浅谈数学期望的计算与应用
数学期望的原理及应用

数学期望的原理及应用数学期望是概率论中的一个基本概念,它描述了一个随机变量的平均水平或预期值。
具体地说,数学期望通过将随机变量的可能取值与相应的概率加权求和来计算。
数学期望的原理可以简单地表示为:对于一个离散型随机变量X,它的数学期望E(X)等于X每个可能取值xi乘以对应的概率p(xi)的累加和。
数学期望的计算公式可以表示为:E(X) = x1*p(x1) + x2*p(x2) + ... + xn*p(xn)其中,x1, x2, ..., xn为随机变量X所有可能的取值,p(x1), p(x2), ..., p(xn)为对应的概率。
对于连续型随机变量,数学期望的计算方法类似,只是将求和换成了求积分。
具体地说,对于一个连续型随机变量X,它的数学期望E(X)等于X在整个取值范围上的每个取值x乘以对应的概率密度函数f(x)的乘积的积分。
数学期望的计算公式可以表示为:E(X) = ∫x*f(x)dx数学期望的应用非常广泛,以下列举了一些常见的应用场景:1. 风险评估:数学期望可以用于评估风险,通过计算损失的数学期望来衡量风险的大小。
例如,在金融领域中,投资者可以通过计算股票的预期收益来评估投资的风险和回报。
2. 制定决策:数学期望可以帮助人们在面临多个选择时做出决策。
通过计算不同选择的数学期望,可以找出最具有潜在利益的选择。
3. 设计优化:数学期望可以帮助优化设计过程。
例如,在工程领域中,可以通过计算产品的预期性能来指导设计参数的选择和调整。
4. 分析:数学期望被广泛应用于分析中。
游戏参与者可以通过计算不同下注策略的数学期望来制定最终的下注策略。
5. 统计推断:数学期望是许多重要的统计量的基础,如方差、标准差等。
通过计算数学期望,可以进行更深入的统计分析和推断。
6. 优化调度:在运输和调度问题中,数学期望可以用来优化资源的分配和调度。
通过计算任务完成时间的数学期望,可以制定最优的任务调度策略。
总之,数学期望是概率论中一个重要的工具和概念,它可以帮助我们理解和分析随机现象,并在很多实际问题中发挥重要作用。
数学期望的计算及应用

数学期望的计算及应用数学与应用数学111 第四小组引言:我们知道,随机变量的概率分布是随机变量的一种最完整的数学描述,而数学期望又是显现概率分布特性的最重要的特征数字之一。
因此,掌握数学期望的计算并应用他来分析和解决实际问题显得尤为重要。
在学习了概率论以后,我们计算数学期望一般有三种方法:1.从定义入手,即E(X)x k p k;2.应用随机变量函数的期望公式k 1E(q(x))q( x k ) p k 3. 利用期望的有关性质。
但是还是会碰到许多麻烦,这里我们将k 1介绍一些解决这些难题的简单方法。
在现实生活中,许多地方都需要用到数学期望。
如果我们可以在学会怎么解决数学期望的计算之后,将数学期望应用到现实生活中。
就可以解决许多问题,例如农业上,经济上等多个方面难以解决的难题。
下面就让我们来看看,除了最常用的三种计算方法之外还有哪些可以计算较为棘手的数学期望的方法。
1.变量分解法[1]如果可以把不易求得的随机变量 X 分解成若干个随机变量之和,应用E( X 1E2... E n ) E( X 1 ) E ( X 2 )...E ( X n ) 再进行求解得值,这种方法就叫做变量分解法。
这种方法化解了直接用定义求数学期望时的难点问题,因为每一种结果比较好计算,分开来计算便可以比较简单的获得结果。
例题 1 :从甲地到乙地的旅游车上载有达一个车站没有旅客下车,就不停车,以20 位旅客,自甲地开出,沿途有10 个车站,如到X 表示停车次数,求E(X).( 设每位旅客在各个车站下车是等可能的)分析:汽车沿途10 站的停车次数X 所以可能取值为0,1,.,10,如果先求出X 的分布列,再由定义计算E(X) ,则需要分别计算{X=0} ,{X=1},,{X=10} 等事件的概率,计算相当麻烦。
注意到经过每一站时是否停车,只有两种可能,把这两种结果分别与0,1 对应起来,映入随机变量X i每一种结果的概率较易求得。
浅谈数学期望在生活中的应用

