin x )与点C (3,1)连线的斜率,点P (-cos x ,-sin x )在单位圆上,如图所示.故t =1+sin x3+cos x满足k CA ≤t ≤k CB ,设过点C (3,1)的直线方程为y -1=k (x -3),即kx -y +1-3k =0.由原点到直线的距离不大于半径1,得|1-3k |k 2+1≤1,解得0≤k ≤34.从而值域为[0,34].解法二:(反解法)由y =1+sin x3+cos x 得sin x -y cos x =3y -1,∴sin(x +φ)=3y -11+y2其中sin φ=-y 1+y 2,cos φ=11+y 2.∴|3y -11+y2|≤1,解得0≤y ≤34.例7求函数y =2sin x +1sin x -2的值域解法一:(分离常数法)y =2sin x +1sin x -2=2+5sin x -2,由于-1≤sin x ≤1,所以-5≤5sin x -2≤-53,∴函数的值域为[-3,13].解法二:(反解法)由y =2sin x +1sin x -2,解得sin x =2y +1y -2,∵-1≤sin x ≤1,∴-1≤2y +1y -2≤1,解得-3≤y ≤13,∴函数的值域为[-3,13].针对训练1.函数y =3-2cos(x +π4)的最大值为____.此时x =____.2.函数xxy cos -3sin -4的最大值为.3.函数f (x )=sin 2x+3cos ∈的最大值是.4.函数y =12+sin x +cos x的最大值是【解析】1.函数y =3-2cos(x +π4)的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).2.解析式表示过A (cos x ,sin x ),B (3,4)的直线的斜率,则过定点(3,4)与单位圆相切时的切线斜率为最值,所以设切线的斜率为k ,则直线方程为y-4=k (x-3),即kx-y-3k+4=+11,∴k max3.由题意可知f (x )=1-cos 2x+3cos x-34=-cos 2x+3cos x+14=-cos -+1.因为x ∈0,cos x ∈[0,1].所以当cos f (x )取得最大值1.4.∵y =12+2sin (x +π4),又2-2≤2+2sin(x +π4)≤2+2∴y ≤12-2=1+22,含参问题一、单选题1.已知函数()sin cos (0,0)62af x x x a πωωω⎛⎫=++>> ⎪⎝⎭,对任意x ∈R ,都有()f x ≤,若()f x 在[0,]π上的值域为3[2,则ω的取值范围是()A.11,63⎡⎤⎢⎥⎣⎦B.12,33⎡⎤⎢⎣⎦C.1,6⎡⎫+∞⎪⎢⎣⎭D.1,12⎡⎤⎢⎥⎣⎦【解析】()sin cos 62af x x x πωω⎛⎫=++ ⎪⎝⎭1cos 2a x x ωω++max ()f x =02a a >∴= ,())3f x x πω∴=+0,0x πω≤≤> ,333x πππωωπ∴≤+≤+,3()2f x ≤ 2233πππωπ∴≤+≤,1163ω∴≤≤.故选:A2.已知函数()()cos 0f x x x ωωω=+>,当()()124f x f x -=时,12x x -最小值为4π,把函数()f x 的图像沿x 轴向右平移6π个单位,得到函数()g x 的图像,关于函数()g x ,下列说法正确的是()A.在,42ππ⎡⎤⎢⎣⎦上是增函数B.其图像关于直线6x π=对称C.在区间,1224ππ⎡⎤-⎢⎥⎣⎦上的值域为[]2,1--D.