抛物线专题复习讲义与练习

合集下载

抛物线知识点总结及练习

抛物线知识点总结及练习

抛物线知识点总结及练习一、抛物线的定义:平面上给予一直线L 及L 外一定点F ,则平面上所有到直线L 的距离恰等于到定点F 的距离之所有动点P 所形成的图形就称为抛物线,其中L 称为准线,F 称为焦点。

二、名词的认识:(一)对称轴﹕通过焦点F 且与准线L 垂直之直线M ,又简称为轴。

(二)顶 点﹕抛物线与对称轴的交点V 。

(三)焦 距﹕焦点F 与顶点V 的距离VF 。

(四)弦﹕抛物线上任取相异两点A 、B 的连线段。

(五)焦弦﹕过焦点F 的弦AC 。

(六)正焦弦﹕垂直于对称轴的焦弦MN 。

(注) 正焦弦长 MN 是焦距 FV 的 4 倍.三、抛物线的标准式:2y ax bx c =++ 配方 2()y a x h k =-+四、抛物线方程式:标准式焦点准线图形24y cx = F (,0)c :L x c =-0c >0c <24x cy = F (0,)c:L y c =-0c >0c <观念延伸:平移后的抛物线之方程式与其图形则会变成?标准式图形2y k c x h-=-()4()c<c>02-=-x h c y k()4()c<c>0例1:右图是一张科学家所记录的草图。

草图描绘着一颗绕着太阳运行之彗星的轨迹,其中的A、B、C、D、E 五点是科学家观察到彗星所在的位置。

经过仔细的计算,这颗彗星所运行的轨迹是一条抛物线,太阳位于其焦点且其准线是一条水平线。

则根据这张草图,彗星在被观察到的五点A、B、C、D、E与太阳之距离的大小顺序为何?【练习题】右图为一抛物线的部分图形, A、B、C、D、E个点中有一为其焦点。

试判断何点是其焦点?例2:求满足下列各条件的抛物线方程式:(1)焦点 F (2,0),准线:2L x =- (2)焦点 F (0,3)-,准线:3L y =.【练习题】求满足下列各条件的抛物线方程式:(1) 焦点 F (1,0)-,准线:1L x = (2) 焦点 F (0,4),准线:4L y =-例3:求抛物线216y x =-的顶点、焦点、准线与正焦弦长。

高中数学复习专题讲解与练习-----抛物线定义的应用

高中数学复习专题讲解与练习-----抛物线定义的应用
设其方程为 x2 = 2py(p > 0) ,则 p =1,解得 p = 2 .∴圆心M的轨迹方程为 x2 = 4y . 2
2. 直线 y = k(x−1)与抛物线 y2 = 4x 交于 A, B 两点,若 AB = 16 ,则 k = __________. 3
【答案】:± 3
3. 已知点 是抛物线 的对称轴与准线的交点,点 为抛物线的焦点,点 在抛物线上且满足 ,若 取最大值时,点 恰好在以 为焦点的双曲线上,则双曲线的离心率为( )
证明: 是 的等差中项.
【分析】:先化简
得到
,再根据线段 的中垂线的性质得到

把这两个式子结合起来即可证明 是 的等差中项.
【解析】:设
,由抛物线定义知
又 中垂线交 轴于 ,故

因为 ,所以



即 , 是 的等差中项.学-科网 【点评】:由抛物线定义将 m 转化为 AB 的横坐标的表达式,再利用垂直平分线的性质得到另外一组表达式, 化简后即可得到所证目标. 【规律总结】: 与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点 到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物
所以最小值为4 + 2 −1 = 5 .
6. 设 , 分别为曲线 上不同的两点, ,若
,且
,则
__________. 【答案】:8
7.
过抛物线C : y2
= 4x 的焦点 F
的直线l 与抛物线C
交于P,Q 两点,与其准线交于点M
,且 uuuuv FM
=
uuuv 3FP