浅谈数学期望在生活中的应用浅谈数学期望在生活中的应用一、数学期望的定义引例某射手在一次射击比赛中共发射了10发子弹,其中有一发中7环,有二发中8环,有三发中9环,有4发中10环,求该射手在此次射击比赛中每发子弹击中的平均环数. 解平均环数这里的平均环数并不是这10发子弹击中的4个值的简单平均,而是以取这些值的次数与射击总次数的比值为权重的加权平均.在某种程度上说,这个加权平均可以用来衡量该射手的射击水平.二、数学期望的应用1.数学期望在疾病普查中的应用在一个人数为N的人群中普查某种疾病,为此要抽验N个人的血,如果将每个人的血分别检验,则共需检验N次,为了能减少工作量,一位统计学家提出一种方法:按k个人一组进行分组,把同组k个人的血样混合检验,如果这混合血样呈阴性反应,就说明此k个人的血都呈阴性反应,此k个人都无此疾病,因而这k个人只需要检验一次就够了,相当于每个人检验1/k次,检验的工作量明显的减少了.如这混合血样呈阳性反应,就说明此k个人中至少有一个人的血呈阳性反应,则在对这k个人的血样分别进行检验,因而这k个人的血要检验1+k次,相当于每个人检验1+1/k 次,此时增加了检验次数,假设该疾病的发病率为р且得此病相互独立,试问此种方法能否减少平均检验次数? 分析看能否减少平均检验次数,可以求出每个人检验次数的数学期望,根据数学期望大小再判断.解设以k个人为一组时,组内每个人检验次数为x,则x是一个随机变量,其分布规律为所以每人平均检验次数为 .由此可知,只要选择k使就可减少验血次数,而且也可以通过不同的发病率р计算出最佳分组人数,此外,也得知:发病率越小,分组检验的效益越大.在二战期间,美国对新兵验血就是使用这种方法来减少工作量的.2.数学期望在揭开赌场骗局中的应用在我国南方流行一种称为“捉水鸡”的押宝,其规则如下:由庄家摸出一只棋子放在密闭的盒中,这只棋子可以是红的或黑的将、士、象、车、马、炮之一.赌客把钱押在一块写有上述12个字(六个红字,六个黑字)的台面的某一个字上,押定后,庄家揭开盒子露出原来的棋子,凡押中者(字和颜色都对)以一比十得奖金,不中者其押金归庄家,此押宝赌博对谁有利? 分析这道题的思想简单,与0-1分布一样.解不妨设一个赌徒押了10元,而收回奖金X元,若押中,X=100;若不中,X=0.X的概率分布列为因此数学期望元.由于支付10元,和期望收入8.33元不等.因此这是不公平的赌博,明显对庄家有利,事实上,当赌徒进入赌场,他面临的都是这种不公平的赌博,否则赌场的巨额开支业主的高额利润从何而来.3.数学期望在通信中的应用设无线电台发出的呼唤信号被另一电台收到的概率为0.2,信号每隔5秒钟拍发一次,直到收到对方的回答为止.若发出信号到收到对方回答信号之间至少要经过16秒时间,求在双方建立联系之前已经拍发的呼唤信号的平均次数.分析明显,此题是考查几何分布数学期望的求法,但是又隐藏陷阱“若发出信号到收到对方回答信号之间至少要经过16秒时间”,意味随机变量X最小取值为4.解设双方建立联系之前已经拍发的呼唤信号次数为X,则X~Ge(0.2).因为有16秒相隔时间,X的最小拍发次数为4. 于是X的分布列为 P(X=K)=0.2×0.8k-4,k=4,5,... X的期望为因此在双方建立联系之前已经拍发的呼唤信号的平均次数为8次.这个例题虽是很简单的一个求数学期望的问题,但是“若发出的信号到收到对方回答信号之间至少要经过16秒时间”这个条件极易被忽略.上面这几题都是关于离散型随机变量数学期望一些性质应用的例子,接下来的4、5两个例子都是关于连续型随机变量数学期望一些性质,还要注意函数是分段函数. 4.数学期望在交通上的应用地铁列车到达某一站时刻为每个整点的第5分,25分,45分,设某一乘客在早上8点到9点之间随时到站候车,求他的平均候车时间.分析此题主要考查分段函数求期望的方法,必须先求出分段函数的表达式及X的密度函数.解设他到达地铁站的时刻为X,他候车时间为Y,则由题意知X~U(0,60),则有又知Y是变量X的函数, 由期望的性质知利用此例题可准确地对乘客的平均等待时间进行了预测,可以更好地指导实际,为人民群众服务. 5.数学期望在决策中的应用设某种商品每周需求量是区间[10,30]上的均匀分布随机变量,而经销商店进货数量为区间[10,30]中的某一整数,商店每销售一单位商品可获利500元,若供大于求时则削价处理,每处理一单位商品亏损100元,若供不应求时,可从外部调剂供应,此时每一单位商品获利300元,为使商品获利润值不少于9280元, 试确定最少进货多少?分析本题主要考查分段函数数学期望的求法,但是此处应注意分段函数的求法及均匀分布的密度函数的表达式. 