函数()g x 是奇函数【解析】因()()cos 2sin 06f x x x x πωωωω⎛⎫=+=+> ⎪⎝⎭,当()()124f x f x -=时,12x x -最小值为4π,则()f x 的最小正周期为22T ππω==,即4ω=,所以()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,把函数()f x 的图像沿x 轴向右平移6π个单位,得()2sin 42sin 42cos 46662f x g x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,所以,()g x 为偶函数,故D 选项不正确;由4,k x k k Z πππ≤≤+∈,即,44k k x k Z πππ+≤≤∈,故()g x 在区间(),44k k k Z πππ+⎡⎤∈⎢⎥⎣⎦上为减函数,所以()g x 在区间,42ππ⎡⎤⎢⎥⎣⎦上为减函数,故A选项不正确;由4,2x k k Z ππ=+∈,即,48k x k Z ππ=+∈,所以()g x 图像关于,48k x k Z ππ=+∈对称,故B选项不正确;当,1224x ππ⎡⎤∈-⎢⎥⎣⎦时,4,36x ππ⎡⎤∈-⎢⎣⎦,则()21g x -≤≤-,所以C 选项正确.故选:C.3.已知函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦,则ω的取值范围是()A.30,2⎛⎤ ⎥⎝⎦B.3,32⎡⎤⎢⎥⎣⎦C.73,2⎡⎤⎢⎥⎣⎦D.57,22⎡⎤⎢⎥⎣⎦【解析】因为0>ω,所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,[,]4424x ππωππω-∈--因为函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦所以52244πωπππ≤-≤,解得332ω≤≤,故选:B.4.已知函数()(2)f x x ϕ=+22ππϕ-≤≤,若()0f x >在5(0,)12π上恒成立,则3(4f π的最大值为()B.0C.D.2-【解析】因为5(0,)12x π∈,故52(,)6x πϕϕϕ+∈+;由()0f x >,即1sin(2)2x ϕ+>-,得722266k x k πππϕπ-+<+<+,k Z ∈,故57(,)(2,2)666k k πππϕϕππ+⊆-++,k Z ∈,故2657266k k πϕπππϕπ⎧≥-+⎪⎪⎨⎪+≤+⎪⎩,解得2263k k πππϕπ-+≤≤+,k Z ∈;又22ππϕ-≤≤,故63ππϕ-≤≤,5.已知曲线()sin cos f x x m x ωω=+,()m R ∈相邻对称轴之间的距离为2π,且函数()f x 在0x x =处取得最大值,则下列命题正确的个数为()①当0,126x ππ⎡⎤∈⎢⎥⎣⎦时,m的取值范围是⎣;②将()f x 的图象向左平移04x 个单位后所对应的函数为偶函数;③函数()()y f x f x =+的最小正周期为π;④函数()()y f x f x =+在区间00,3x x π⎛⎫+ ⎪⎝⎭上有且仅有一个零点.故33()()42f ππϕϕ⎡⎤+++-⎢⎥⎣⎦,故3()4f π的最大值为0.故选:BA.1B.2C.3D.4【解析】函数()f x 的相邻对称轴之间的距离为2π,则周期为22T ππ=⨯=,∴22πωπ==,()sin 2cos 2f x x m x =+)x ϕ=+,其中cos ϕ=,sin ϕ=[0,2)ϕπ∈,()f x 在0x 处取最大值,则022,2x k k Z πϕπ+=+∈,0222k x πϕπ=+-,k Z ∈,①若0[,]126x ππ∈,则[2,2]63k k ππϕππ∈++,1sin 2ϕ≤≤,12解m ≤正确.②如()sin(28f x x π=+,0316x π=时函数取最大值,将()f x 的图象向左平移04x 个单位后得313()sin[2(4)sin(2)1688g x x x πππ=+⨯+=+,不是偶函数,错;③()()y f x f x =+中,()y f x =是最小正周期是π,()y f x =的最小正周期是2π,但()()y f x f x =+的最小正周期还是π,正确;④003[,44x x x ππ∈++时,()()0y f x f x =+=,因此在区间00,3x x π⎛⎫+ ⎪⎝⎭上有无数个零点,错;∴正确的命题有2个.