uuuv FP

高考数学复习考点知识讲解与专题练习61---抛物线

高考数学复习考点知识讲解与专题练习61---抛物线

高考数学复习考点知识讲解与专题练习抛物线考试要求 1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质.知识梳理1.抛物线的定义(1)平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)其数学表达式:{M||MF|=d}(d为点M到准线l的距离).2.抛物线的标准方程与几何性质图形标准方程y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0)p的几何意义:焦点F到准线l的距离性质顶点O(0,0)对称轴y=0 x=0焦点F⎝⎛⎭⎪⎫p2,0F⎝⎛⎭⎪⎫-p2,0F⎝⎛⎭⎪⎫0,p2F⎝⎛⎭⎪⎫0,-p2离心率e=1准线方程 x =-p 2 x =p 2 y =-p 2 y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向向右向左向上向下[常用结论与微点提醒]1.通径:过焦点且垂直于对称轴的弦长等于2p ,通径是过焦点最短的弦.2.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝ ⎛⎭⎪⎫p 2,0的距离|PF |=x 0+p 2,也称为抛物线的焦半径.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( )解析 (1)当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线,而非抛物线.(2)方程y =ax 2(a ≠0)可化为x 2=1a y ,是焦点在y 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫0,14a ,准线方程是y =-14a .(3)抛物线是只有一条对称轴的轴对称图形.(4)一条直线平行抛物线的对称轴,此时与抛物线只有一个交点,但不相切. 答案 (1)× (2)× (3)× (4)× (5)√2.(老教材选修2-1P72A1改编)顶点在原点,且过点P (-2,3)的抛物线的标准方程是________________.解析 设抛物线的标准方程是y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43,所以y 2=-92x 或x 2=43y . 答案 y 2=-92x 或x 2=43y3. (老教材选修2-1P67A3改编)抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.解析 设P (x 1,y 1),则|PF |=x 1+2=5,得x 1=3,y 1=±2 6.故满足条件的点的个数为2. 答案 24.(2019·全国Ⅱ卷)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p =1的一个焦点,则p =( )A.2B.3C.4D.8解析 由题意知,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,椭圆的焦点坐标为()±2p ,0, 所以p2=2p ,解得p =0(舍去)或p =8. 答案 D5.(2020·山东名校联考)已知F 是抛物线y 2=x 的焦点,A ,B 是抛物线上的两点,且|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( ) A.34 B.1 C.54 D.74解析 如图所示,设抛物线的准线为l ,AB 的中点为M ,作AA 1⊥l 于点A 1,BB 1⊥l 于点B 1,MM 1⊥l 于点M 1,由抛物线的方程知p =12,由抛物线定义知|AA 1|+|BB 1|=|AF |+|BF |=3,所以点M 到y 轴的距离为|MM 1|-p 2=12(|AA 1|+|BB 1|)-p 2=12×3-14=54,故选C. 答案 C6.(2019·昆明诊断)已知抛物线方程为y 2=8x ,若过点Q (-2,0)的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________.解析 由题意知,直线l 的斜率存在,设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,当k =0时,显然满足题意;当k ≠0时,Δ=(4k 2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k<0或0<k≤1,因此k的取值范围是[-1,1]. 答案[-1,1]考点一抛物线的定义、标准方程及其性质【例1】(1)已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是()A.y2=±22xB.y2=±2xC.y2=±4xD.y2=±42x(2)(多选题)过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,且|AF|=3|BF|,则直线AB的斜率为()A.2B.3C.- 2D.- 3(3)动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为__________.解析(1)由已知可知双曲线的焦点为(-2,0),(2,0).=2,设抛物线方程为y2=±2px(p>0),则p2所以p=22,所以抛物线方程为y2=±42x.故选D.(2)如图所示,当点A在第一象限时,过A,B分别向抛物线的准线作垂线,垂足分别为D,E,过A作x轴的垂线,与EB交于点C,则四边形ADEC为矩形.由抛物线定义可知|AD|=|AF|,|BE|=|BF|,设|AF|=3|BF|=3m,所以|AD|=|CE|=3m,|AB|=4m,在Rt△ABC中,|BC|=2m,所以∠ABC=60°,所以直线l的斜率为3;当点B在第一象限时,同理可知直线l 的斜率为- 3.(3)设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与到直线x=-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y2=4x.答案(1)D(2)BD(3)y2=4x规律方法 1.应用抛物线定义的两个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)抛物线焦点到准线的距离为p.2.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.3.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.【训练1】(1)设抛物线y2=2px的焦点在直线2x+3y-8=0上,则该抛物线的准线方程为()A.x=-4B.x=-3C.x=-2D.x=-1(2)(2020·佛山模拟)已知抛物线x 2=2py (p >0)的焦点为F ,准线为l ,点P (4,y 0)在抛物线上,K 为l 与y 轴的交点,且|PK |=2|PF |,则y 0=________.解析 (1)直线2x +3y -8=0与x 轴的交点为(4,0),∴抛物线y 2=2px 的焦点为(4,0),∴准线方程为x =-4.(2)作PM ⊥l ,垂足为M ,由抛物线定义知|PM |=|PF |,又知|PK |=2|PF |,∴在直角三角形PKM 中,sin ∠PKM =|PM ||PK |=|PF ||PK |=22,∴∠PKM =45°,∴△PMK 为等腰直角三角形,∴|PM |=|MK |=4,又知点P 在抛物线x 2=2py (p >0)上,∴⎩⎨⎧py 0=8,y 0+p2=4,解得⎩⎪⎨⎪⎧p =4,y 0=2. 答案 (1)A (2)2考点二 与抛物线有关的最值问题多维探究角度1 到焦点与定点距离之和(差)最值问题【例2-1】 点P 为抛物线y 2=4x 上的动点,点A (2,1)为平面内定点,F 为抛物线焦点,则:(1)|PA |+|PF |的最小值为________;(2)(多填题)|PA |-|PF |的最小值为________,最大值为________.解析 (1)如图1,由抛物线定义可知,|PF |=|PH |,|PA |+|PF |=|PA |+|PH |,从而最小值为A 到准线的距离为3.(2)如图2,当P,A,F三点共线,且P在FA延长线上时,|PA|-|PF|有最小值为-|AF|=- 2.当P,A,F三点共线,且P在AF延长线上时,|PA|-|PF|有最大值为|AF|= 2.故|PA|-|PF|最小值为-2,最大值为 2.答案(1)3(2)-2 2规律方法 1.解决到焦点与定点距离之和最小问题,先将抛物线上的点到焦点的距离转化为到准线的距离,再结合图形解决问题.2.到两定点距离之差的最值问题,当且仅当三点共线时取最值.角度2到点与准线的距离之和最值问题【例2-2】设P是抛物线y2=4x上的一个动点,则点P到点A(-1,1)的距离与点P 到直线x=-1的距离之和的最小值为________.解析如图,易知抛物线的焦点为F(1,0),准线是x=-1,由抛物线的定义知点P到直线x=-1的距离等于点P到F的距离.于是,问题转化为在抛物线上求一点P,使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小,显然,连接AF与抛物线相交的点即为满足题意的点,此时最小值为[1-(-1)]2+(0-1)2= 5.答案 5规律方法 解决到点与准线的距离之和最值问题,先将抛物线上的点到准线的距离转化为到焦点的距离,再构造出“两点之间线段最短”,使问题得解. 角度3 动弦中点到坐标轴距离最短问题【例2-3】 已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( ) A.34B.32C.1 D.2解析 由题意知,抛物线的准线l :y =-1,过点A 作AA 1⊥l 交l 于点A 1,过点B 作BB 1⊥l 交l 于点B 1,设弦AB 的中点为M ,过点M 作MM 1⊥l 交l 于点M 1,则|MM 1|=|AA 1|+|BB 1|2.因为|AB |≤|AF |+|BF |(F 为抛物线的焦点),即|AF |+|BF |≥6,所以|AA 1|+|BB 1|≥6,2|MM 1|≥6,|MM 1|≥3,故点M 到x 轴的距离d ≥2,故选D. 答案 D规律方法 解决动弦中点到坐标轴距离最短问题将定长线段的中点到准线的距离转化为线段端点到准线距离之和的一半,再根据三角形中两边之和大于第三边得出不等式求解. 角度4 焦点弦中距离之和最小问题【例2-4】 已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 由题意知F (1,0),|AC |+|BD |=|AF |+|FB |-2=|AB |-2,即|AC |+|BD |取得最小值时当且仅当|AB |取得最小值.依抛物线定义知,当|AB |为通径,即|AB |=2p =4时为最小值,所以|AC |+|BD |的最小值为2. 答案 2规律方法 过抛物线的焦点且与抛物线的对称轴垂直的弦称为抛物线的通径,通径是抛物线所有过焦点的弦中最短的,若能将问题转化为与通径有关的问题,则可以用通径最短求最值.角度5 到定直线的距离最小问题【例2-5】(一题多解)抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是________.解析 法一如图,设与直线4x +3y -8=0平行且与抛物线y =-x 2相切的直线为4x +3y +b =0,切线方程与抛物线方程联立得⎩⎪⎨⎪⎧y =-x 2,4x +3y +b =0消去y 整理得3x 2-4x -b =0,则Δ=16+12b =0,解得b =-43,故切线方程为4x +3y -43=0,抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是这两条平行线间的距离d =⎪⎪⎪⎪⎪⎪8-435=43.法二对y =-x 2,有y ′=-2x ,如图,设与直线4x +3y -8=0平行且与抛物线y =-x 2相切的直线与抛物线的切点是T (m ,-m 2),则切线斜率k =y ′|x =m =-2m =-43,所以m =23,即切点T ⎝ ⎛⎭⎪⎫23,-49,点T 到直线4x +3y -8=0的距离d =⎪⎪⎪⎪⎪⎪83-43-816+9=43,由图知抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是43. 答案 43规律方法 抛物线上的动点到定直线的距离,可以转化为平行线间的距离,也可以利用单变量设点利用函数思想求最值.【训练2】 (1)若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到 A (-2,1)的距离之和最小,则该点的坐标为( ) A.⎝ ⎛⎭⎪⎫-14,1B.⎝ ⎛⎭⎪⎫14,1 C.(-2,-22) D.(-2,22)(2)已知P 为抛物线y 2=4x 上一个动点,Q 为圆C :x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线准线的距离之和的最小值是________. 解析 (1)如图,∵y 2=-4x ,∴p =2,焦点坐标为(-1,0).依题意可知当A ,P 及P 到准线的垂足三点共线时,点P 与点F 、点P 与点A 的距离之和最小,故点P 的纵坐标为1.将y =1代入抛物线方程求得x =-14,则点P 的坐标为⎝ ⎛⎭⎪⎫-14,1.故选A.(2)由题意知,圆C :x 2+(y -4)2=1的圆心为C (0,4),半径为1,抛物线的焦点为F (1,0).根据抛物线的定义,点P 到点Q 的距离与点P 到抛物线准线的距离之和即点P 到点Q 的距离与点P 到抛物线焦点的距离之和,因此|PQ |+|PF |≥|PC |+|PF |-1≥|CF |-1=17-1.答案 (1)A (2)17-1考点三 直线与抛物线的综合问题【例3】(2019·全国Ⅰ卷)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF |+|BF |=4,求直线l 的方程; (2)若AP→=3PB →,求|AB |. 解 设直线l 的方程为:y =32x +t ,A (x 1,y 1),B (x 2,y 2). (1)由题设得F ⎝ ⎛⎭⎪⎫34,0,故|AF |+|BF |=x 1+x 2+32.又|AF |+|BF |=4,所以x 1+x 2=52.由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x 可得9x 2+12(t -1)x +4t 2=0, 其中Δ=144(1-2t )>0, 则x 1+x 2=-12(t -1)9.从而-12(t -1)9=52,得t =-78(满足Δ>0). 所以l 的方程为y =32x -78.(2)由AP →=3PB →可得y 1=-3y 2.由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x 可得y 2-2y +2t =0,其中Δ=4-8t >0, 所以y 1+y 2=2,从而-3y 2+y 2=2,故y 2=-1,y 1=3. 代入C 的方程得x 1=3,x 2=13. 所以A (3,3),B ⎝ ⎛⎭⎪⎫13,-1,故|AB |=4133.规律方法1.直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.3.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒 涉及弦的中点、斜率时一般用“点差法”求解.【训练3】 如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上. (1)写出该抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率. 解 (1)由已知条件,可设抛物线的方程为y 2=2px (p >0).∵点P (1,2)在抛物线上,∴22=2p ×1,解得p =2. 故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB , 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1),∵PA 与PB 的斜率存在且倾斜角互补,∴k PA =-k PB . 由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得y 21=4x 1,①y 22=4x 2,②∴y 1-214y 21-1=-y 2-214y 22-1,∴y 1+2=-(y 2+2).