解设进货数量为a,利润为g(X),则X的密度函数为得21≤a≤26.故所获利润期望值不少于9280元,最少进货为21单位. 接下来继续看6、7两个应用随机变量的和式分解这个性质解题的例子.这种方法可以解决用期望的定义不能直接求,甚至无法求解的题目,大大降低了求期望的难度,即使随机变量不是同分布也可以运用这一性质. 6.数学期望在电梯运行中的应用一架电梯载有8位乘客,从一楼上升,每位乘客在20层的每一层都可以下电梯,如果没人下,那一层电梯就不停.设每位乘客在各层楼下电梯是等可能的,且各乘客是否下电梯是相互独立的.以X表示电梯停下的次数,求E(X).分析显然X是一个离散型的随机变量,X=1,2,…,20,直接不易求出.不妨转换思想,若电梯在i层停,则Xi=1,否则Xi=0,那么 .现在用数学期望的性质易求出E(X). 解设随机变量则即xi(i=1,2,...,20)的分布规律为由此可知本例将随机变量分解为多个相互独立的随机变量之和的形式,再利用数学期望的性质.这个处理方法在实际应用中具有普遍意义.如果不用和式分解法几乎无从着手. [。
[整理版]数学期望在实际生活中的应用
![[整理版]数学期望在实际生活中的应用](https://img.taocdn.com/s3/m/0482266e1611cc7931b765ce05087632311274fa.png)
摘要在现代快速发展的社会中,数学期望作为一门重要的数学学科,它是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。
通过几个例子,阐述数学期望在实际生活中的应用包括经济决策、彩票抽奖、求职决策、医疗、体育比赛等方面的一些实例,体现出数学期望在实际生活中颇有价值的应用。
通过探讨数学期望在实际生活中的应用,以起到让大家了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。
所谓的求数学期望其实就是去求随机变量的以概率为权数的加权平均值,而平均值这一概念又是我们在实际应用中最常用的一个指标,在预测中使用是很具有科学性的。
关键词:数学期望随机变量性质实际应用AbstractIn the rapid development of modern society, the mathematical expectation as an important mathematical subject, it is one of the important digital features of random variables, is also one of the basic characteristics of random variables. Through several examples, in this paper, the mathematical expectation in the practical application of life including economic decision-making, lottery tickets, job, health, sports, etc. In some instances, manifests the mathematical expectation valuable application in real life. Through discuss the application of mathematical expectation in real life to play let everybody understand the knowledge and practice closely linked human rich background, personal experience "mathematics really useful". So-called mathematical expectation is to actually ask for random variables of the probability weighted average of the weight, and mean value in actual application of this concept is our