故选:B.6.已知函数()cos 4cos 12=+-xf x x 在区间[0,]π的最小值是()A.-2B.-4C.2D.4【解析】22()cos 4cos 12cos 14cos 12(cos 1)42222x x x x f x x =+-=-+-=+-,由[0,]x π∈知,[0,]22x π∈,cos [0,1]2x ∈,则当x π=时,函数()f x 有最小值min ()2f x =-.故选:A.7.已知()cos31cos xf x x=+,将()f x 的图象向左平移6π个单位,再把所得图象上所有点的横坐标变为原来的12得到()g x 的图象,下列关于函数()g x 的说法中正确的个数为()①函数()g x 的周期为2π;②函数()g x 的值域为[]22-,;③函数()g x 的图象关于12x π=-对称;④函数()g x 的图象关于,024π⎛⎫⎪⎝⎭对称.A.1个B.2个C.3个D.4个【解析】()()cos 2cos311cos cos x x xf x x x+=+=+cos 2cos sin 2sin 12cos 2cos x x x x x x -=+=.即:()2cos 2f x x =且,2x k k Z ππ≠+∈.()2cos(4)3g x x π=+且,62k x k Z ππ≠+∈.①因为函数()g x 的周期为2π,因此①正确.②因为,62k x k Z ππ≠+∈,故() 2.g x ≠-因此②错误.③令4,3x k k Z ππ+=∈,得,124k x k Z ππ=-+∈.故③正确k ππ二、填空题8.函数()2sin()sin()2sin cos 66f x x x x x ππ=-++在区间[0,2π上的值域为__________.【解析】由11(x)sinx cosx)(sinx cosx)sin 2x2222f =-++22312(sin x cos x)sin 2x 44=-+2231sin cos sin 222x x x=-+11cos 2sin 22x x =--+1x )24π=-当[0,]2x π∈时,2[,]444x ππ3π-∈-,则sin(2)[42x π-∈-,所以11(x)[,22f ∈-.故答案为:11[,22-9.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【解析】由题意可得()02cos 2cos 02cos 211f θθ=+=+=,得cos 20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.10.函数32()sin 3cos ,32f x x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭的值域为_________.【解析】由题意,可得()3232ππf x sin x 3cos x sin x 3sin x 3,x ,,32⎡⎤=+=-+∈-⎢⎥⎣⎦,令t sinx =,t ⎡⎤∈⎢⎥⎣⎦,即()32g t t 3t 3=-+,t ⎡⎤∈⎢⎥⎣⎦,则()()2g't 3t 6t 3t t 2=-=-,当t 0<<时,()g't 0>,当0t 1<<时,()g't 0>,即()y g t =在⎡⎤⎢⎥⎣⎦为增函数,在[]0,1为减函数,又g ⎛=⎝⎭()g 03=,()g 11=,故函数的值域为:⎤⎥⎣⎦.11.(2019·广东高三月考(文))函数()cos 2|sin |f x x x =+的值域为______.【解析】2219()cos 2|sin |12|sin ||sin |2|sin |48f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,所以当1sin 4x =时,()f x 取到最大值98,当sin 1x =时,()f x 取到最小值0,所以()f x 的值域为90,8⎡⎤⎢⎥⎣⎦故答案为:90,8⎡⎤⎢⎥⎣⎦。