∴y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2),∴k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1(x 1≠x 2).数学抽象——活用抛物线焦点弦的四个结论1.数学抽象素养水平表现为能够在得到的数学结论的基础上形成新命题,能够针对具体的问题运用数学方法解决问题.本课时抛物线的焦点弦问题的四个常用结论即为具体表现之一.2.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1·x 2=p 24. (2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α(α是直线AB 的倾斜角). (4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点).【例1】 过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A.4 B.92C.5 D.6[一般解法]易知直线l 的斜率存在,设为k ,则其方程为 y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0,得x A ·x B =1,①因为|AF |=2|BF |,由抛物线的定义得x A +1=2(x B +1), 即x A =2x B +1,②由①②解得x A =2,x B =12, 所以|AB |=|AF |+|BF |=x A +x B +p =92.[应用结论]法一 由对称性不妨设点A 在x 轴的上方,如图设A ,B 在准线上的射影分别为D ,C ,作BE ⊥AD 于E , 设|BF |=m ,直线l 的倾斜角为θ,则|AB |=3m , 由抛物线的定义知|AD |=|AF |=2m ,|BC |=|BF |=m ,所以cos θ=|AE ||AB |=13,所以tan θ=2 2.则sin 2θ=8cos 2θ,∴sin 2θ=89.又y 2=4x ,知2p =4,故利用弦长公式|AB |=2p sin 2θ=92. 法二 因为|AF |=2|BF |,所以1|AF |+1|BF |=12|BF |+1|BF |=32|BF |=2p =1,解得|BF |=32,|AF |=3,故|AB |=|AF |+|BF |=92. 答案 B【例2】 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.94[一般解法]由已知得焦点坐标为F ⎝ ⎛⎭⎪⎫34,0,因此直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34,即4x -43y -3=0.与抛物线方程联立,化简得4y 2-123y -9=0, 故|y A -y B |=(y A +y B )2-4y A y B =6.因此S △OAB =12|OF ||y A -y B |=12×34×6=94. [应用结论]由2p =3,及|AB |=2psin 2α 得|AB |=2p sin 2α=3sin 230°=12.原点到直线AB 的距离d =|OF |·sin 30°=38, 故S △AOB =12|AB |·d =12×12×38=94. 答案 D【例3】 如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若F 是AC 的中点,且|AF |=4,则线段AB 的长为( ) A.5 B.6 C.163D.203[一般解法]如图,设l 与x 轴交于点M ,过点A 作AD ⊥l 交l 于点D ,由抛物线的定义知,|AD |=|AF |=4,由F 是AC 的中点,知|AD |=2|MF |=2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p2=x 1+1=4,所以x 1=3,可得y 1=23,所以A (3,23),又F (1,0),所以直线AF 的斜率k =233-1=3,所以直线AF 的方程为y =3(x -1),代入抛物线方程y 2=4x 得3x 2-10x +3=0,所以x 1+x 2=103,|AB |=x 1+x 2+p =163.故选C.[应用结论]法一 设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p2=x 1+1=4,所以x 1=3,又x 1x 2=p 24=1,所以x 2=13,所以|AB |=x 1+x 2+p =3+13+2=163.法二 因为1|AF |+1|BF |=2p ,|AF |=4,所以|BF |=43,所以|AB |=|AF |+|BF |=4+43=163. 答案 CA 级 基础巩固一、选择题1.抛物线y =4x 2的焦点到准线的距离为( ) A.2 B.1 C.14 D.18解析 由y =4x 2得x 2=14y ,所以2p =14,p =18,则抛物线的焦点到准线的距离为18. 答案 D2.(2019·福州调研)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A.4 B.6 C.8 D.12解析 如图所示,抛物线的准线l 的方程为x =-2,F 是抛物线的焦点,过点P 作PA ⊥y 轴,垂足是A ,延长PA 交直线l 于点B ,则|AB |=2.由于点P 到y 轴的距离为4,则点P 到准线l 的距离|PB |=4+2=6,所以点P 到焦点的距离|PF |=|PB |=6.故选B. 答案 B3.(2020·烟台调研)已知抛物线y 2=2px (p >0),点C (-4,0),过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24,则以直线AB 为准线的抛物线的标准方程是( ) A.y 2=4x B.y 2=-4x C.y 2=8x D.y 2=-8x解析 因为AB ⊥x 轴,且AB 过焦点F ,所以线段AB 是焦点弦,且|AB |=2p ,所以S △CAB =12×2p ×⎝ ⎛⎭⎪⎫p 2+4=24,解得p =4或-12(舍),所以抛物线方程为y 2=8x ,所以直线AB的方程为x =2,所以以直线AB 为准线的抛物线的标准方程为y 2=-8x ,故选D. 答案 D4.设抛物线C :y 2=3x 的焦点为F ,点A 为C 上一点,若|FA |=3,则直线FA 的倾斜角为( ) A.π3B.π4 C.π3或2π3D.π4或3π4解析 如图,作AH ⊥l 于H ,则|AH |=|FA |=3,作FE ⊥AH 于E ,则|AE |=3-32=32,在Rt △AEF 中,cos ∠EAF =|AE ||AF |=12,∴∠EAF =π3,即直线FA 的倾斜角为π3,同理点A 在x 轴下方时,直线FA 的倾斜角为2π3.答案 C5.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( ) A.355 B.2 C.115 D.3解析 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点为F (1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.答案 B二、填空题6.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.解析 建立如图平面直角坐标系,设抛物线方程为x 2= -2py (p >0).由题意将点A (2,-2)代入x 2=-2py ,得p =1,故x 2=-2y .设B (x ,-3),代入x 2=-2y 中,得x =6,故水面宽为26米. 答案 2 67.(2020·昆明诊断)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为△ABC 的重心,则|FA→|+|FB →|+|FC →|的值为________. 解析 依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝ ⎛⎭⎪⎫12,0,所以x 1+x 2+x 3=3×12=32,则|FA →|+|FB →|+|FC →|=⎝ ⎛⎭⎪⎫x 1+12+⎝ ⎛⎭⎪⎫x 2+12+⎝ ⎛⎭⎪⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3. 答案 38.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为________.解析 因为双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以2=c a =1+b 2a 2,所以b a=3,所以渐近线方程为3x ±y =0,因为抛物线C 2:x 2=2py (p >0)的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,所以F 到双曲线C 1的渐近线的距离为⎪⎪⎪⎪⎪⎪p 23+1=2,由于p >0,所以p =8,所以抛物线C 2的方程为x 2=16y .答案 x 2=16y 三、解答题9.设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.解 (1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,y 1=x 214,y 2=x 224,x 1+x 2=4.于是直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1. (2)由y =x 24,得y ′=x 2.设M (x 3,y 3),由题设知x 32=1,解得x 3=2,于是M (2,1).设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y =x +m 代入y =x 24得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1,2=2±2m +1.从而|AB |=2|x 1-x 2|=42(m +1).由题设知|AB |=2|MN |,即42(m +1)=2(m +1),解得m =7.所以直线AB 的方程为x -y +7=0.10.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC→=OA →+λOB →,求λ的值. 解 (1)抛物线y 2=2px 的焦点为⎝ ⎛⎭⎪⎫p 2,0, 所以直线AB 的方程为y =22⎝ ⎛⎭⎪⎫x -p 2, 由⎩⎪⎨⎪⎧y =22⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,消去y 得4x 2-5px +p 2=0,所以x 1+x 2=5p 4,由抛物线定义得|AB |=x 1+x 2+p =9,即5p 4+p =9,所以p =4.所以抛物线的方程为y 2=8x .(2)由p =4知,方程4x 2-5px +p 2=0,可化为x 2-5x +4=0,解得x 1=1,x 2=4,故y 1=-22,y 2=4 2.所以A (1,-22),B (4,42).则OC→=OA →+λOB →=(1,-22)+λ(4,42)=(1+4λ,-22+42λ). 因为C 为抛物线上一点,所以(-22+42λ)2=8(1+4λ),整理得λ2-2λ=0,所以λ=0或λ=2.B 级 能力提升11.(2020·石家庄模拟)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M (2,22)的直线l 交抛物线于另一点N ,则|NF |∶|FM |等于( )A.1∶2B.1∶3C.1∶ 2D.1∶ 3解析 抛物线y 2=4x 的焦点F 的坐标为(1,0),∵直线l 过点F 和点M (2,22),∴直线l 的方程为y =22(x -1).由⎩⎪⎨⎪⎧y 2=4x ,y =22(x -1)得2x 2-5x +2=0,解得x =2或x =12,∴点N 的横坐标为12.∵抛物线y 2=4x 的准线方程为x =-1,∴|NF |=32,|MF |=3,∴|NF |∶|MF |=1∶2,故选A.答案 A12.(2020·长沙调研)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,且l 过点(-2,3),M 在抛物线C 上,若点N (1,2),则|MN |+|MF |的最小值为( )A.2B.3C.4D.5解析 由题意知p 2=2,即p =4.过点N 作准线l 的垂线,垂足为N ′,交抛物线于点M ′,则|M ′N ′|=|M ′F |,则有|MN |+|MF |=|MN |+|MT |≥|M ′N ′|+|M ′N |=|NN ′|=1-(-2)=3.答案 B13.(2020·湖南名校大联考)已知P 为抛物线C :y =x 2上一动点,直线l :y =2x -4与x轴、 y 轴交于M ,N 两点,点A (2,-4)且AP→=λAM →+μAN →,则λ+μ的最小值为________.解析 由题意得M (2,0),N (0,-4),设P (x ,y ),由AP→=λAM →+μAN →得(x -2,y +4)=λ(0,4)+μ(-2,0),∴x -2=-2μ,y +4=4λ.因此λ+μ=y +44-x -22=x 24-x 2+2=⎝ ⎛⎭⎪⎫x 2-122+74≥74,故λ+μ的最小值为74.答案 7414.(2019·全国Ⅲ卷)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎝ ⎛⎭⎪⎫0,52为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.(1)证明 设D ⎝ ⎛⎭⎪⎫t ,-12,A (x 1,y 1),则x 21=2y 1. 因为y ′=x ,所以切线DA 的斜率为x 1,故y 1+12x 1-t =x 1.整理得2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0.故直线AB 的方程为2tx -2y +1=0.所以直线AB 过定点⎝ ⎛⎭⎪⎫0,12. (2)解 由(1)得直线AB 的方程为y =tx +12.由⎩⎪⎨⎪⎧y =tx +12,y =x 22可得x 2-2tx -1=0. 于是x 1+x 2=2t ,x 1x 2=-1,y 1+y 2=t (x 1+x 2)+1=2t 2+1,|AB |=1+t 2|x 1-x 2|=1+t 2×(x 1+x 2)2-4x 1x 2=2(t 2+1).设d 1,d 2分别为点D ,E 到直线AB 的距离,则d 1=t 2+1,d 2=2t 2+1.因此,四边形ADBE 的面积S =12|AB |(d 1+d 2)=(t 2+3)t 2+1.设M 为线段AB 的中点,则M ⎝ ⎛⎭⎪⎫t ,t 2+12.因为EM →⊥AB →,而EM →=(t ,t 2-2),AB →与向量(1,t )平行,所以t +(t 2-2)t =0,解得t =0或t =±1.当t =0时,S =3;当t =±1时,S =4 2.因此,四边形ADBE 的面积为3或4 2.C 级 创新猜想15.(多选题)如图所示,抛物线y =14x 2,AB 为过焦点F 的弦,过A ,B 分别作抛物线的切线,两切线交于点M ,设A (x A ,y A ),B (x B ,y B ),M (x M ,y M ),则下列结论正确的有( )A.若AB 的斜率为1,则|AB |=8B.|AB |min =4C.若AB 的斜率为1,则x M =2D.x A ·x B =-4解析 由题意得,焦点F (0,1),对于A ,l AB 的方程为y =x +1,与抛物线的方程联立, 得⎩⎨⎧y =x +1,y =14x 2,消去x ,得y 2-6y +1=0, 所以y A +y B =6,则|AB |=y A +y B +p =8,则A 正确;对于B ,|AB |min =2p =4,则B 正确;对于C ,当AB 的斜率为1时,因为y ′=x 2,则x M 2=1,∴x M =2,则C 正确;设l AB 的方程为y =kx +1,与抛物线的方程联立,得⎩⎨⎧y =kx +1,y =14x 2,消去y ,得x 2-4kx -4=0, 所以x A +x B =4k ,x A ·x B =-4,则D 正确;答案 ABCD16.(多填题)已知抛物线C :y 2=2px (p >0)的焦点为F (2,0),则抛物线C 的方程是________;若M 是C 上一点,FM 的延长线交y 轴于点N ,且M 为FN 的中点,则|FN |=________.解析 抛物线C :y 2=2px (p >0)的焦点为F (2,0),可得p =4,则抛物线C 的方程是y 2=8x .由M 为FN 的中点,得M 的横坐标为1,代入抛物线方程得y =±22,则M (1,±22),则|FN |=2(1+2)=6. 答案 y 2=8x 6。

