回归分析
统计学中的回归分析

统计学中的回归分析在统计学中,回归分析是一种重要的数据分析方法。
它用于探索自变量与因变量之间的关系,帮助我们理解变量之间的相互作用以及预测未来的趋势。
本文将介绍回归分析的基本概念、原理和应用。
一、回归分析的基本概念回归分析是通过建立数学模型来描述自变量与因变量之间的关系。
自变量是我们在问题中感兴趣的变量,而因变量是我们想要预测或解释的变量。
回归分析可以帮助我们确定自变量如何影响因变量,并找到最佳的拟合曲线或平面来描述这种关系。
回归分析的基本假设是,自变量与因变量之间存在线性关系,并且观测误差服从正态分布。
基于这个假设,我们可以使用最小二乘法来拟合回归模型,使得观测值与预测值之间的残差平方和最小化。
二、回归分析的原理1. 简单线性回归简单线性回归是最基本的回归分析方法,用于研究只包含一个自变量和一个因变量的情况。
我们可以通过绘制散点图来观察两个变量之间的关系,并使用最小二乘法拟合一条直线来描述这种关系。
2. 多元线性回归多元线性回归适用于包含多个自变量和一个因变量的情况。
通过拟合一个多元线性模型,我们可以同时考虑多个自变量对因变量的影响,并研究它们之间的相互作用。
3. 非线性回归非线性回归用于描述自变量与因变量之间的非线性关系。
在这种情况下,我们可以根据问题的特点选择适当的非线性回归模型,并使用最小二乘法进行参数估计。
三、回归分析的应用回归分析在各个领域都有广泛的应用。
以下是一些常见的应用示例:1. 经济学中的回归分析经济学家常常使用回归分析来研究经济现象。
例如,他们可以通过回归分析来研究GDP与各种经济指标之间的关系,以及利率、通胀率等因素对经济增长的影响。
2. 医学研究中的回归分析医学研究中的回归分析可以用于探索治疗方法与患者恢复速度之间的关系。
通过收集患者的相关数据,如年龄、性别、治疗时间等,可以建立多元线性回归模型来预测患者的康复时间。
3. 市场营销中的回归分析市场营销人员可以利用回归分析来确定产品价格与销量之间的关系。
七种回归分析方法个个经典

七种回归分析方法个个经典什么是回归分析?回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。
这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。
例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。
回归分析是建模和分析数据的重要工具。
在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。
我会在接下来的部分详细解释这一点。
我们为什么使用回归分析?如上所述,回归分析估计了两个或多个变量之间的关系。
下面,让我们举一个简单的例子来理解它:比如说,在当前的经济条件下,你要估计一家公司的销售额增长情况。
现在,你有公司最新的数据,这些数据显示出销售额增长大约是经济增长的2.5倍。
那么使用回归分析,我们就可以根据当前和过去的信息来预测未来公司的销售情况。
使用回归分析的好处良多。
具体如下:1.它表明自变量和因变量之间的显著关系;2.它表明多个自变量对一个因变量的影响强度。
回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。
这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。
我们有多少种回归技术?有各种各样的回归技术用于预测。
这些技术主要有三个度量(自变量的个数,因变量的类型以及回归线的形状)。
我们将在下面的部分详细讨论它们。
对于那些有创意的人,如果你觉得有必要使用上面这些参数的一个组合,你甚至可以创造出一个没有被使用过的回归模型。
但在你开始之前,先了解如下最常用的回归方法:1.Linear Regression线性回归它是最为人熟知的建模技术之一。
线性回归通常是人们在学习预测模型时首选的技术之一。
在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。
线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。
数据分析中的回归分析方法

数据分析中的回归分析方法数据分析是当今社会中非常热门的研究领域之一,而回归分析是数据分析中最为常见的方法,是分析变量之间关系的一种模型。
本文将介绍回归分析的定义、类型、作用以及具体实现流程。
一、回归分析的定义回归分析是一个广泛使用的方法,它用于检测两个或多个变量之间的关系。
回归分析的一般形式为y = f(x) + ε,其中 y 是因变量,x 是自变量,f(x) 是函数关系,ε 是误差。
回归分析可以帮助人们了解和预测这些变量之间的关系。