三类三角函数最值(值域)问题的简捷通法

三类三角函数最值(值域)问题的简捷通法
2 8
中’ 7 (l 第 1 高 版 7 擞・ 21 1 o 年 期・ 中 )
・ 解题研究 ・
三 类三 角 函数 最值 ( 域 ) 值 问题 的 简捷 通 珐
630 云 南省 玉溪 第一 中学 5 10
在竞赛和高考 中 , 我们 经常会遇 到求 如下类 型 的三 角 函数的最值 ( 域 ) 值 问题 , 如果 用常规方法来 求解 , 十 分繁琐 , 难度较大 , 甚至可能解不 出来 , 多数 同学常 常出
中。 7 (1 第 1 高 版 ? 擞・ 21 1 0 年 期・ 中 )
过程简捷 , 思维简约 , 性强 , 失为一种 好方法. , 操作 不 如
求 数 = + ( <) 函 霄
+ ( <) 詈,

ys + o <) :n . s+ :似 _ < , s c — i }( y i 。 - : 2
又设 e C的离心率 ,为 C的右准线 , B, 为 l 过 D分别 作B A上l A,E上l E, D作 D 于 D 于 过 G上B A于 G 则 由椭 ,
IE =lMI lNI旦. A I A —B =

由题设知直线 l 的倾斜角 为6 。所 以 /B E= 0 . 0, _ A 6。 .
0 ,。 的距离为 2 Y V. ② 6 。, 到直线 z (I) 求椭圆 c的焦距 ; 由直线 A B的斜 率 为√ E= 0 , 是 在 知 6。于 ( 如黝 = 2 求椭 圆 c的方程. Ⅱ) 2F百, R△ 船 中由① , tA ②式可得 cs A I o B E= A E
在 R AA B中由勾股定理得 t E
圆的第二定义知 I I :
:_ IEI _ D : 2 5 x

三角函数的最值习题精选精讲

三角函数的最值习题精选精讲

三角函数的值域或最值常见的三角函数最值的基本类型有:(1)y=asinx+b (或y=acosx+b )型,利用()1cos 1sin ≤≤x x 或,即可求解,此时必须注意字母a 的符号对最值的影响。

(2)y=asinx+bcosx 型,引入辅助角ϕ ,化为y=22b a +sin (x+ϕ),利用函数()1sin ≤+ϕx 即可求解。

Y=asin 2x+bsinxcosx+mcos 2x+n 型亦可以化为此类。

(3)y=asin 2x+bsinx+c (或y=acos 2x+bcosx+c ),型,可令t=sinx (t=cosx ),-1≤t ≤1,化归为闭区间上二次函数的最值问题。

(4)Y=d x c b x a ++sin sin (或y=dx bx a ++cos cos )型,解出sinx (或cosx ),利用()1cos 1sin ≤≤x x 或去解;或用分离常数的方法去解决。

(5)y=d x c b x a ++cos sin (y=dx c bx a ++sin cos )型,可化归为sin (x+ϕ)g (y )去处理;或用万能公式换元后用判别式去处理;当a=c 时,还可利用数形结合的方法去处理上。

(6)对于含有sinx±cosx,sinxcosx 的函数的最值问题,常用的方法是令sinx±cosx=t,2≤t ,将sinxcosx 转化为t 的函数关系式,从而化为二次函数的最值问题。

一、利用三角函数的有界性.求解这类问题,首先利用有关三角函数公式化为sin()y A x k ωϕ=++的形式.在化简过程中常常用到公式:22sin cos sin(),tan ,ba xb x x aab ϕϕϕ+=++=其中由及点(a,b)的位置确定. 例1 、(2000年高考)已知:2123sin cos 12sin y x x x x R =+⋅+∈,,求y 的最大值及此时x 的集合. 解:∵2123sin cos 12sin y x x x =+⋅+1cos 2315sin 21sin(2)44264x x x π+=++=++,∴当sin(2)16x π+=时,max 157244y=+= .此时,2262x k πππ+=+,即6x k ππ=+. 所以y 的最大值为74,此时x 的集合为{|}6x x k k Z ππ=+∈,.例2、求函数1cos 3cos xy x-=+的值域.解: 1cos 3cos x y x -=+⇒(1)cos 2y x +=-⇒2cos 1x y=-+,由|cos |1x ≤得2||11y -≤+, |1|2y +≥即,解得31y y ≤-≥或,所以函数1cos 3cos xy x-=+的值域是3][1-∞-∞ (,,+)二、利用二次函数最值性质求解这类问题,首先利用有关三角函数公式化为2sin sin y x b x c a =++的形式.例3、求函数278cos 2[,]63sin y x x x ππ=--∈-,的值域. 解:278c o s 2s i n y x x =--=278cos 2(1)cos x x ---=223,(cos 2)x --∵[,]63x ππ∈-,∴1cos [1]2x ∈,,∴3[1]2y ∈-,.例4、(90年高考)求函数sin cos sin cos y x x x x =++的最小值. 解:设sin cos x x t +=,[22]t ∈-,,则21sin cos 2x x t -=,所以()y f t ==211,2(1)t ⋅-+([2,2])t ∈-,当1[22]t =-∈-,时,y 有最小值1-.三、利用均值不等式*利用均值不等式求三角函数时,一定要注意均值不等式中的使用条件:一正、二定、三相等.例6、当0x π<<时,求sin 2cos xy x=+的最大值.解:设2223tan 0,(0),,23233x t t t x y t t π=><<=≤=⋅+则(当且仅当tan 32xt ==时取等号)。