(完整word)抛物线专题复习讲义和练习

(完整word)抛物线专题复习讲义和练习

抛物线专题复习讲义及练习★知识梳理★1.抛物线的标准方程、类型及其几何性质 (0>p ):2.①)0(22≠=p px y 的焦半径=PF 2P x +;)0(22≠=p py x 的焦半径=PF 2P y +;② 过焦点的所有弦中最短的弦,也被称做通径。

其长度为2p.③ AB 为抛物线px y 22=的焦点弦,则=B A x x 42p,=B A y y 2p -,||AB =p x x B A ++3。

px y 22=的参数方程为⎩⎨⎧==pt y pt x 222(t 为参数),py x 22=的参数方程为⎩⎨⎧==222pt y ptx (t 为参数)。

★重难点突破★重点:掌握抛物线的定义和标准方程,会运用定义和会求抛物线的标准方程,能通过方程研究抛物线的几何性质难点: 与焦点有关的计算与论证重难点:围绕焦半径、焦点弦,运用数形结合和代数方法研究抛物线的性质 1.要有用定义的意识问题1:抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1617B. 1615C.87 D 。

02。

求标准方程要注意焦点位置和开口方向问题2:顶点在原点、焦点在坐标轴上且经过点(3,2)的抛物线的条数有 3。

研究几何性质,要具备数形结合思想,“两条腿走路" 问题3:证明:以抛物线焦点弦为直径的圆与抛物线的准线相切★热点考点题型探析★考点1 抛物线的定义题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换[例1 ]已知点P 在抛物线y 2= 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为 【新题导练】1.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( )A .321x x x =+B . 321y y y =+C .2312x x x =+ D. 2312y y y =+2。

抛物线知识点及基础训练题

抛物线知识点及基础训练题

抛物线1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质:图形参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔. 开口方向右左上下标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->焦 点位 置 X 正X 负Y 正Y 负焦 点坐 标 (,0)2p(,0)2p- (0,)2p (0,)2p -准 线方 程2p x =-2p x =2p y =-2p y =范 围0,x y R ≥∈ 0,x y R ≤∈ 0,y x R ≥∈ 0,y x R ≤∈对 称轴X 轴 X 轴 Y 轴 Y 轴顶 点坐 标(0,0)离心率1e = 通 径2p焦半径11(,)A x y 12p AF x =+12p AF x =-+12p AF y =+12p AF y =-+焦点弦长AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++焦点弦长AB 的补充11(,)A x y 22(,)B x y以AB 为直径的圆必与准线l 相切若AB 的倾斜角为α,22sin p ABα= 若AB 的倾斜角为α,则22cos p AB α= 2124p x x = 212y y p =-112AF BF AB AF BF AF BF AF BF p++===∙∙ 3.抛物线)0(22>=p px y 的几何性质:(1)范围 因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧,当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸. (2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦点弦:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||.弦长|AB |=x 1+x 2+p ,当x 1=x 2时,通径最短为2p 。

新高考数学复习考点知识专题讲解与练习60---抛物线(二)

新高考数学复习考点知识专题讲解与练习60---抛物线(二)