one of the most commonly used indicators, used in the forecast, it is very scientific.Key words: Mathematical Expectation; Stochastic V ariable; quality; Practical Application目录摘要 (1)Abstract (2)第一章绪论 (4)1.1数学期望的起源及定义 (4)1.2数学期望的意义 (5)第二章数学期望前瞻 (5)2.1离散型 (5)2.2连续型 (6)2.3随机变量的数学期望值 (7)2.4单独数据的数学期望的算法 (8)2.5数学期望的基本性质 (8)第三章数学期望在实际中的应用 (9)3.1 经济决策中的应用 (9)3.2 彩票、抽奖问题 (10)3.2.1彩票问题 (10)3.2.2抽奖问题 (11)3.3 求职决策问题 (12)3.4医疗问题 (13)3.5体育比赛问题 (15)结论 (16)参考文献 (16)致谢 (18)第一章 绪论1.1数学期望的起源及定义早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。
数学期望的原理及应用

数学期望的原理及应用1. 原理数学期望是概率论中的一个重要概念,用于描述随机变量的平均值。
在概率论中,随机变量是指在一个随机实验中,可以随机地取不同值的变量。
数学期望可以看作是随机变量的平均取值,它是对随机变量可能取值的加权平均。
数学期望的计算公式为:$$E(X) = \\sum_{i=1}^{n} X_i \\cdot P(X_i)$$其中,X i是随机变量的某个取值,P(X i)是X i对应的概率。
数学期望的求解步骤如下:1.确定随机变量的全部可能取值;2.计算每个取值的概率;3.计算每个取值与其对应概率的乘积;4.将上述乘积相加即得到数学期望。
2. 应用数学期望在各个领域都有广泛的应用,以下是数学期望在一些具体问题中的应用案例:2.1 统计学在统计学中,数学期望是一个重要的统计指标,用于衡量一个随机变量的中心位置。
例如,在对一个随机样本的分析过程中,可以通过计算样本的数学期望来了解样本的平均水平。
数学期望还被广泛应用于估计总体的参数,例如通过样本的平均值来估计总体的均值。
2.2 金融学在金融学中,数学期望在投资组合的管理中发挥重要作用。
通过计算各个投资标的的数学期望,可以评估投资标的的预期收益。
基于这些数学期望,投资者可以根据自己的风险偏好进行资产配置,以达到最优的投资组合。
2.3 工程学在工程学中,数学期望可以应用于各种实际问题的分析。
例如,在电力系统中,可以通过计算电力负荷的数学期望来确定电力系统的设计容量。
在工程项目的成本估算中,也可以通过计算工程成本的数学期望来进行成本控制和决策。
2.4 计算机科学在计算机科学中,数学期望被广泛用于分析算法的性能。
通过计算算法的平均运行时间的数学期望,可以评估算法的效率和性能。
数学期望还被用于建模和优化网络传输的时延和吞吐量。
3. 总结数学期望作为概率论中的一个重要概念,具有广泛的应用领域。
它是随机变量的平均取值,描述了随机变量的中心位置。
通过计算随机变量的数学期望,可以用于统计分析、金融投资、工程项目和计算机科学等领域的问题解决。
数学期望的计算方法及其应用

数学期望的计算方法及其应用摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。
本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。
本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。
关键词:离散型随机变量 连续型随机变量 数学期望 计算方法 ABSTRACT :第一节 离散型随机变量数学期望的计算方法及应用1.1 利用数学期望的定义,即定义法[1]则随机变量X的数学期望E(X)=)(1ini ix p x ∑=学期望不存在[]2例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。
推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。