二、回归分析的类型回归分析通常分为线性回归和非线性回归。
线性回归是一种简单的方法,它假设自变量和因变量之间具有线性关系。
非线性回归则包括各种模型,它们假设自变量和因变量之间具有不同的关系。
1. 线性回归线性回归是一种最常用的回归分析方法,它假设自变量和因变量之间有一个线性关系。
这种关系可以用一个数学方程来表示,即 y = mx + b,其中 m 是斜率,b 是截距。
m 和 b 可以通过最小二乘法来估计,最小二乘法是一种优化方法,它寻找最小化残差平方和的参数估计值。
残差是观察值和估计值之间的差异。
2. 非线性回归非线性回归是一种更复杂的回归分析方法,它假设自变量和因变量之间具有非线性关系。
非线性回归包括各种模型,例如指数模型、对数模型和多项式模型等。
这些模型通常需要通过试验和逼近来获得参数估计值。
三、回归分析的作用回归分析可以用于很多领域,例如经济学、医学、物理学和社会科学等,它可以帮助人们了解和预测变量之间的关系。
回归分析也可以用于探索变量之间的因果关系,即自变量是否会导致因变量的变化。
此外,回归分析还可以用于建立预测模型,以便预测未来数据的变化趋势。
四、回归分析的实现流程回归分析的实现流程通常包括以下步骤:1. 收集数据首先,需要收集自变量和因变量的数据。
数据可以从各种来源获得,如实验、调查和观察等。
2. 确定回归模型接下来,需要选择合适的回归模型。
如果自变量和因变量之间具有线性关系,则可以使用线性回归模型;如果具有非线性关系,则需要选择适当的非线性回归模型。
回归分析

回归分析的模型
按是否线性分:线性回归模型和非线性回归模型 按自变量个数分:简单的一元回归,多元回归 基本的步骤:利用SPSS得到模型关系式,是否 是我们所要的,要看回归方程的显著性检验(F 检验)和回归系数b的显著性检验(T检验),还要 看拟合程度R2 (相关系数的平方,一元回归用R Square,多元回归用Adjusted R Square)
(Prob(event) <0.5 预测事件将不会发生, > 0.5 预测事件将会发生)
补充:回归分析
以下的讲义是吴喜之教授有 关回归分析的讲义,很简单, 但很实用
定量变量的线性回归分析
对例1(highschoo.sav)的两个变量的数据进行线性回归, 就是要找到一条直线来最好地代表散点图中的那些点。
b0为常数项 b1、b2、…、称为y对应于x1、x2、…、xn的偏回归系数 用Adjusted R2调整判定系数判定一个多元线性回归方程的拟合程度:
用来说明用自变量解释因变量变异的程度(所占比例)
一元线性回归模型的确定:一般先做散点图(Graphs ->Scatter>Simple),以便进行简单地观测(如:Salary与Salbegin的关系) 若散点图的趋势大概呈线性关系,可以建立线性方程,若不呈线 性分布,可建立其它方程模型,并比较R2 (-->1)来确定一种最佳 方程式(曲线估计)
关系是否有线性特点
Graphs ->Scatter->Simple X Axis: Salbegin Y Axis: Salary
2. 若散点图的趋势大概呈线性关系,可以建立线性回归模型
Analyze->Regression->Linear Dependent: Salary Independents: Salbegin,prevexp,jobtime,jobcat,edcu等变量 Method: Stepwise
回归分析方法总结全面

回归分析方法总结全面回归分析是一种常用的统计分析方法,用于建立一个或多个自变量与因变量之间的关系模型,并进行预测和解释。
在许多研究领域和实际应用中,回归分析被广泛使用。
下面是对回归分析方法的全面总结。
1.简单线性回归分析:简单线性回归分析是最基本的回归分析方法之一,用于建立一个自变量和一个因变量之间的线性关系模型。
它的方程为Y=a+bX,其中Y是因变量,X是自变量,a是截距,b是斜率。
通过最小二乘法估计参数a和b,可以用于预测因变量的值。
2. 多元线性回归分析:多元线性回归分析是在简单线性回归的基础上扩展的方法,用于建立多个自变量和一个因变量之间的线性关系模型。
它的方程为Y = a + b1X1 + b2X2 + ... + bnXn,其中n是自变量的个数。
通过最小二乘法估计参数a和bi,可以用于预测因变量的值。
3.对数线性回归分析:对数线性回归分析是在简单线性回归或多元线性回归的基础上,将自变量或因变量取对数后建立的模型。
这种方法适用于因变量和自变量之间呈现指数关系的情况。
对数线性回归分析可以通过最小二乘法进行参数估计,并用于预测因变量的对数。
4.多项式回归分析:多项式回归分析是在多元线性回归的基础上,将自变量进行多项式变换后建立的模型。
它可以用于捕捉自变量和因变量之间的非线性关系。