新高考数学复习考点知识专题讲解与练习专题60 抛物线(二)一、单项选择题1.已知抛物线C :y 2=2px(p>0)的焦点为F ,过F 且倾斜角为120°的直线与抛物线C 交于A ,B 两点,若AF ,BF 的中点在y 轴上的射影分别为M ,N ,且|MN|=43,则抛物线C 的准线方程为( )A .x =-1B .x =-2C .x =-32 D .x =-32.已知抛物线C :x 2=2py(p>0)的焦点为F ,抛物线C 的准线与y 轴交于点A ,点M(1,y 0)在抛物线C 上,|MF|=5y04,则tan ∠FAM =( ) A.25 B.52 C.54 D.453.已知抛物线C :y 2=2px(p>0)的焦点为F ,点A ⎝ ⎛⎭⎪⎫p 4,a (a>0)在C 上,|AF|=3.若直线AF 与C 交于另一点B ,则|AB|的值是( ) A .12 B .10 C .9 D .4.54.若抛物线y =4x 2上一点到直线y =4x -5的距离最短,则该点的坐标是( ) A.⎝ ⎛⎭⎪⎫12,1 B .(0,0) C .(1,2) D .(1,4) 5.已知抛物线y 2=2px(p>0)的焦点弦AB 的两端点坐标分别为A(x 1,y 1),B(x 2,y 2),则y1y2x1x2的值一定等于A .-4B .4C .p 2D .-p 26.已知抛物线C :y 2=4x 与直线y =2x -4交于A ,B 两点(点A 在点B 下方),焦点为F ,则cos ∠AFB=A.45B.35 C .-35 D .-457.(2018·课标全国Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=( ) A .5 B .6 C .7 D .8 8.(2021·石家庄市质检)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M(2,22)的直线l 交抛物线于另一点N ,则|NF|∶|FM|等于( )A .1∶2B .1∶3C .1∶ 2D .1∶ 3 9.(2021·衡水中学调研)已知抛物线y 2=4x ,过点P(4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两个不同的点,则y 12+y 22的最小值为( ) A .12 B .24 C .16 D .32 10.(2021·石家庄市模拟)过抛物线y 2=4x 的焦点的直线l 与抛物线交于A ,B 两点,设点M(3,0).若△MAB 的面积为42,则|AB|=( )A .2B .4C .2 3D .8 二、多项选择题11.(2021·山东高考实战演练仿真卷)已知抛物线x 2=4y 的焦点为F ,经过点F 的直线交抛物线于A(x 1,y 1),B(x 2,y 2),点A ,B 在抛物线准线上的射影分别为A 1,B 1,以下四个结论中正确的是( ) A .x 1x 2=-4B .|AB|=y 1+y 2+1C .∠A 1FB 1=π2D .AB 的中点到抛物线的准线的距离的最小值为212.(2021·山东高考统一模拟)设M ,N 是抛物线y 2=x 上的两个不同的点,O 是坐标原点.若直线OM 与ON 的斜率之积为-12,则( )A .|OM|+|ON|≥42B .以MN 为直径的圆的面积大于4πC .直线MN 过定点(2,0)D .点O 到直线MN 的距离不大于2 三、填空题与解答题 13.(2021·山东高考统一模拟)已知抛物线y 2=2px(p>0)与直线l :4x -3y -2p =0在第一、四象限分别交于A ,B 两点,F 是抛物线的焦点,若|AF →|=λ|FB →|,则λ=________. 14.(2020·郑州质检)设抛物线y 2=16x 的焦点为F ,经过点P(1,0)的直线l 与抛物线交于A ,B 两点,且2BP →=PA →,则|AF|+2|BF|=________. 15.(2021·四川遂宁市高三三诊)已知点M(0,2),过抛物线y 2=4x 的焦点F 的直线AB 交抛物线于A ,B 两点,若AM →·FM→=0,则点B 的纵坐标为________. 16.(2021·广西柳州模拟)已知抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点. (1)若AF→=3FB →,求直线AB 的斜率; (2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为点C ,求四边形OACB 面积的最小值.17.(2021·八省联考)已知抛物线y 2=2px 上三点A(2,2),B ,C ,直线AB ,AC 是圆(x -2)2+y 2=1的两条切线,则直线BC 的方程为( )A .x +2y +1=0B .3x +6y +4=0C .2x +6y +3=0D .x +3y +2=0 18.(2019·课标全国Ⅲ)已知曲线C :y =x22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B.(1)证明:直线AB 过定点; (2)若以E ⎝ ⎛⎭⎪⎫0,52为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.参考答案1.答案 D 解析 设A(x 1,y 1),B(x 2,y 2),由抛物线C 的焦点为⎝ ⎛⎭⎪⎫p 2,0,知AF ,BF 的中点的纵坐标分别为y12,y22,则|MN|=⎪⎪⎪⎪⎪⎪y22-y12=12|y 2-y 1|=43,所以|y 2-y 1|=8 3.由题意知直线AB 的方程为y =-3⎝ ⎛⎭⎪⎫x -p 2,与抛物线方程y 2=2px 联立消去x ,得y =-3·⎝ ⎛⎭⎪⎫y22p -p 2,即3y 2+2py -3p 2=0,所以y 1+y 2=-2p 3,y 1y 2=-p 2,于是由|y 2-y 1|=83,得(y 2+y 1)2-4y 1y 2=192,所以⎝⎛⎭⎪⎫-2p 32+4p 2=192,解得p =6,p 2=3,所以抛物线C 的准线方程为x =-3.故选D.2.答案 D 解析 过点M 向抛物线的准线作垂线,垂足为N ,则|MN|=y 0+p2=5y04,故y 0=2p.又M(1,y 0)在抛物线上,故y 0=12p ,于是2p =12p ,解得p =12, ∴|MN|=54,∴tan ∠FAM =tan ∠AMN =|AN||MN|=45.故选D.3.答案 C 解析 结合抛物线的性质可得p 4+p2=3,解得p =4,所以抛物线方程为y 2=8x ,所以点A 的坐标为(1,22),所以直线AB 的方程为y =-22(x -2),代入抛物线方程,计算B 的坐标为(4,-42),所以|AB|=(x1-x2)2+(y1-y2)2=9.故选C.4.答案 A 解析 设与直线y =4x -5平行的直线为y =4x +m ,由平面几何的性质可知,抛物线y =4x 2上到直线y =4x -5的距离最短的点即为直线y =4x +m 与抛物线相切的点.而对y =4x 2求导得y ′=8x ,又直线y =4x +m 的斜率为4,所以8x =4,得x =12,此时y =4×⎝ ⎛⎭⎪⎫122=1,即切点为⎝ ⎛⎭⎪⎫12,1,故选A.5.答案 A 解析 ①若焦点弦AB ⊥x 轴,则x 1=x 2=p 2,则x 1x 2=p24,y 1y 2=-p 2,则y1y2x1x2=-4.②若焦点弦AB 不垂直于x 轴,可设直线AB :y =k ⎝ ⎛⎭⎪⎫x -p 2,联立y 2=2px 得k 2x 2-(k 2p +2p)x +p2k24=0,则x 1x 2=p24.∵y 12=2px 1,y 22=2px 2,∴y 12y 22=4p 2x 1x 2=p 4.又∵y 1y 2<0,∴y 1y 2=-p 2.故y1y2x1x2=-4.故选A.6.答案 D 解析 ∵抛物线C :y 2=4x 的焦点为F ,∴点F 的坐标为(1,0).又∵直线y =2x -4与C 交于A ,B 两点(点A 在点B 下方),∴A ,B 两点坐标分别为(1,-2),(4,4),则FA →=(0,-2),FB →=(3,4),∴cos ∠AFB =FA →·FB →|FA →|·|FB →|=-810=-45.故选D.7.答案 D 解析 过点(-2,0)且斜率为23的直线的方程为y =23(x +2),由⎩⎪⎨⎪⎧y =23(x +2),y2=4x ,得x 2-5x +4=0,设M(x 1,y 1),N(x 2,y 2),则y 1>0,y 2>0,根据根与系数的关系,得x 1+x 2=5,x 1x 2=4.易知F(1,0),所以FM →=(x 1-1,y 1),FN →=(x 2-1,y 2),所以FM →·FN →=(x 1-1)·(x 2-1)+y 1y 2=x 1x 2-(x 1+x 2)+1+4x1x2=4-5+1+8=8.故选D.8.答案 A 解析 方法一:抛物线y 2=4x 的焦点F 的坐标为(1,0),M(2,22),∴直线l 的方程为y =22(x -1).由⎩⎨⎧y2=4x ,y =22(x -1),得2x 2-5x +2=0,解得x =2或x =12,∴点N 的横坐标为12.∵抛物线y 2=4x 的准线方程为x =-1,∴|NF|=32,|MF|=3,∴|NF|∶|MF|=1∶2.故选A.方法二:抛物线y 2=4x 的焦点F 的坐标为(1,0),M(2,22),∴直线l 的方程为y =22(x -1).由⎩⎨⎧y2=4x ,y =22(x -1),得y 2-2y -4=0,解得y =22或y =-2,∴点N 的纵坐标为- 2.过点M 作MM ′⊥x 轴,垂足为M ′,过点N 作NN ′⊥x 轴,垂足为N ′,则△MM ′F ∽△NN ′F ,∴|NF|∶|MF|=|NN ′|∶|MM ′|=|-2|∶22=1∶2.故选A. 方法三:∵M(2,22)是抛物线上的点,且抛物线y 2=4x 的准线方程为x =-1,∴|MF|=3.又1|MF|+1|NF|=2p =1,∴|NF|=32,∴|NF|∶|MF|=1∶2.故选A. 9.答案 D 解析 当直线的斜率不存在时,方程为x =4,由⎩⎨⎧x =4,y2=4x ,得y 1=-4,y 2=4,∴y 12+y 22=32. 当直线的斜率存在时,设其方程为y =k(x -4),由⎩⎨⎧y2=4x ,y =k (x -4),得ky 2-4y -16k =0,∴y 1+y 2=4k ,y 1y 2=-16, ∴y 12+y 22=(y 1+y 2)2-2y 1y 2=16k2+32>32. 综上可知,y 12+y 22≥32. ∴y 12+y 22的最小值为32.故选D. 10.答案 D解析 抛物线y 2=4x 的焦点F 为(1,0),可设直线l 的方程为x =ty +1, 代入抛物线方程,可得y 2-4ty -4=0,设A(x 1,y 1),B(x 2,y 2),可得y 1+y 2=4t ,y 1y 2=-4,则|AB|=1+t2·|y 1-y 2|=1+t2·(y1+y2)2-4y1y2=1+t2·16t2+16, △MAB 的面积为12|MF|·|y 1-y 2|=12×2|y 1-y 2|=42,即16t2+16=42,解得t =±1,则|AB|=1+1·16+16=8.故选D. 11.答案 ACD解析 抛物线x 2=4y 的焦点为F(0,1),易知直线AB 的斜率存在,设直线AB 为y =kx +1.由⎩⎨⎧y =kx +1,x2=4y ,得x 2-4kx -4=0,则x 1+x 2=4k ,x 1x 2=-4,A 正确; |AB|=|AF|+|BF|=y 1+1+y 2+1=y 1+y 2+2,B 不正确;FA1→=(x 1,-2),FB1→=(x 2,-2),∴FA1→·FB1→=x 1x 2+4=0,∴FA1→⊥FB1→,∠A 1FB 1=π2,C 正确;AB 的中点到抛物线的准线的距离d =12(|AA 1|+|BB 1|)=12(y 1+y 2+2)=12(kx 1+1+kx 2+1+2)=12(4k 2+4)≥2.当k =0时取得最小值2,D 正确.故选ACD. 12.答案 CD 解析 不妨设M 为第一象限内的点,①当直线MN ⊥x 轴时,k OM =-k ON ,由k OM ·k ON =-12,得k OM =22,k ON =-22,所以直线OM ,ON 的方程分别为:y =22x 和y =-22x.与抛物线方程联立,得M(2,2),N(2,-2),所以直线MN 的方程为x =2,此时|OM|+|ON|=26, 以MN 为直径的圆的面积S =2π,故A 、B 不正确.②当直线MN 与x 轴不垂直时,设直线MN 的方程为y =kx +m , 与抛物线方程联立消去x ,得ky 2-y +m =0,则Δ=1-4km>0.设M(x 1,y 1),N(x 2,y 2),则y 1y 2=m k ,因为k OM ·k ON =-12,所以y1x1·y2x2=-12, 则2y 2y 1=-x 2x 1=-y 22y 12,则y 1y 2=-2,所以mk =-2,即m =-2k , 所以直线MN 的方程为y =kx -2k ,即y =k(x -2).综上可知,直线MN 为恒过定点Q(2,0)的动直线,故C 正确; 易知当OQ ⊥MN 时,原点O 到直线MN 的距离最大,最大距离为2, 即原点O 到直线MN 的距离不大于2.故D 正确.故选CD. 13.答案 4解析 直线l :当y =0时,x =p2,∴直线l 过抛物线的焦点,A ,F ,B 三点共线, 联立直线与抛物线方程⎩⎨⎧y2=2px ,4x -3y -2p =0,得8x 2-17px +2p 2=0,解得:x A =2p ,x B =p 8,∴|AF|=x A +p 2=52p ,|BF|=x B +p 2=58p ,λ=|AF→||FB →|=4.14.答案 15解析 设A(x 1,y 1),B(x 2,y 2).∵P(1,0),∴BP →=(1-x 2,-y 2),PA →=(x 1-1,y 1).∵2BP →=PA →,∴2(1-x 2,-y 2)=(x 1-1,y 1), ∴x 1+2x 2=3,-2y 2=y 1.将A(x 1,y 1),B(x 2,y 2)代入抛物线方程y 2=16x ,得y 12=16x 1,y 22=16x 2.又∵-2y 2=y 1,∴4x 2=x 1.又∵x 1+2x 2=3,解得x 2=12,x 1=2.∴|AF|+2|BF|=x 1+4+2(x 2+4)=2+4+2×⎝ ⎛⎭⎪⎫12+4=15.15.答案 -1解析 因为点M(0,2),抛物线y 2=4x 的焦点为F(1,0),所以k MF =2-00-1=-2,由AM →·FM →=0可得AM ⊥FM ,所以直线AM 的斜率k AM =12,所以直线AM 的方程为y -2=12x ,即y =12x +2,由⎩⎪⎨⎪⎧y =12x +2,y2=4x 化简得x 2-8x +16=0,解得x =4,可得点A(4,4), 所以直线AF 的斜率k AF =44-1=43,所以直线AF 的方程为:y =43(x -1), 联立⎩⎪⎨⎪⎧y2=4x ,y =43(x -1),消去x 可得:y 2-3y -4=0,解得y =-1或y =4,所以点B 的纵坐标为-1. 16.答案 (1)3或- 3 (2)4解析 (1)依题意可得,抛物线的焦点为F(1,0),设直线AB :x =my +1,将直线AB 与抛物线联立⎩⎨⎧x =my +1,y2=4x ⇒y 2-4my -4=0.设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4.∵AF →=3FB →⇒y 1=-3y 2⇒m 2=13,∴斜率为1m=3或- 3. (2)S 四边形OACB =2S △AOB =2×12|OF|·|y 1-y 2|=|y 1-y 2|=(y1+y2)2-4y1y2=16m2+16≥4,当m =0时,四边形OACB 的面积最小,最小值为4. 17.答案 B解析 方法一(设而要求):∵A(2,2)在抛物线y 2=2px 上,∴4=4p ,∴p =1,∴y 2=2x ,过A(2,2)作圆C 的切线,设切线斜率为k.则切线方程为:y -2=k(x -2),即kx -y -2k +2=0.∴|2k -0-2k +2|k2+1=1,∴k =±3.当k =3时,切线方程为:y -2=3(x -2),联立⎩⎨⎧y -2=3(x -2),y2=2x ,解得⎩⎨⎧x =2,y =2或⎩⎪⎨⎪⎧x =8-433,y =233-2,则B ⎝⎛⎭⎪⎫8-433,23-63,当k =-3时,切线方程为:y-2=-3(x -2),联立⎩⎨⎧y -2=-3(x -2),y2=2x ,解得⎩⎨⎧x =2,y =2或⎩⎪⎨⎪⎧x =8+433,y =-233-2,则C ⎝ ⎛⎭⎪⎫8+433,-23+63, ∴k BC =-12,y -23-63=-12⎝⎛⎭⎪⎫x -8-433,即3x +6y +4=0,故选B. 方法二(设而不求):∵A(2,2)在抛物线y 2=2px 上,∴4=4p.∴p =1.∴y 2=2x.设B ⎝ ⎛⎭⎪⎫b22,b ,C ⎝ ⎛⎭⎪⎫c22,c ,则BC :2x -(b +c)y +bc =0,AC :2x -(2+c)y +2c =0,可得:|4+2c|4+(2+c )2=1,化简,得:3c 2+12c +8=0.同理,3b 2+12b +8=0,于是b ,c 是方程3t 2+12t +8=0的两个根,∴b +c =-4,bc =83,BC :2x +4y +83=0,即3x +6y +4=0.故选B.18.答案 (1)证明略 (2)x 2+⎝ ⎛⎭⎪⎫y -522=4或x 2+⎝ ⎛⎭⎪⎫y -522=2 解析 (1)证明:设D ⎝ ⎛⎭⎪⎫t ,-12,A(x 1,y 1),则x 12=2y 1. 由于y ′=x ,所以切线DA 的斜率为x 1,故y1+12x1-t=x 1. 整理得2tx 1-2y 1+1=0.设B(x 2,y 2),同理可得2tx 2-2y 2+1=0.故直线AB 的方程为2tx -2y +1=0.所以直线AB 过定点⎝ ⎛⎭⎪⎫0,12. (2)由(1)得直线AB 的方程为y =tx +12.由⎩⎪⎨⎪⎧y =tx +12,y =x22可得x 2-2tx -1=0.于是x 1+x 2=2t ,y 1+y 2=t(x 1+x 2)+1=2t 2+1.设M 为线段AB 的中点,则M ⎝ ⎛⎭⎪⎫t ,t2+12. 由于EM→⊥AB →,而EM →=(t ,t 2-2),AB →与向量(1,t)平行,所以t +(t 2-2)t =0.解得t =0或t =±1.当t =0时,|EM →|=2,所求圆的方程为x 2+⎝ ⎛⎭⎪⎫y -522=4; 当t =±1时,|EM →|=2,所求圆的方程为x 2+⎝ ⎛⎭⎪⎫y -522=2.。