三角函数最大值最小值

三角函数最大值最小值

三角函数最大值最小值引言三角函数是数学中常见的一类函数,包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。

这些函数在数学、物理、工程等领域中有着广泛的应用。

其中一个重要的问题就是如何确定三角函数的最大值和最小值。

本文将详细介绍三角函数的最大最小值及其求解方法。

正弦函数(sin)的最大最小值正弦函数是一个周期函数,它表达了一个圆的边缘点在坐标系中的y坐标值。

正弦函数的定义域是实数集,值域是[-1, 1]。

正弦函数的最大值为1,最小值为-1。

可以通过以下推导来证明:首先,正弦函数在任意时刻的值都在-1和1之间,即 -1 ≤ sin(x) ≤ 1。

这是因为正弦函数是周期为2π的函数,而在一个周期内,它的值始终在-1和1之间。

其次,为了找到正弦函数的最大值和最小值,我们需要找到函数在一个周期内的关键点。

正弦函数的关键点就是最大值和最小值所对应的点。

在一个周期内,正弦函数的最大值出现在x = π/2 + 2πn 的点,最小值出现在x = -π/2 + 2πn 的点,其中n为整数。

综上所述,正弦函数的最大值为1,最小值为-1。

余弦函数(cos)的最大最小值余弦函数是正弦函数的补函数,它也是一个周期函数,定义域是实数集,值域也是[-1, 1]。

余弦函数的最大值和最小值与正弦函数相同。

可以通过以下推导来证明:余弦函数在任意时刻的值也都在-1和1之间,即 -1 ≤ cos(x) ≤ 1。

这是因为余弦函数也是一个周期为2π的函数,在一个周期内,它的值始终在-1和1之间。

与正弦函数类似,余弦函数的最大值出现在x = 2πn 的点,最小值出现在x = π + 2πn 的点,其中n为整数。

综上所述,余弦函数的最大值为1,最小值为-1。

正切函数(tan)的最大最小值正切函数是一个非周期函数,定义域不包括π/2 + kπ (其中k为整数),值域是全体实数。

正切函数并没有最大值和最小值。

可以通过以下推导来证明:首先,正切函数的定义域是除去一些特殊点的全体实数。

十一种类型的三角函数最值问题(附题目详解)

十一种类型的三角函数最值问题(附题目详解)

十一种类型的三角函数最值问题1.利用三角函数的有界性求最值利用正弦函数、余弦正数的有界性:∣sinx ∣≤1,∣cosx ∣≤1,可求形如y=Asin(ωx+φ),y=Acos(Asin(ωx+φ)(A ≠0, φ≠0)的函数最值.例:已知函数y=12 cos 2x+32 sinxcosx+1,x ∈R,当函数y 取得最大值时,求自变量x 的集合.2.反函数法 例:求函数1cos 21cos 2-+=x x y 的值域[分析] 此为dx c bx a y -+=cos cos 型的三角函数求最值问题,分子、分母的三角函数同名、同角,先用反解法,再用三角函数的有界性去解。

3.配方法—---转化为二次函数求最值例:求函数y=f(x)=cos 22x-3cos2x+1的最值.4.引入辅助角法y=asinx+bcosx 型处理方法:引入辅助角ϕ ,化为y=22b a +sin (x+ϕ),利用函数()1sin ≤+ϕx 即可求解。