试问推销人在用船运送货物时,每箱期望得到多少?按数学期望定义,该推销人每箱期望可得=)(X E 10×0.6+8×0.2+5×0.1-6×0.1=7.5元1.2 公式法对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望。
数学期望的应用

数学期望的应用期望在字典里的解释是:对人或事物的未来有所等待和希望。
天下每个父母都希望自己儿子能成龙,女儿能成凤,所以他们在子女的课外培养上不惜血本,可效果总事与愿违。
每个赌徒都希望能在赌场中打捞一笔,结果两老本也陪个精光,甚至背上一身债,这是为什么呢?政府在出台政策时,往往是有多个方案可以选择,是选哪一个最好呢?面对这些问题是,往往可以用数学期望解答。
数学定义:如果X是在机率空间(Ω, P)中的一个随机变量,那么它的期望值E(X) 的定义是:E(X)=∫ΩXdp在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。
换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。
“奥数”是之前不久网上很热门的一个话题。
奥数对于一般孩子来说“又怪又难”,奥数生父母陪送陪读赔高学费,却仍然不乏热捧者。
由于择校机制的实质性存在,广州小升初、初升高、高升大,奥数都或明或暗搭上了升学快车,因此奥数“捷径”就这样捆住了渴望读名校的父母子女,养肥了大大小小的培训机构。
正是因为重点中学亲“奥数”远“普通”班级的“依附性”,促使家长不惜巨资把孩子送进奥数班级“陷阱”;又因为奥数班级“拔苗助长”,致使一些学生听不懂、做晕头,更多的学生在厌倦、在逃避、在荒废时光。
奥数教育,除了打造极少数“精英”学生外,制造了广大学生的一片悲哀。
家长在考虑是否送子女去奥数班时可以用数学期望算一下奥数对子女的帮助。
设读奥数的总效益为E,奥数对儿女有正面影响的概率为P1,正面效应为E1,有负面影响的概率为P2,负面效益为E2。
则E=P1*E1-P2*E2由于P1很小,或接近于零。
所以读奥数所获得的效益期望通常为负值。
本人认为,除非发现子女在数学方面有天赋,否则不要送子女去读奥数班,因为事实总父母和子女的愿望相背。
金融危机笼罩着世界,许多国家都陷入了困境,企业纷纷破产,许许多多百姓丢掉了他们的饭碗。
浅谈数学期望在生活中的应用

科技 论 坛 lI f
浅谈数学期望在生活中的应用
谢 彬
( 北京冶金设备研 究设计总院, 北京 10 2 ) 0 09
摘 要: 学期望是随机 变量最重要 的数 学特征之一。通过几个例子 , 数 阐述 了概率论与数理统计 中的数学期 望在 生活中的应用, 内容包括 工程 承包决策、 罚款额度的确定、 井平均逃生时间的计算、 矿 商场进货数量决策和识破街头诱人游戏等。 关键词 : 学期望 ; 率; 数 概 随机 变量 ; 应用 数学期望是概率统计 中随机变量最基本的 数学特征之一, 是随机变量按概率的加权平均, 又 称期望或均值, 它是简单算术平均的一种推广。 在 生活中, 有许多问题可以利用数学期望来解决。 1承包工程的决策 某工程队计划承包一项工程。 若三天完成可 获利 80 元 , 00 四天完成可获利 50 元 , 00 五天完成 要被罚款 10 0 00 元。由以往经验知 , 该工程队三 天、四天、五天完成此项工程的概率分别为 o 、 3 0、 , . o 获利金额的概率分布见下表。 如果你是 52 问, 经理, 愿意承包这项工程吗? 计算出利润的数学期 通道( 概率是 1 )花时间 t /, 2 就可以成功逃生 ; 若 针停在阴影区 才能得奖, 假设圆盘周长为 10 m 0e , 开始他选择了第一条通道( 概率也是 v )回到 圆周上的每一阴影弧长为 2 e , 2, . m共有四条阴影弧 5 原处后他不会再选第一条通道了, 必然走人第二 线, 总阴影弧长为 1c , 0m 假设圆盘质地均匀 , 则每 条通道 , 经过时间 tt i + 后可以成功逃生。这样, 其 次转动指针后 , 它停在阴影区的概率为: lc / P O m - = l O m= .。 O c O 1 成功逃生花费时间的数学期望为: t + ) + 显然 , + t t。 为了能够尽陕逃生 , 特 的老板的平均获利 。 5 若学生交给老板 1 . 1 元钱,转动指针一次, 别当t 。 