多项式回归分析可以通过最小二乘法估计参数,并进行预测。
5.非线性回归分析:非线性回归分析是一种更一般的回归分析方法,用于建立自变量和因变量之间的非线性关系模型。
这种方法可以适用于任意形式的非线性关系。
非线性回归分析可以通过最小二乘法或其他拟合方法进行参数估计,用于预测因变量的值。
6.逐步回归分析:逐步回归分析是一种变量选择方法,用于确定最重要的自变量对因变量的解释程度。
它可以帮助选择最佳的自变量组合,建立最合适的回归模型。
逐步回归分析可以根据其中一种准则(如逐步回归F检验、最大似然比等)逐步添加或删除自变量,直到最佳模型被找到为止。
回归分析

回归分析1、回归分析的概念在工农业生产和科学研究中,常常需要研究变量之间的关系。
变量之间的关系可以分为两类:确定性关系、非确定性关系。
确定性关系就是指存在某种函数关系。
然而,更常见的变量之间的关系存在着某种不确定性。
例如:商品的销售量与当地人口有关,人口越多,销售量越大,但它们之间并没有确定性的数值关系,同样的人口,可能有不同的销售量。
这种既有关联,又不存在确定性数值关系的相互关系,就称为相关关系。
回归分析就是研究变量之间相关关系的一种数理统计分析方法。
在回归分析中,主要研究以下几个问题: (1)拟合:建立变量之间有效的经验函数关系; (2)变量选择:在一批变量中确定哪些变量对因变量有显著影响,哪些没有实质影响; (3)估计与检验:估计回归模型中的未知参数,并且对模型提出的各种假设进行推断; (4)预测:给定某个自变量,预测因变量的值或范围。
根据自变量个数和经验函数形式的不同,回归分析可以分为许多类别。
2、一元线性回归⏹ 回归系数的最小二乘估计已知(x1, y1),(x2 ,y2),...,(xn, yn),代入回归模型得到: 一元线性回归模型给定一组数据点(x1, y1),(x2 ,y2),...,(xn, yn),如果通过散点图可以观察出变量间大致存在线性函数关系,则可以建立如下模型:其中a,b 称为一元线性回归的回归系数;ε表示回归值与测量值之间的误差。
针对该模型,需要解决以下问题: (1)如何估计参数a,b 以及σ2; (2)模型的假设是否正确?(3)如何应用所求的回归方程对试验指标进行预测。
⏹ 回归系数的最小二乘估计已知(x1, y1),(x2 ,y2),...,(xn, yn),代入回归模型得到: 采用最小二乘法(即使观测值与回归值的离差平方和最小):⎩⎨⎧++=),0(~2σεεN bX a Y 2,~(0,),1,2,...,i i i i y a bx N i n e e s =++=1221111112111(,)2[()]0min (,)[()](,)2[()]011ˆˆˆn i i n n i i i i n i i i i i i n i i n n i i ii i n n n i i i ii i i Q a b y a bx a Q a b y a bx Q a b x y a bx b a y b x y n n na b x y a x b x x y e ==========ì锒ï=--+=ïï¶ï==-+ íï¶ï=--+=ïï¶ïî=-=-ìïï+=ïïï揶íïï+=ïïïîå邋åå邋邋1111221ˆ1n i n n n i i i ixy i i i nn xxbx x y x y L n b L ====ìïïïïïïïïí-ïï==ïïïå邋⏹ 回归系数估计量的性质⏹ 样本相关系数及其显著性检验显然:样本相关系数R 的符号决定于Lxy ,因此与相关系数b 的符号一致。
回归分析
1
p
e1
e
e2
en
1 x11
X
1
x12
1 x1n
xp1
xp2
xpn
• 我们得到的是一组实测p个变量的样本,利用这 组样本(n次抽样)对上述回归模型进行估计, 得到的估计方程为多元线性回归方程,记为:
nb0
b
n i 1
xi
n i 1
yi
n
n
n
b0
i 1
xi
b
i 1
xi 2
i 1
xi
yi
(3)
(3)式称为求回归系数的标准方程组。
回归系数也可直接表示为:
b0 y bx
n
b
xi yi nxy
气温T 0.9 1.2 2.2 2.4 -0.5 2.5 -1.1 0 6.2 2.7 3.2 -1.1 2.5 1.2 1.8 0.6 2.4 2.5 1.2 -0.8
环流指标 32 25 20 26 27 24 28 24 15 16 24 30 22 30 24 33 26 20 32 35
气温T
• 方差分析表明,预报量y的变化可以看成由 前期因子x的变化所引起的,同时加上随机 因素e变化的影响,这种前期因子x的变化影 响可以用回归方差的大小来衡量。如果回 归方差大,表明用线性关系解释y与x的关系 比较符合实际情况,回归模型比较好。
(4)式两边同时乘以n变成各变量离差平方和的关系。
什么是回归分析?