Y=asin 2x+bsinxcosx+mcos 2x+n 型亦可以化为此类。

例:已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合。

[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解。

5. 利用数形结合 例: 求函数y xx=+s in c o s 2的最值。

解:6、换元法例:若0<x<2π,求函数y=(1+1sinx )(1+1cosx )的最小值.7. 利用函数在区间内的单调性8. 例: 已知()π,0∈x ,求函数xx y sin 2sin +=的最小值。

[分析] 此题为xax sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解。

高考数学一轮复习三角函数与解三角形中的最值(范围)问题

高考数学一轮复习三角函数与解三角形中的最值(范围)问题

,∵函数f(x)=cos(2x+φ)(0<φ<π)在区间
π π
− ,
6 6
上单调递
π
− ≥ 0,
π
π
π

减,∴ − + , + ⊆[0,π],即ቐ 3π
解得 ≤φ≤ .令f(x)=cos
3
3
3
3
+ ≤ π,
3
π
π π
(2x+φ)=0,则2x+φ= +kπ(k∈Z),即x= - + (k∈Z),又函数f
4
解:(2)f(x)=-
1 2 5
sin−
+ +a.
2
4
17
, 5
4 ⇒൝4
()max ≤
由题意得ቐ
()min ≥ 1
17
,
4 ⇒2≤a≤3,
+ ≤
−1 ≥ 1
即实数a的取值范围是[2,3].
三角形中的最值(范围)问题
考向1 利用三角函数的性质求最值(范围)
【例4】 △ABC中,sin2A-sin2B-sin2C=sin Bsin C.
重难专攻(四)
三角函数与解
三角形中的最值(范围)问题
三角函数与解三角形中的最值(范围)问题是高考的热点,主要涉及:
(1)三角函数式的最值(范围)问题;(2)利用三角函数性质求某些量的最
值(范围);(3)三角形中的最值(范围)(周长、面积等),其求解方法多
样,一般常用方法有:(1)利用三角函数的单调性(正、余弦函数的有界性)
3
3
答案
3
3

3
3
2
1+ 2

|解题技法|
sin+

三角函数求值域专题

三角函数求值域专题

三角函数求值域专题求三角函数值域及最值的常用方法:(1)一次函数型:或利用为:y asinx bcosx a2b2sin(x ),利用函数的有界性或单调性求解;化为一个角的同名三角函数形式,(1):y 2sin(3x —) 5,y sin xcosx12(2)y 4sin x 3cosx(3) _____________________________________ .函数在区间上的最小值为_1.(4 )函数且的值域是—(,1] [1,)(2)二次函数型:化为一个角的同名三角函数形式的一元二次式,利用配方法、换元及图像法求解;二倍角公式的应用:女口. ( 1) y sin x cos2x3(2)函数的最大值等于3.4(3) _____________________________ .当时,函数的最小值为_4 •(4).已知k v—4,则函数y = cos2x + k(cos x-1)的最小值是 1 •(5).若,则的最大值与最小值之和为2— _ •(3) 借助直线的斜率的关系用数形结合求解;a sin x b型如f(x) 型。

此类型最值问题可考虑如下几种解法:ccos x d①转化为asinx bcosx c再利用辅助角公式求其最值;②利用万能公式求解;③采用数形结合法(转化为斜率问题)求最值。

例1 :求函数y sinx的值域。

cosx 2结合图形可知,此函数的值域是[』3,』3]。

33例2.求函数的最小值.解法一:原式可化为,得,即, 故,解得或(舍),所以的最小值为. 解法二:表示的是点与连线的斜率,其中点 B 在左半圆上,由图像知,当 AB 与半圆相切时,最小, 此时,所以的最小值为.(4) 换元法•识,易求得过Q 的两切线得斜率分别为 解法2:将函数ycosx sinx_变形为 2y cosx sin x2y ,二 sin( x )2y 1 y 2|sin(x )| 理 1V 1 y2(2y)y2,解得:彳,故值域是3]解法 3:利用万能公式求解: 由万能公式sin x -1 2t cosx 口;,代入1 t 2sinx得到cosx 22t2厂沪则有3yt2t0知:当t0,则y满足条件;当0,由24 12y 0 ,乜,故所求函数的值域是3解法4:利用重要不等式求解:由万能公式sinx -12t T , cosx.代入t 2sinx得到cosx 20,2t1 3t 20时,则y 0,满足条件;当t 0时,2 1" t 3t——,如果t >3t)2 ([)(3t)2 ~1 (:3t)2 2、于,此时即有如果t2、( ;)( 3t)彳,此时有0 y 于。