的值较大时, 被困者对走过的路做标记是 必要的。 森林里的迷路者, 边走边用小刀在树上留 获奖的概率是 Q , 1 获奖后老板奖励给学生 2 元 钱。老板的毛收益为 l , 元 支出的数学期望为: 2 x 下有意义的痕迹, 就是这个道理。 010 元 。 . . 老板的平均净收益为 : 0 = .元。 =2 1 .0 -2 8 4商场进货数量的决策 某商场计划在盛夏来临之前 , 完成一批某种 5 若学生交 2 . 2 元钱, 转动指针两次, 就是进 望就知道 答案 了。 夏装的采购。根据经验, 如果进货量太小 , 最后可 行了 2 重贝努利试验,指针的转动结果服从 n 2 =, 能会出现无货可卖的局面 , 从而失去获利的机会 ; P O 的二 -. 1 项分布 , 见下表。 老板的毛收益为2 元, 兰垂! ! : P 03 05 02 2 . + 60 10 2 x1 0 5 老板 如果进货量太大, 很可能夏季已经过去了, 该批夏 支出的数学期望为: 0 81x . = . 元 , 承包此项工程获利的数学期望是 :00 0 + 装还有剩余, 80 x 3 20 =. 元。 -. 4 5 最后只能降价处理甚至赔本甩卖 , 的平均净收益为 : - 2 1 8 因 50x5 1000-90 , 000 —00x.20 元 就是说, 2 - 虽然有被罚 为 放到第二年再卖 , 增加了 商场的保管成本, 万一 苎 里 垦 ! ! 墅 ! P 0 8 1 0l 0O 8 1 款的可能, 但平均说来 , 承包这样的工程是可以获 到了第二年服装的样式过时, 损失会更大。 5 若学生交 3 _ 3 元钱, 转动指针三次 , 进行了 利的。 假设基于往年 的情况和专业人员对近期市 重贝 努利试验,指针的转动结果服从 n3P O =, . =1 2罚款额度的确定 场形势的评估 , 在夏季 , 该商场至少能卖出 50 0 件 3 某些不法商贩每卖一批不合格 的货物可获 该种夏装 。 至多 10 件 , 0 0 卖出的件数近似均匀分 的二项分布, 见下表。老板的毛收益为 3元 , 支出 利 10 0 , 0 0 元 被查处 的概率为 0 , 2 即不被查处 的 布, 可知夏装销售件数的概率密度函数为 : 的数学期望为 :x . 3 1x.2+ O x. 11 2 2 0 4 +6O 7 lO O 0 =. 2 O O 0 概率为 0 , 罚款额为多少时, . 问, 8 基本上可 以禁止 ㈧”l,s 1 元, 老板的平均净收益为: 1 2 1 8 3 . = . 元。 —0 9 : J5 x o o ≤o …0 o X 0次 1 次 2次 3次 这些商贩的不法行为? o,它 其 。 假设在夏季每卖出—件平均 P o7 9 2 02 3 00 7 0 O 4 .2 0l 假设罚款额为 F 为了禁止该类不法行为 , , 应 获利 10 , 5 元 夏季内没有卖出去的衣服平均每件 该让不法 商贩获利 的数学期 望小于等 于 0 即 亏损 6 元。 , 0 现在要确定进货的件数 y , 使得商场的 5 若学生交 4 . 4 元钱, 转动指针四次 , 进行了 100 )-x2 0得到 F 400 , 00,. F0 _ , A8 < > _ 00 元 则罚款额 平均利润最大。显然,肯定介 于 50 1 0 y 0 到 0 之 4 0 重贝努利试验, , 同理 可以得到指针转动结果的 至少应是 400 00 元。我们常说要加大查处力度和 间。设 X 为实际销售件数 , > 时。 当x y 也就是当 - 实 概率分布 , 见下表。 这时 , 老板的平均净收益为: - 4 - 加重处罚 , 就是要增大不法行为被查处的概率和 际销售量大于等于进货量时 , 衣服不会有剩余 , (x. 1 +6 0 4 6 10 0 06 6 0 O 0 1= 每 2 0 9 6 1 x. 8 +0 x . 3 + 0 x. 0) 2 0 0 O 增加罚款额度 , 让不法商贩获利的数学期望变为 件衣服都可获利 ; xy 也就是当实际销售量 2 2 。 当 < 时, 2 元
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( ") ! " ( %" $ 解! ! * ! ! ! %{! ( &}( ! ! $ ( #)( $ ( ( ’ + " "& &!