什么是回归分析?
回归分析是一种统计学方法,用于探索和建立变量之间的关系。
它主要用于预测一个或多个自变量对因变量的影响。
回归分析可以
确定这些变量之间的线性关系,并利用这些关系进行预测和解释。
在回归分析中,自变量是独立变量,可以通过实验或观察进行
测量。
因变量则是依赖于自变量的变量。
回归分析的目标是通过对
自变量和因变量之间的关系进行建模,来预测和解释因变量的变化。
回归分析可以应用于各种领域和问题,例如经济学、金融学、
社会科学等。
它可以帮助研究人员了解不同变量之间的关系,并使
用这些关系进行预测和决策。
回归分析有多种方法,如简单线性回归、多元线性回归、逻辑
回归等。
每种方法都有自己的假设和计算方法。
研究人员需要根据
具体的问题和数据选择适当的方法进行分析。
总而言之,回归分析是一种重要的统计学工具,可以探索和建
立变量之间的关系,并利用这些关系进行预测和解释。
它在许多领
域中都有广泛的应用,可以帮助研究人员进行深入的数据分析和决策支持。
《回归分析 》课件
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。
回归分析
回归分析回归分析(Regression Analysis )是研究因变量y 和自变量x 之间数量变化规律,并通过一定的数学表达式来描述这种关系,进而确定一个或几个自变量的变化对因变量的影响程度。
简约地讲,可以理解为用一种确定的函数关系去近似代替比较复杂的相关关系,这个函数称为回归函数,在实际问题中称为经验公式。
回归分析所研究的主要问题就是如何利用变量X ,Y 的观察值(样本),对回归函数进行统计推断,包括对它进行估计及检验与它有关的假设等。
在SPSS 中的“Analyze ”菜单下的“Regression ”项是专门用于回归分析的过程组。
单击该项,将打开“Regression ”的右拉式菜单,菜单包含如下几项:1.Linear 线性回归。
2.Curve Estimation 曲线估计。
3.Binary Logistic 二元逻辑分析。
4.Multinomial Logistic 多元逻辑分析。
5.Ordinal 序数分析。
6.Probit 概率分析。
7.Nonlinear 非线性估计。
8.Weight Estimation 加权估计。
9.2-Stage Least Squares 两段最小二乘法。
本课程将介绍其中的“Linear ”、“Curve Estimation ”和“Nonlinear ”项过程的应用。
一元回归分析在数学关系式中只描述了一个变量与另一个变量之间的数量变化关系,则称其为一元回归分析。
其回归模型为i i i bx a y ε++=,y 称为因变量,x 称为自变量,ε称为随机误差,a ,b 称为待估计的回归参数,下标i 表示第i 个观测值。
若给出a 和b 的估计量分别为b aˆ,ˆ则经验回归方程:ii x b a y ˆˆˆ+=,一般把i i i y y e ˆ-=称为残差, 残差i e 可视为扰动ε的“估计量”。
例:湖北省汉阳县历年越冬代二化螟发蛾盛期与当年三月上旬平均气温的数据如表1-1,分析三月上旬平均温度与越冬代二化螟发蛾盛期的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回归分析的主要目的是要通过样本回归函数(模型)SRF尽 可能准确地估计总体回归函数(模型)PRF。
• 估计量(Estimator):一个估计量又称统计量 (statistic),是指一个规则、公式或方法,以 用来根据已知的样本所提供的信息去估计总体参 数。在应用中,由估计量算出的数值称为估计 (值)(estimate)。 • 样本回归函数SRF的随机形式为:
2、随机误差项的方差2的估计
由于随机项i不可观测,只能从i的估计——残差 u (ei ) i ˆ u 出发,对总体方差进行估计。
i
可以证明,2的最小二乘估计量为
2
u
2 i
n2
它是关于2的无偏估计量。
ˆ 在随机误差项 的方差 2 估计出后,参数 0
ˆ 和 1 的 方差 和 标准差 的估计量分别是:
经典线性回归模型(CLRM)的基本假定 • 假定1:回归模型对参数是线性的 E(ui | X i ) 0 • 假定2:干扰项的均值为零。即, • 假定3:同方差性或 u i 的方差相等。即 • 2
Var (ui | X i ) E[ui E (ui ) | X i ] E (ui2 | X i ) 2