三角函数最值与值域专题

三角函数最值与值域专题

三角函数最值与值域专题三角函数的最值问题是高考的一个重要内容,要求掌握求三角函数最值的常见方法。

类型一:利用1cos 1sin ,≤≤x x 这一有界性求最值。

例1:求函数xx y sin 21sin --=的值域。

解:由xx y sin 21sin --=变形为(1)sin 21y x y +=+,知1y ≠-,则有21sin 1y x y +=+,21|sin |||11y x y +=≤+22221||1(21)(1)1y y y y +⇒≤⇒+≤++203y ⇒-≤≤,则此函数的值域是2[,0]3y ∈-例2,若函数cos y a x b =+的最大值是1,最小值是7-,求a,b练习:1,求函数1cos 3cos xy x-=+的值域 3][1-∞-∞(,,+)2,函数x y sin =的定义域为[a ,b],值域为]21,1[-,则b-a 的最大值和最小值之和为bA .34πB .π2C .38π D .π4类型二:x b x a y cos sin +=型。

此类型通常可以可化为sin cos )y a x b x x ϕ=+=+求其最值(或值域)。

例1:求函数3sin 4cos ,(0,)2y x x x π=+∈的最值。

解:343sin 4cos 5sin(),cos ,sin 55(,),(3,5]2y x x x x y ϕϕϕπϕϕϕ=+=+==+∈+∈2,求函数)3sin()6sin(ππ++-=x x y (R x ∈)的最值。

解法:)12sin(2]4)6sin[(2)6cos()6sin(πππππ+=+-=-+-=x x x x y ,∴函数的最大值为2,最小值为2-。

练习:1,函数y=3sin(x+20°) +5sin(x+80°)的最大值是: ( c ) A 、215B 、216C 、7 D 、82,已知函数x x f 2sin )(=,)62cos()(π+=x x g ,直线x =t (t ∈⎥⎦⎤⎢⎣⎡2,0π)与函数f (x )、g (x )的图像分别交于M 、N 两点,则|MN |的最类型三:)0(sin sin 2≠++=a c x b x a y 型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,进而转化为二次函数在闭区间的值域问题。类似
地也可以转化为关于cos x tan x 的二次函数。需要
注意的是中间变量的取值范围。
3
2 ,最小值是
1 2
,求函数 y2
4a sin 3bx
的最大值。
5、已知函数 y a b cos(2x )(b 0)
6
的最大值为 3 ,最小值为 1
2
2
(1)求a、b的值。
(2)求函数 g(x) 4a sin(bx )
3
的最小值并求出对应的x的集合。
综上是可化为 y Asin(wx ) B
三角函数的最值与值域
1、求函数
f
(x)2 sin(2x6)在6
, 6
上的值域。
2.函数
y
2 sin(2x
6
)
a
1在
6
,
6
上的最大值与最小值之和为3,求a的值。
3、已知 f (x) a sin(2x ) b(a 0)
6

6
,
6
上的值域为
5,1,求a、b的值。
4、已知函数 y1 a b cos x 的最大值是
形式的,即一个角的一个三角函数的有关三角 函数最值问题。
6、已知 x , 求 f (x) (cos x)2 sin x 的最值。
4
7、求函数
y
(tan
x)2
10
tan
x
1,
x
4
,
3
的值域。
8、已知
f (x) (cosx)2 a sin x, x
4
,求 f (x)
的最值。
本题将所求的最值问题转化为关于sin x 的二次函数
相关文档
最新文档