抛物线讲义(含知识点、例题、变式及答案)

抛物线讲义(含知识点、例题、变式及答案)

第七节 抛 物 线 2019考纲考题考情1.抛物线的概念平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。

2.抛物线的标准方程与几何性质 标准 方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝ ⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2 离心率e =100抛物线焦点弦的6个常用结论设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2。

(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角)。

(3)以弦AB为直径的圆与准线相切。

(4)过焦点垂直于对称轴的弦长等于2p(通径)。

(5)S△AOB=p22sinθ(θ为AB的倾斜角).(6)1|AF|+1|BF|为定值2p.考点一抛物线的定义及应用【例1】(1)已知抛物线x2=4y上一点A纵坐标为4,则点A到抛物线焦点的距离为()A.10B.4C.5D.15(2)已知抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l 于点Q,M,N分别为PQ,PF的中点,MN与x轴相交于点R,若∠NRF=60°,则|FR|等于()A.12B.1C.2 D.4解析(1)抛物线x2=4y的准线方程为y=-1,点A到准线的距离为5,根据抛物线定义可知点A到焦点的距离为5。

故选C。

(2)因为M,N分别是PQ,PF的中点,所以MN∥FQ,且PQ∥x轴。

又∠NRF=60°,所以∠FQP=60°。

由抛物线定义知|PQ|=|PF|,所以△FQP为正三角形。

【精品】高中数学选修1-1_抛物线及其标准方程 讲义+巩固练习_基础

【精品】高中数学选修1-1_抛物线及其标准方程 讲义+巩固练习_基础

抛物线及其标准方程【学习目标】1.知识与技能:(1)理解抛物线的定义,画出图形,并掌握其标准方程;(2)利用定义求标准方程,焦点,准线;(3)掌握简单运用.2.过程与方法:(1)根据抛物线特征选择不同解决方法;(2)从具体情境中抽象出抛物线模型;(3)用数学的思维和方法解决生活中与抛物线相关的问题.3.情感态度与价值观:在学习抛物线中,体会数形结合处理问题的好处.【要点梳理】要点一:抛物线的定义定义:平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的集合叫作抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.要点诠释:(1)上述定义可归纳为“一动三定”,一个动点,一个定点,一定直线,一个定值.(2)定义中的隐含条件:焦点F不在准线l上,若F在l上,抛物线变为过F且垂直与l的一条直线.(3)抛物线定义建立了抛物线上的点、焦点、准线三者之间的距离关系,在解题时常与抛物线的定义联系起来,将抛物线上的动点到焦点的距离与动点到准线的距离互化,通过这种转化使问题简单化.要点二:抛物线的标准方程1.标准方程的推导(1)建系:如图,以过F且垂直于l的直线为x轴,垂足为K,以FK的中点O为坐标原点建立直角坐标系xOy.(2)设点:设|KF |=p (p >0),那么焦点F 的坐标为(,0)2p ,准线l 的方程为2p x =-. 设点M (x ,y )是抛物线上任意一点. (3)列式:点M 到l 的距离为d .由抛物线的定义,抛物线就是集合{|||}P M MF d ==,22()||22p px y x -+=+. (4)化简:将上式两边平方并化简,得22(0)y px p =>. ①方程①叫抛物线的标准方程,它表示的抛物线的焦点在x 轴的正半轴上,坐标是(,0)2p ,其准线方程是2p x =-.2. 抛物线标准方程的四种形式:根据抛物线焦点所在半轴的不同可得抛物线方程的的四种形式要点诠释:①只有当抛物线的顶点是原点,对称轴是坐标轴时,才能得到抛物线的标准方程; ②抛物线的焦点在标准方程中一次项对应的坐标轴上,且开口方向与一次项的系数的正负一致,比如抛物线220x y =-的一次项为20y -,故其焦点在y 轴上,且开口向负方向(向下)③抛物线标准方程中一次项的系数是焦点的对应坐标的4倍,比如抛物线220x y =-的一次项20y -的系数为20-,故其焦点坐标是(0,5)-.一般情况归纳:方程图象的开口方向焦点 准线2y kx =0k >时开口向右(,0)4k4k x =-0k <时开口向左2x ky =0k >时开口向上(0,)4k 4k y =-0k <时开口向下要点三:求抛物线的标准方程求抛物线的标准方程一般有两种形式: (1)定义法,直接利用定义求解. (2)待定系数法.若已知抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可,若抛物线的焦点位置不确定,则要分情况讨论,另外,焦点在x 轴上的抛物线方程统一设成y 2=ax (a ≠0),焦点在y 轴上的抛物线方程可统一设成x 2=ay (a ≠0).要点诠释:①从方程形式看,求抛物线的标准方程仅需确定一次项系数.用待定系数法求抛物线的标准方程时,首先根据已知条件确定抛物线的标准方程的类型(一般需结合图形依据焦点的位置或开口方向定型),然后求一次项的系数,否则,应展开相应的讨论.②在求抛物线方程时,由于标准方程有四种形式,易混淆,应先“定位”,再“定量”,即可先根据题目的条件作出草图,确定方程的形式,再求参数p ,若不能确定是哪一种形式的标准方程,应写出四种形式的标准方程来,不要遗漏某一种情况.【典型例题】类型一:抛物线的定义例1. 已知抛物线的焦点为(3,3),准线为x 轴,求抛物线的方程.【思路点拨】从方程形式看,求抛物线的标准方程仅需确定一次项系数;从实际分析,一般需结合图形确定开口方向和一次项系数两个条件,否则,应展开相应的讨论【解析】设M (x ,y )为抛物线上的任意一点,则由抛物线的定义,得||y =, 两边平方,整理得2136y x x =-+ ∴所求抛物线的方程为2136y x x =-+.【总结升华】当抛物线的顶点不在原点,对称轴不是坐标轴时,我们只能根据定义求抛物线的方程.举一反三:【变式】已知点B (4,0),过y 轴上的一点A 作直线l ⊥y 轴,求l 与线段AB 的中垂线的交点P 的轨迹.【解析】依题意,|P A |=|PB |,且|P A |为点P 到y 轴的距离,∴点P 到点B 的距离与到y 轴的距离相等,其轨迹是以点B为焦点,以y轴为准线的抛物线.例2.平面上动点P到定点F(1,0)的距离比P到y轴的距离大1,求动点P的轨迹方程.【思路点拨】求动点的轨迹方程,可以用坐标法直接求解,也可以用几何法求解.【解析】解法一:设P点的坐标为(x,y)||1x=+,两边平方并化简得y2=2x+2|x|.∴24,0, 0,0, x xyx ≥⎧=⎨<⎩即点P的轨迹方程为y2=4x(x≥0)或y=0(x<0).解法二:由题意,动点P到定点F(1,0)的距离比到y轴的距离大1,由于点F(1,0)到y轴的距离为1,故当x<0时,直线y=0上的点适合条件;当x≥0时,原命题等价于点P到点F(1,0)与到直线x=―1的距离相等,故点P在以F为焦点,x=―1为准线的抛线物上,其轨迹方程为y2=4x.故所求动点P的轨迹方程为y2=4x(x≥0)或y=1(x<0).【总结升华】求动点的轨迹方程时,可用定义法列等量关系,化简求解;也可判断后,用类似于公式法的待定系数法求解,但要判断准确,注意挖掘题目中的隐含条件,防止重、漏解.举一反三:【高清课堂:抛物线线的方程358821例2】【变式1】若点M到定点F(4,0)的距离比它到直线l:x+6=0的距离小2,求点M的轨迹方程.【答案】216y x=【变式2】判断适合下列条件的动点的轨迹是何种曲线,并求出曲线方程.(1)过点P(0,3)且与直线y+3=0相切的动圆的圆心M的轨迹;(2)到点A(0,-2)的距离比到直线l:y = 4的距离小2的动点P的轨迹.【解析】(1)依题意,圆心M到点P的距离等于M到直线y=-3的距离,∴动圆的圆心M的轨迹是以点P为焦点,以直线y =-3为准线的抛物线.抛物线方程为:x 2=12y .(2)依题意,动点P 到点A (0,-2)的距离与到直线l :y =2的距离相等, ∴点P 的轨迹是以点A 为焦点,以直线y =2为准线的抛物线. 则抛物线方程为: x 2=-8y .类型二:抛物线的标准方程例3.求过点(3,2)-的抛物线的标准方程,并求对应抛物线的准线方程: 【解析】∵点(3,2)-在第二象限,∴抛物线开口方向上或者向左当抛物线开口方向左时,设所求的抛物线方程为22y px =-(0p >), ∵过点(3,2)-,∴222(3)p =-⋅-, ∴23p =,∴243y x =-, 当抛物线开口方向上时,设所求的抛物线方程为22x py =(0p >), ∵过点(3,2)-,∴2322p =⨯, ∴94p =,∴292x y =,∴所求的抛物线的方程为243y x =-或292x y =, 对应的准线方程分别是13x =,98y =-.【总结升华】求抛物线的标准方程关键是根据图象确定抛物线开口方向,选择适当的方程形式,准确求出焦参数P .举一反三:【变式1】已知抛物线关于y 轴对称,它的顶点在坐标原点,并且经过点(3,23)M -,求它的标准方程.【答案】23x y =. 【变式2】抛物线的顶点在原点,对称轴是x 轴,抛物线上的点(-5,2)到焦点的距离是6,则抛物线的方程为( )A .y 2=-2xB .y 2=-4xC .y 2=2xD .y 2=-4x 或y 2=-36x【答案】 B【变式3】求适合下列条件的抛物线的标准方程: (1)过点(-2,3);(2)焦点在直线3x -4y -12=0上; (3)准线过点(2,3);(4)焦点在y 轴上,抛物线上一点(,3)M m -到焦点的距离等于5. 【答案】(1)243x y =;(2)若焦点为(4,0),则y 2=16x ;若焦点为(0,-3),则x 2=-12y ; (3)准线为x =2,则y 2= -8x ;准线为y =3,则x 2= -12y ; (4)x 2=-8y .例4. 抛物线218y x =-的焦点是________,准线方程是__________. 【思路点拨】将抛物线化为标准形式,写出准线方程. 【答案】(0,-2); 2y =, 【解析】218y x =-可化为2=8x y -,所以其焦点坐标为(0,-2),准线为2y =.【总结升华】已知抛物线方程求焦点坐标和准线方程时,先看抛物线方程是否是标准方程,若不是,需化方程为标准方程. 依据标准方程,(1)由一次项的符号确定抛物线的开口方向,可得焦点和准线的位置;(2)由一次项的系数确定2p(大于0)的值,求出p ,进而得到.由此可得焦点坐标和准线方程. 举一反三:【变式】求下列抛物线的焦点坐标和准线方程: (1)y 2=4x ; (2)x 2=-3y ; (3)4x +5y 2=0. 【答案】(1)焦点坐标为(1,0):准线为:x =-1; (2)焦点坐标为(0,-34):准线为:y =34;(3)焦点坐标为(-15,0):准线为:x =15.类型三:抛物线中的定(最)值问题例5. 已知抛物线的方程为x 2=8y ,F 是其焦点.点A (-2,4)在抛物线的内部,在此抛物线上求一点P ,使|PF |+|P A |的值最小.【思路点拨】如图所示,根据抛物线的定义把PF 转化为PQ ,使折线段P A ,PQ 的两端点A ,Q 分别落在抛物线的两侧,再通过“数形结合”可知当A ,P ,Q 三点共线时距离达到最小.【答案】122P ⎛⎫⎪⎝⎭-,【解析】∵点A (-2,4)在抛物线x 2=8y 内部,如上图所示,设抛物线的准线为l ,过P 作PQ ⊥l 于Q ,过A 作AB ⊥l 于B . 由抛物线的定义可知|PF |+|P A |=|PQ |+|P A |≥|AQ |≥|AB |. 当且仅当A ,P ,Q 三点共线时,|PF |+|P A |的值最小, 此时点P 的坐标为(-2,y 0),代入x 2=8y ,得y 0=12,故当点P 的坐标为122⎛⎫⎪⎝⎭-,)时,|PF |+|P A |的值最小.【总结升华】确定圆锥曲线上的点到两定点的距离之和最短时的位置,通常有两种情况:(1)当两定点在曲线两侧时,连结两定点的线段与曲线的交点即为所求点;(2)当两定点在曲线同侧时,由圆锥曲线定义作线段的等量长度转移,转变为(1)的情形即可. 举一反三:【变式】若点A 的坐标为(3,2),F 为抛物线y 2=2x 的焦点,点P 在该抛物线上移动,为使得|P A |+|PF |取得最小值,则P 点坐标为 ( )A .(0,0)B .(1,1)C .(2,2) D. 112⎛⎫ ⎪⎝⎭,【答案】C【解析】由抛物线定义,|PF|等于点P到抛物线准线的距离|PP′|,如图所示,因此,当且仅当点P、A、P′在同一条直线上时,有|PF|+|P A|=|PP′|+|P A|最小,此时点P的纵坐标等于A点纵坐标,即y=2,故此时P点坐标为(2,2).故选C.类型四:抛物线的实际应用例6.一种卫星接收天线的轴截面如图所示.卫星波束呈近似平行状态射入轴截面为抛物线的接收天线,经反射聚集到焦点处.已知接收天线的口径为4.8 m,深度为0.5 m,求抛物线的标准方程和焦点坐标.【思路点拨】建立适当的空间直角坐标系,将应用题转化为数学问题,利用抛物线的有关知识加以解决.【解析】如图,建立直角坐标系,则A (0.5,2.4).设抛物线的标准方程是y2=2px(p>0).将A (0.5,2.4)代入得2.42=2p×0.5,解得p=5.76.所以,所求抛物线为y2=11.52x,焦点坐标为(2.88,0).【总结升华】关键是确定抛物线的方程.举一反三:【变式】如图,一位运动员在距离篮球架4 m远处跳起投篮,球运行的路线是抛物线.