Y(支出)
55
65
79
80
102
110
120
135
137
150
X(收入)
80
100
120
140
160
180
200
220
240
260
Y(支出)
70
80
94
103
116
130
144
152
165
178
• 样本回归函数SRF:
ˆ ˆX ˆ Y i 1 2 i
ˆ 为E(Y|Xi)的估计量, 其中,Y ˆ 为 的估计量, ˆ 为 的估计量
三、参数估计量的概率分布及随机干扰项方差的估计
ˆ ˆ 和 1、参数估计量 0 1 的概率分布
ˆ ~ N ( , 1 1
x
2
2 i
)
ˆ ~ N ( 0 0
X , n x
2 i 2 i
2)
ˆ / x
2
1
2 i
ˆ
0
2 X i2
n x i2
ˆ
1
的样本方差:
2 2 ˆ S ˆ
1
2 x i
ˆ ˆ S ˆ 1 的样本标准差:
1
x
2 i
ˆ
0
的样本方差:
2 2 2 2 ˆ S X n x ˆ i i
0
ˆ ˆ S ˆ 0 的样本标准差:
0
X i2 n x i2
• 四、OLS 统计量的性质:高斯- 马尔柯夫 定理 • 在CLRM假定下,在所有线性无偏估计量中, OLS估计量有最小方差,即OLS是BLUE (Best Linear Unbiased Estimator)。
• 不完全决定的原因在于:
还有其他影响因素 行为的随机性 世界本是确定的,由一套完备的规律有机组成, 只是由于我们对这些规律缺乏认识,才感到了随 机性、不可确定性的无处不在,才需要用随机的 方法对世界进行描述。比如通过采用随机项的方 法把那些不可知的因素纳入模型。这是一种无奈 的选择,并非世界本来如此。 • 回归模型体现了实用的立场,并不具有哲学意义
1
ˆ ˆ 2( Yi n 1 2 Xi) 0 ˆ ˆ Yi n 1 2 Xi
ˆi2 ) ( u ˆ ˆ X )( X ) 2 (Yi 1 2 i i ˆ
2
ˆ X ˆ X 2) 2( (Yi X i 1 i 2 i
• 假定4:各个干扰项无自相关。即 cov(ui,u j | X i , X j ) E[ui E (ui | X i )][u j E (u j | X j )] • E (u | X )(u | X ) 0
i i j j
• 假定5: u i 和 X i 的协方差为零。即 • cov(ui , X i ) E[ui E (ui )][ X i E ( X i )]
E[ui ( X i E ( X i ))] E (ui X i ) E (ui ) E ( X i ) E (ui X i ) 0
• 假定6:观测次数必须大于待估计的参数个数。 • 假定7:解释变量X的必须要有变异性。即一个样本中, Xi不能完全相同。 • 假定8:模型没有设定误差。 • 假定9:没有完全的多重共线性,即解释变量之间没有完 全的线性关系。
2 ˆ ˆ 2( Yi X i X X 1 i 2 i 0 2 ˆ ˆ Yi X i X X 1 i 2 i
可得到以下正规方程(Normal equation) :
ˆ ˆ Y n X ˆ ˆ Y X X X
估计
ˆ ˆ X u ˆ SRF : Y i 1 2 i i
PRF : Yi 1 2 X i ui
ˆ ˆ X u ˆ u ˆi Y ˆi Yi 1 2 i i ˆ ˆ X ) ˆ Y ( ˆi Yi Y 残差u i i 1 2 i
第二章 回归分析
第一节 概论
• 一、回归分析 • 分析因变量与解释变量之间的统计依赖关 系,主要内容是: • 1.根据样本观测值对模型参数进行估计,求 得回归方程; • 2. 对回归方程、参数估计值进行显著性检 验; • 3.利用回归方程进行预测。
• 二、统计关系与确定关系
在回归分析中,得到因变量与自变量之间的依赖关系是统 计依赖关系,而不是确定关系或函数关系。 • 作物产量与气温、降雨、阳光、施肥等是什么关系? • 牛顿的引力定律是什么关系? 确定性关系是指一个变量的变化能完全决定另一个变量的 变化: 价格一定时,销量与销售额 利息率一定,存入本金与到期本息 • 更多出现的情况是:存在密切联系但并非完全决定 居民收入与消费密切相关,但不能完全决定消费 广告费支出与销售额密切相关,但不能完全决定销售额
总体回归线、样本数据点和相应的误差项:
Y Y4 E(Y|X) = 0 + 1X . u4 {
Y3 Y2
u2 {.