& )# , # # ’ + " "& , ’ + " "& ) # ’ +", " ・" + # ( )( # ・ (# # & (% & ) # ! )# &! & ( %( & ) # ) ! ! " & ( %( & ) # )
{
& ( * ) & +) ! % - * - #, # - + -& $ ! ! %! ! ! ! ! ! 其它
解 利用随机变量函数的数学期望公式: ! ! $ ( , )( $ ( ), ), * & # * ! & ) !& #)( ( . ) *& + ) ( ) *, +) -*-+ ( -+ ( . ) *& +) ・ ( * ) & +) -* $ #. + + # % +, +,
* * *# *
-+ &
* *
(
# & *& & * /" ( . ) & ) *. + ) & *& +& ) -* ( $ ". + + %
例 .! 设在规定时间间隔内, 某一电气设备用于最大负荷的时间 ! ( 分) 是一个随机变量, 概率密度 为:
万方数据 ・ 0/ ・
第 %% 卷& & & & & & & & & & & & & & & 徐丽君: 浅谈数学期望的计算与应用& & & & &
$ " ’+ [ $% , &% ] !% %" " " 其它
( ( #)( (
( ’) *’ ( * )*’ ** - )& $% !%
$ $ $ &% ( #%% ’ * $%% $) *’ ) ( !%% $ ) &%% ’) *’ !% $% !% $
*
*
$ $ $ ! &% ! ( [ &%% ’! * $%% $’] $% ) [ !%% $’ ) $’% ’ ] $ ( * . + ’ $ ) &’% $ ) ’!’% !% !% 当$( &’% ( !& + && 时, ( ( #)最大 ! / .+ ’
该题的解法具有典型性, 求解时并没有直接利用 的概率分布, 仅利用数学期望的性质。当然, 也可以 先求 ! 的概率分布, 然后再根据定义求数学期望。然而, 求概率分布需要相当复杂的计算, 并且由此概率 分布求期望并非易事。
!" 数学期望在实际生活中的应用
数学期望在实际中有许多应用。例如, 商店的进货量与需求量服从某些概率分布, 我们关心的利润的 数学期望。又如车站乘客到达时间服从某些概率分布, 车每固定时间一班, 我们关心的是乘客平均等待时 间。解决这一类问题关键在建立利润 ( 时间)" 与进货量 ! , 需求量 #( 乘客到达的时间 ! ) 的函数关系, 然后利用已知分布计算相应函数的数学期望, 即可求解。因此, 遇到此类问题时, 首先要分清哪个是基本 的随机变量, 其分布是什么, 再寻找要求的变量与上述随机变量的函数关系, 再求数学期望。 &% ] 上的均匀分布, 经销商店进货数量为[ $% , &% ] 的某 例 #" 设某种商品每周需求量 服从区间[ $% , 一整数, 商店每销售一单位商品可获利 ’%% 元; 若供大于求, 则削价处理, 每处理一单位商品亏损 $%% 元; 为使商品利润的数学期望最大的进货量。 若供不应求, 则可从外部调剂供应, 此时每单位商品获利 &%% 元, 解" 设进货量为 $, $% ’$’&% " " 设利润为 #, 则 #(
’$$$ ( " ’$$$ ( ")