当球运行的水平距离为2.5 m时,达到最大高度3.5 m,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05 m,如图所示建立平面直角坐标系.(1)试求球运行路线所在抛物线的方程;(2)球出手时,球离开地面的高度是多少?【解析】(1)设球运行所在的抛物线方程为x2=-2py(p>0),由题意知抛物线经过点(1.5,-0.45),代入抛物线方程得1.52=-2p ×(-0.45),解得2p =5,∴所求抛物线方程为x 2=-5y .(2)把x =-2.5代入x 2=-5y得(-2.5)2=-5y , ∴y =-1.25,∴球出手时球离开地面的高度是3.5-1.25=2.25(m).【巩固练习】 一、选择题 1.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( )A .28y x =-B .28y x =C .24y x =-D .24y x =2.已知抛物线过点(1,1),则该抛物线的标准方程是______.( )A. x 2=yB. y 2=xC. y 2=4xD. y 2=x 或x 2=y3.抛物线22y px =过点(2,4)A ,F 是其焦点,又定点(8,8)B -,那么||:||AF BF =( )A.1:4B.1:2C.2:5 D .3:84. 抛物线21(0)y x m m =<的焦点坐标是( ) A.(0,)4mB. (0,)4m -C. 1(0,)4m D. 1(0,)4m - 5. 已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A.12 B .1 C .2 D .46. 已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|FP 1|+|FP 2|=|FP 3B .|FP 1|2+|FP 2|2=|FP 3|2C .2|FP 2|=|FP 1|+|FP 3|D .|FP 2|2=|FP 1|·|FP 3|二、填空题7.抛物线y 2=x 上一点P 到焦点的距离是2,则P 点坐标为8.到点A (-1,0)和直线x =3距离相等的点的轨迹方程是________.9.以双曲线221169x y -=的中心为顶点,左焦点为焦点的抛物线方程是__________. 10.抛物线y 2=16x 上到顶点和焦点距离相等的点的坐标是________.三、解答题11.分别求适合下列条件的抛物线方程.(1)顶点在原点,以坐标轴为对称轴,且过点A (2,3);(2)顶点在原点,以坐标轴为对称轴,焦点到准线的距离为52. 12.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,M )到焦点的距离等于5,求抛物线的方程与M 的值.13. 点M 到直线y +5=0的距离比它到点N (0,4)距离大1,求点M 的轨迹方程.14. 若抛物线y 2=2px (p >0)上一点M 到准线及对称轴的距离分别为10和6,求M 点的横坐标及抛物线方程.15.一抛物线拱桥跨度为52M ,拱顶离水面6.5M ,一竹排上载有一宽4M ,高6M 的大木箱,问竹排能否安全通过?【答案与解析】1.【答案】B ;【解析】由题设知4p =,焦点()2,0,开口向右,∴所求抛物线方程为28y x =.2.【答案】D ;【解析】设抛物线为y 2=2px (p >0)或x 2=2My (M >0),把(1,1)代入得1=2p 或1=2M ,∴p =12或M =12,∴抛物线方程为y 2=x 或x 2=y .3.【答案】C ;【解析】将点(2,4)A 的坐标代入22y px =,得4p =, ∴抛物线方程为28y x =, 焦点(2,0)F ,已知(8,8)B -, ∴2222)08()28()04()22(||||--+--+-=BF AF =52104=. 4. 【答案】 A ;【解析】∵x 2=My (M <0),∴2p =-M ,p =2m -, 焦点坐标为(0,)2p -,即(0,)4m .5. 【答案】 C ;【解析】本题考查抛物线的准线方程,直线与圆的位置关系. 抛物线y 2=2px (p >0)的准线方程是x =2p -,由题意知,3+2p =4,p =2. 6. 【答案】C ;【解析】由抛物线方程y 2=2px (p >0)得准线方程为x =-2p .由定义得 |FP 1|=x 1+2p ,|FP 2|=x 2+2p ,|FP 3|=x 3+2p , 则x 1=|FP 1|-2p ,x 2=|FP 2|-2p ,x 3=|FP 3|-2p , 又2x 2=x 1+x 3,所以2|FP 2|=|FP 1|+|FP 3|.7. 【答案】 77(,)4 【解析】 设P (x 0,y 0),则|PF |=x 0+2p =x 0+14=2, ∴x 0=74,∴y 0=7. 8.【答案】 y 2=8-8x【解析】 设动点坐标为(x ,y ),22(1)x y ++|x -3|,化简得y 2=8-8x .9.【答案】y 2=-20x【解析】 ∵双曲线的左焦点为(-5,0),故设抛物线方程为y 2=-2px (p >0),又p =10,∴y 2=-20x .10. 【答案】(2,±【解析】 设抛物线y 2=16x 上的点P (x ,y )由题意,得(x +4)2=x 2+y 2=x 2+16x ,∴x =2,∴y =±11. 【答案】(1)292y x =或243x y =; (2)25y x =或25y x =-或25x y =-或25x y =-;【解析】(1)根据条件可设抛物线方程为22,y px =和22x py =然后将过点A (2,3)代入,分别求出p 值,(2)题中可知52p =,但焦点轴有四种情况,所以所求方程有四个12. 【解析】设抛物线的方程为y 2=-2p x , p |MF |35p 42=+=∴=,, 所以抛物线的方程为y 2=-8x ,2m 24,∴=m =±13. 【解析】 法一:设M (x ,y )为所求轨迹上任一点,则y 51,y 4+=∴+=, 2x 16y ∴=即为所求.法二:由题知M 到直线y =-4的距离等于它到N 的距离, 所以M 的轨迹是抛物线,焦点为N(0,4),准线为y =-4, ∴x 2=16y14. 【解析】∵点M 到对称轴的距离为6,∴设点M 的坐标为(x,6).∵点M 到准线的距离为10,∴262102pxpx⎧=⎪⎨+=⎪⎩,解得92xp=⎧⎨=⎩,或118xp=⎧⎨=⎩,故当点M的横坐标为9时,抛物线方程为y2=4x.当点M的横坐标为1时,抛物线方程为y2=36x.15. 【解析】如图所示建立平面直角坐标系,设抛物线方程为x2=-2py,则有A(26,-6.5),B(2,y),由262=-2px×(-6.5),得p=52,∴抛物线方程为x2=-104y.当x=2时,4=-104y,y=126-,∵6.5126->6,∴能通过.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线专题复习讲义及练习★知识梳理★1.抛物线的标准方程、类型及其几何性质 (0>p ):标准方程 px y 22=px y 22-=py x 22=py x 22-=图形▲y xO▲yxO▲y xO▲yxO焦点)0,2(p F )0,2(p F - )2,0(p F )2,0(p F - 准线2p x -= 2p x =2p y -= 2p y =范围 R y x ∈≥,0 R y x ∈≤,0 0,≥∈y R x 0,≤∈y R x对称轴 x 轴y 轴顶点 (0,0)离心率1=e2.抛物线的焦半径、焦点弦①)0(22≠=p px y 的焦半径=PF 2P x +;)0(22≠=p py x 的焦半径=PF 2P y +;② 过焦点的所有弦中最短的弦,也被称做通径.其长度为2p.③ AB 为抛物线px y 22=的焦点弦,则=B A x x 42p ,=B A y y 2p -,||AB =p x x B A ++★重难点突破★重点:掌握抛物线的定义和标准方程,会运用定义和会求抛物线的标准方程,能通过方程研究抛物线的几何性质难点: 与焦点有关的计算与论证重难点:围绕焦半径、焦点弦,运用数形结合和代数方法研究抛物线的性质 1.要有用定义的意识问题1:抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1617 B. 1615 C.87D. 0 点拨:抛物线的标准方程为y x 412=,准线方程为161-=y ,由定义知,点M 到准线的距离为1,所以点M 的纵坐标是1615 2.求标准方程要注意焦点位置和开口方向问题2:顶点在原点、焦点在坐标轴上且经过点(3,2)的抛物线的条数有 点拨:抛物线的类型一共有4种,经过第一象限的抛物线有2种,故满足条件的抛物线有2条3.研究几何性质,要具备数形结合思想,“两条腿走路” 问题3:证明:以抛物线焦点弦为直径的圆与抛物线的准线相切点拨:设AB 为抛物线的焦点弦,F 为抛物线的焦点,点''、B A 分别是点B A 、在准线上的射影,弦AB 的中点为M ,则''BB AA BF AF AB +=+=,点M 到准线的距离为AB BB AA 21)''(21=+,∴以抛物线焦点弦为直径的圆总与抛物线的准线相切 ★热点考点题型探析★考点1 抛物线的定义题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换[例1 ]已知点P 在抛物线y 2= 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为【解题思路】将点P 到焦点的距离转化为点P 到准线的距离[解析]过点P 作准线的垂线l 交准线于点R ,由抛物线的定义知,PR PQ PF PQ +=+,当P 点为抛物线与垂线l 的交点时,PR PQ +取得最小值,最小值为点Q 到准线的距离 ,因准线方程为x=-1,故最小值为3【名师指引】灵活利用抛物线的定义,就是实现抛物线上的点到焦点的距离与到准线的距离之间的转换,一般来说,用定义问题都与焦半径问题相关 【新题导练】1.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+B . 321y y y =+C .2312x x x =+ D. 2312y y y =+[解析]C 由抛物线定义,2132()()(),222p p px x x +=+++即:2312x x x =+. 2. 已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时, M 点坐标是 ( )A. )0,0(B. )62,3(C. )4,2(D. )62,3(-[解析] 设M 到准线的距离为MK ,则MK MA MF MA +=+|||,当MK MA +最小时,M 点坐标是)4,2(,选C 考点2 抛物线的标准方程 题型:求抛物线的标准方程[例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2) (2)焦点在直线240x y --=上 【解题思路】以方程的观点看待问题,并注意开口方向的讨论. [解析] (1)设所求的抛物线的方程为22y px =-或22(0)x py p =>, ∵过点(-3,2) ∴229)3(24⋅=--=p p 或 ∴2934p p ==或 ∴抛物线方程为243y x =-或292x y =, 前者的准线方程是1,3x =后者的准线方程为98y =- (2)令0x =得2y =-,令0y =得4x =,∴抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时,42p=, ∴8p =,此时抛物线方程216y x =;焦点为(0,-2)时22p= ∴4p =,此时抛物线方程28x y =-.∴所求抛物线方程为216y x =或28x y =-,对应的准线方程分别是4,2x y =-=. 【名师指引】对开口方向要特别小心,考虑问题要全面 【新题导练】3.若抛物线22y px =的焦点与双曲线2213x y -=的右焦点重合,则p 的值 [解析]4132=⇒+=p p4. 对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上; ③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5; ⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1). 能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号)[解析] 用排除法,由抛物线方程y 2=10x 可排除①③④,从而②⑤满足条件.5. 若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与Y 轴的交点,A 为抛物线上一点,且3||,17||==AF AM ,求此抛物线的方程[解析] 设点'A 是点A 在准线上的射影,则3|'|=AA ,由勾股定理知22|'|=MA ,点A 的横坐标为)23,22(p -,代入方程py x 22=得2=p 或4,抛物线的方程y x 42=或y x 82= 考点3 抛物线的几何性质题型:有关焦半径和焦点弦的计算与论证 [例3 ]设A 、B 为抛物线px y 22=上的点,且 90=∠AOB (O 为原点),则直线AB 必过的定点坐标为__________.【解题思路】由特殊入手,先探求定点位置[解析]设直线OA 方程为kx y =,由⎩⎨⎧==pxy kx y 22解出A 点坐标为)2,2(2k pk p ⎪⎩⎪⎨⎧=-=pxy x k y 212解出B 点坐标为)2,2(2pk pk -,直线AB 方程为221)2(2k pk x k pk y ---=+,令0=y 得p x 2=,直线AB 必过的定点)0,2(p【名师指引】(1)由于是填空题,可取两特殊直线AB, 求交点即可;(2)B 点坐标可由A 点坐标用k1-换k 而得。