.}u3
Y1
.
} u1
X1
X
2
X
3
X
4
XHale Waihona Puke 第二节 双变量回归模型:估计
一、普通最小二乘法(Ordinary Least Squares,OLS) 基本思路:用样本回归函数估计总体回归函数。以
i 1 2 i 2 2 i
ˆ (X X ) Y 2 i 两边求和,并同除n,可得 ˆ Y Y ˆi的均值为零。 (3)残差u 由方差最小的一阶条件: ˆ ˆ X) 2 (Y 0
i
1
2
i
ˆ ˆ X 0 ˆi Yi u 1 2 i
ˆ 不相关。 ˆi 与Y (4)u i ˆi 与X i 不相关。 (5)u
ˆ 和 ˆ 使残差的平方和最小。 估计出的参数 1 2
ˆ 和 ˆ , 要求 : 即寻找 1 2
2 2 2 ˆ ˆ ˆ ˆ min : ui (Yi Yi ) (Yi 1 2 X i )
时,真实值
求解这一最小化问题,根据最大化的一阶条件:
ˆi2 ) ( u ˆ ˆ X ) 2 (Yi 1 2 i ˆ
其中, X和Y分别为X、Y的均值, xi (X i X)和yi (Yi Y)为离差。
ˆ 和 ˆ 称为最小二乘估计量(OLS估计)。 1 2
2、 OLS样本回归线的性质:
(1)通过Y和X的样本均值。 ˆ ˆ X Y
1 2
ˆ的均值等于实测的Y的均值: (2)Y ˆ ˆ X (Y ˆ X) ˆ X ˆ Y
ˆ ˆ X u ˆ u ˆ ˆi Yi Y 1 2 i i i
其中
ˆi u
表示(样本)残差项(residual)。
SRF是PRF的近似估计。 为了使二者更为接近,即要使
ˆ 尽可能接近 , 尽可能接近 ˆ 1 1 2 2
Y
Yi
ˆ Y i
E(Y|Xi)
ui
ˆi u
SRF: ˆ ˆ X ˆ Y i 1 2 i PRF:E(Y|Xi)=1+2Xi
• 在Y对X的简单线性回归中,我们通常称X为:
–自变量(Independent Variable)或者 –右手边变量(Right-Hand Side Variable)或 –解释变量(Explanatory Variable)或 –回归量(Regressor)或 –共变量(Covariate)或 –控制变量(Control Variables)
E(Y|X) 是x的线性方程,对于任何的 X,Y的分布以E(Y|X)为中心
Y
f(Y)
.
X1 X2
. E(Y|X) = + X
0 1
样本回归函数(SRF) • 由于在大多数情况下,我们只知道变量值的一个样 本,要用样本信息的基础上估计PRF。(表)
X(收入) 80 100 120 140 160 180 200 220 240 260
i i 1 2 i i 1 i 2
2 i
解出
ˆ 和 ˆ ,可得到估计值。 1 2
二、参数的估计(点估计):OLS估计量
1、解上述正规方程组得到估计值:
ˆ 2
( X X )(Y Y ) x y (X X ) x
i i i 2 2 i i