( $ )的数学期望时, 一般不需要先求 & 的概率分布, 而应像例 " 、 例’ 一 计算随机变量 $ 的函数 & ! ’ 样, 直接利用 $ 的概率分布求 # ( &)! # (’ ( $) )。 " ( % 分布未知时, 数学期望的计算 例- & 一台设备由三大部件构成, 在设备运转中各部件需要调整的概率为 $ ( "$ , $( % 和 $( ’, 假设各 部件是相互独立, 以 $ 表示同时需要调整的部件数, 试求 $ 的数学期望。 解& 要求 $ 的数学期望, 便要求出 $ 的分布律 & & & & & & 设 )" !{部件 * 需要调整} +{$ ! $ }! + ( )" )% )’ )! + ( )" ) + ( )% ) + ( )’ )! $ ( . , $ ( / , $ ( 0 ! $ ( #$! $ ( . , $ ( / , $ ( ’ * $ ( . , $ ( % , $ ( 0 * $ ( " , $ ( / , $ ( 0 ! $ ( ’./ & & + ( )" )! $ ( " , + ( )% )! $ ( % , + ( )’ )! $ ( ’& & $ 可能取 $ , ", %, ’ ( )" )% )’ )* + ( )" )% )’ )* + ( )" )% )’ ) & & +{$ ! " }! + ( )" )% )’ )! $ ( " , $ ( % , $ ( ’ ! $ ( $$1 & & +{$ ! ’ }! + & & +{$ ! % }! + ( )" )% )’ )* + ( )" )% )’ )* + ( )" )% )’ ) & & & & ! " ( +{$ ! $ }( +{$ ! " }( +{$ ! ’ } ! " ( $ ( #$- ( $ ( ’./ ( $ ( $$1 ! $ ( $.%
{
( ! * Βιβλιοθήκη ) ・&%%" $’! ’&% ’%% $ ) ’%% ! * ( $ * !) ・$%%" $% ’! ’$
(
又 ! , %[ $% , &% ] " " " ( & ’)( )&% $
{
{
!%% $ ) &%% !" $’! ’&% #%% ! * $%% $" $% ’! + $
第 && 卷第 " 期! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 攀枝花学院学报! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! &%%1 年 #& 月 234’ &&’ 53’ "! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 63789:4 3; <:9=>?>7: @9?AB8C?DE! ! ! ! ! ! ! ! ! ! ! ! ! ! FBG’ &%%1
"" -$ ) & ( * ! ", %, ’, …, "% ) "%
( 则& # ( $ )! # ( $" * $% * … * $"% ! # ( $" )* ( $% )* … * # ( $"% )! "% ・ " (
万方数据
[
"" -$ ) ( "% ・ /#・
]
第 !! 卷" " " " " " " " " " " " " " " " " " " " 攀枝花学院学报" " " " " " " " " " " " " " " " " " 第 # 期
{
.%% .% ( ( 分) #% # 万 方数据 ・ 1#・
第 $$ 卷" " " " " " " " " " " " " " " 徐丽君: 浅谈数学期望的计算与应用" " " " "
" " " " " " " " " 第- 期
例 !" 假设某工厂一部机器一天内发生的故障的概率为 # ! $ , 机器发生故障每天停止工作, 若一周按 $ 个工作日无故障, 可获利润 %# 万元; 发生一次故障, 利润 & 万元; 发生两次故障所获利润 # 元, 发生三次 或三次以上故障就要亏损 $ 万元, 求一周内利润的数学期望。 解" 设 " 表示发生故障的天数, " ’( # &, #! $)