【新题导练】6. 若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = [解析]-17.过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,则=∠11FB A ( )A.45 B.60 C.90 D. 120[解析]C 基础巩固训练1.过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于)(422R a a a ∈++,则这样的直线( )A.有且仅有一条B.有且仅有两条C.1条或2条D.不存在 [解析]C 44)1(52||22≥++=++=++=a a a p x x AB B A ,而通径的长为4.2.在平面直角坐标系xOy 中,若抛物线24x y =上的点P 到该抛物线焦点的距离为5,则点P 的纵坐标为 ( )A. 3B. 4C. 5D. 6[解析] B 利用抛物线的定义,点P 到准线1-=y 的距离为5,故点P 的纵坐标为4. 3.两个正数a 、b 的等差中项是92,一个等比中项是25,且,b a >则抛物线2()y b a x =-的焦点坐标为( )A .1(0,)4-B .1(0,)4C .1(,0)2-D .1(,0)4- [解析] D. 1,4,5-=-==a b b a4. 如果1P ,2P ,…,8P 是抛物线24y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21*∈N n x x x n 成等差数列且45921=+++x x x ,则||5F P =( ).A .5B .6C . 7D .9[解析]B 根据抛物线的定义,可知12ii i pPF x x =+=+(1i =,2,……,n ),)(,,,21*∈N n x x x n 成等差数列且45921=+++x x x ,55=x ,||5F P =65、抛物线,42F x y 的焦点为=准线为l ,l 与x 轴相交于点E ,过F 且倾斜角等于60°的直线与抛物线在x 轴上方的部分相交于点A ,AB ⊥l ,垂足为B ,则四边形ABEF 的面积等于( )A .33B .34C .36D .38[解析] C. 过A 作x 轴的垂线交x 轴于点H ,设),(n m A ,则1,1-=-=+==m OF OH FH m AB AF ,32,3)1(21==∴-=+∴n m m m四边形ABEF 的面积==⨯++32)]13(2[21366、设O 是坐标原点,F 是抛物线24y x =的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60,则OA 为 . [解析]21.过A 作AD x ⊥轴于D ,令FD m =,则m FA 2=即m m 22=+,解得2=m .)32,3(A ∴21)32(322=+=∴OA综合提高训练7.在抛物线24y x =上求一点,使该点到直线45y x =-的距离为最短,求该点的坐标 [解析]解法1:设抛物线上的点)4,(2x x P ,点P 到直线的距离17|544|2+-=x x d 1717417|4)21(4|2≥+-=x , 当且仅当21=x 时取等号,故所求的点为),(121解法2:当平行于直线45y x =-且与抛物线相切的直线与抛物线的公共点为所求,设该直线方程为b x y +=4,代入抛物线方程得0442=--b x x , 由01616=+=∆b 得21,1=-=x b ,故所求的点为),(1219. 设抛物线22y px =(0p >)的焦点为 F ,经过点 F 的直线交抛物线于A 、B 两点.点C 在抛物线的准线上,且BC ∥X 轴.证明直线AC 经过原点O .证明:因为抛物线22y px =(0p >)的焦点为,02p F ⎛⎫⎪⎝⎭,所以经过点F 的直线AB 的方程可设为2px my =+,代人抛物线方程得2220y pmy p --=. 若记()11,A x y ,()22,B x y ,则21,y y 是该方程的两个根,所以212y y p =-.因为BC ∥X 轴,且点C 在准线2p x =-上,所以点C 的坐标为2,2p y ⎛⎫- ⎪⎝⎭, 故直线CO 的斜率为21112.2y y p k p y x ===- 即k 也是直线OA 的斜率,所以直线AC 经过原点O .10.椭圆12222=+by a x 上有一点M (-4,59)在抛物线px y 22=(p>0)的准线l 上,抛物线的焦点也是椭圆焦点. (1)求椭圆方程;(2)若点N 在抛物线上,过N 作准线l 的垂线,垂足为Q 距离,求|MN|+|NQ|的最小值.解:(1)∵12222=+by a x 上的点M 在抛物线pxy 22=(p>0)的准线l 上,抛物线的焦点也是椭圆焦点.∴c=-4,p=8……① ∵M (-4,59)在椭圆上 ∴125811622=+ba ……② ∵222c b a +=……③ ∴由①②③解得:a=5、b=3∴椭圆为192522=+y x 由p=8得抛物线为x y 162= 设椭圆焦点为F (4,0), 由椭圆定义得|NQ|=|NF| ∴|MN|+|NQ|≥|MN|+|NF|=|MF|=541)059()44(22=-+--,即为所求的最小值. 参考例题:1、已知抛物线C 的一个焦点为F (21,0),对应于这个焦点的准线方程为x =-21. (1)写出抛物线C 的方程;(2)过F 点的直线与曲线C 交于A 、B 两点,O 点为坐标原点,求△AOB 重心G 的轨迹方程;解:(1)抛物线方程为:y 2=2x . (4分) (2)①当直线不垂直于x 轴时,设方程为y =k (x -21),代入y 2=2x , 得:k 2x 2-(k 2+2)x +042=k . 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=222k k +,y 1+y 2=k (x 1+x 2-1)=k 2.设△AOB 的重心为G (x ,y )则⎪⎪⎩⎪⎪⎨⎧=++=+=++=k y y y k k x x x 32303230212221,消去k 得y 2=9232-x 为所求, (6分)②当直线垂直于x 轴时,A (21,1),B (21,-1), (8分)△AOB 的重心G (31,0)也满足上述方程.综合①②得,所求的轨迹方程为y 2=9232-x , (9分)抛物线专题练习一、选择题(本大题共10小题,每小题5分,共50分) 1.如果抛物线y 2=ax 的准线是直线x =-1,那么它的焦点坐标为( )A .(1, 0)B .(2, 0)C .(3, 0)D .(-1, 0)2.圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是 ( )A .x 2+ y 2-x -2 y -41=0 B .x 2+ y 2+x -2 y +1=0 C .x 2+ y 2-x -2 y +1=0 D .x 2+ y 2-x -2 y +41=03.抛物线2x y =上一点到直线042=--y x 的距离最短的点的坐标是 ( )A .(1,1)B .(41,21) C .)49,23( D .(2,4)4.一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( )A .6mB . 26mC .4.5mD .9m5.平面内过点A (-2,0),且与直线x =2相切的动圆圆心的轨迹方程是 ( )A . y 2=-2xB . y 2=-4xC .y 2=-8xD .y 2=-16x6.抛物线的顶点在原点,对称轴是x 轴,抛物线上点(-5,m )到焦点距离是6,则抛物线的方程是( )A . y 2=-2xB . y 2=-4xC . y 2=2xD . y 2=-4x 或y 2=-36x7.过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+ x 2=6,那么|AB|=( )A .8B .10C .6D .48.把与抛物线y 2=4x 关于原点对称的曲线按向量a )3,2(-=平移,所得的曲线的方程是( )A .)2(4)3(2--=-x y B .)2(4)3(2+-=-x y C .)2(4)3(2--=+x y D . )2(4)3(2+-=+x y9.过点M (2,4)作与抛物线y 2=8x 只有一个公共点的直线l 有 ( )A .0条B .1条C .2条D .3条10.过抛物线y =ax 2(a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于 ( )A .2aB .a 21 C .4a D . a4 二、填空题11.抛物线y 2=4x 的弦AB 垂直于x 轴,若AB 的长为43,则焦点到AB 的距离为 .12.抛物线y =2x 2的一组斜率为k 的平行弦的中点的轨迹方程是 . 13.P 是抛物线y 2=4x 上一动点,以P 为圆心,作与抛物线准线相切的圆,则这个圆一定经过一个定点Q ,点Q 的坐标是 .14.抛物线的焦点为椭圆14922=+y x 的左焦点,顶点在椭圆中心,则抛物线方程为 .一.选择题(本大题共10小题,每小题5分,共50分)题号 1 2 3 4 5 6 7 8 9 10 答案 ADABCBACCC二.填空题(本大题共4小题,每小题6分,共24分) 11.2 12.4kx = 13.(1,0) 14.x y 542-= 三、解答题15.已知动圆M 与直线y =2相切,且与定圆C :1)3(22=++y x 外切,求动圆圆心M 的轨迹方程.[解析]:设动圆圆心为M (x ,y ),半径为r ,则由题意可得M 到C (0,-3)的距离与到直线y =3的距离相等,由抛物线的定义可知:动圆圆心的轨迹是以C (0,-3)为焦点,以y =3为准线的一条抛物线,其方程为y x 122-=.16.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.(12分)[解析]:设抛物线方程为)0(22>-=p py x ,则焦点F (0,2p-),由题意可得 ⎪⎩⎪⎨⎧=-+=5)23(6222p m p m ,解之得⎩⎨⎧==462p m 或⎩⎨⎧=-=462p m , 故所求的抛物线方程为y x 82-=,62±的值为m 17.动直线y =a ,与抛物线x y 212=相交于A 点,动点B 的坐标是)3,0(a ,求线段AB 中点M 的轨迹的方程.(12分)[解析]:设M 的坐标为(x ,y ),A (22a ,a ),又B )3,0(a 得 ⎩⎨⎧==ay a x 22消去a ,得轨迹方程为42y x =,即x y 42=19.如图,直线l 1和l 2相交于点M ,l 1⊥l 2,点N ∈l 1.以A 、B 为端点的曲线段C 上的任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C 的方程.(14分)[解析]:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.由题意可知:曲线C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A 、B 分别为C 的端点.设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,其中B A x x ,分别为A 、B 的横坐标,MN p =. 所以,)0,2(),0,2(pN p M -. 由17=AM ,3=AN 得 172)2(2=++A A px p x ① 92)2(2=+-A A px px ②联立①②解得p x A 4=.将其代入①式并由p>0解得⎩⎨⎧==14A x p ,或⎩⎨⎧==22Ax p . 因为△AMN 为锐角三角形,所以A x p>2,故舍去⎩⎨⎧==22A x p . ∴p=4,1=A x .~~~~ 由点B 在曲线段C 上,得42=-=p BN x B .综上得曲线段C 的方程为)0,41(82>≤≤=y x x y .20.已知抛物线)0(22>=p px y .过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,p AB 2||≤.(Ⅰ)求a 的取值范围;(Ⅱ)若线段AB 的垂直平分线交x 轴于点N ,求NAB Rt ∆面积的最大值.(14分)[解析]:(Ⅰ)直线l 的方程为a x y -=,将px y a x y 22=-=代入,得 0)(222=++-a x p a x . 设直线l 与抛物线两个不同交点的坐标为),(11y x A 、),(22y x B ,则 ⎪⎩⎪⎨⎧=+=+>-+.),(2,04)(42212122a x x p a x x a p a 又a x y a x y -=-=2211,, ∴221221)()(||y y x x AB -+-= ]4)[(221221x x x x -+=)2(8a p p +=. ∵0)2(8,2||0>+≤<a p p p AB , ∴ p a p p 2)2(80≤+<. 解得 42p a p -≤<-. (Ⅱ)设AB 的垂直平分线交AB 于点Q ,令坐标为),(33y x ,则由中点坐标公式,得 p a x x x +=+=2213, p a x a x y y y =-+-=+=2)()(221213.∴ 22222)0()(||p p a p a QM =-+-+=. 又 MNQ ∆为等腰直角三角形,∴ p QM QN 2||||==, ∴||||21QN AB S NAB ⋅=∆||22AB p = p p 222⋅≤ 22p =即NAB ∆面积最大值为22p。

相关文档
最新文档