高一数学周周练

合集下载

高一上学期数学周练13答案

高一上学期数学周练13答案

高一上学期数学周练13一、选择题.请把答案直接填涂在答题卡相应位置上......... 1.已知函数()f x 的定义域为[]-2,2,则函数()()3g x f x = ( D )A .2,13⎡⎤⎢⎥⎣⎦B .[]1,1-C .123,⎡⎤-⎢⎥⎣⎦D .22,33⎡⎤-⎢⎥⎣⎦2.设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有的α的值为 ( A )A.1,3B.-1,1C.-1,3D.-1,1,3 3.若幂函数()()22433m f x m m x -=--在()0,+∞上为减函数,则实数m =( B )A.41m m ==-或B.1m =-C. 21m m ==-或D. 4m =4.已知ba cb a ==⎪⎭⎫ ⎝⎛=,2.0log ,31312.0,则c b a 、、的大小关系为( B )A 、c b a <<B 、b a c <<C 、b c a <<D 、a c b <<5.已知函数()()log 4(0a f x ax a =->且1a ≠)在[]0,2上单调递减,则a 的取值范围是 ( B ) A .()0,1 B .()1,2 C .()0,2 D .[)2,+∞6.已知函数()()()()21,11log ,013aa x x f x x x ⎧->⎪=⎨-<≤⎪⎩,当1>0x ,20x >,且12x x ≠时,()()12120f x f x x x -<-,则实数a 的取值范围是 ( C )A .10,2⎛⎫ ⎪⎝⎭B .11,32⎡⎫⎪⎢⎣⎭C .10,3⎛⎤ ⎥⎝⎦D .1,3⎛⎤-∞ ⎥⎝⎦ 7.函数()ln 1f x x =-的图象大致是 ( B )A .B .C .D .8.已知函数()3122xxf x x =+-,若()()2120f a f a -+≤,则实数a 的取值范围为 ( D )春雨教育A. (]1,1,2⎡⎫-∞-+∞⎪⎢⎣⎭B. 1,12⎡⎤-⎢⎥⎣⎦ C. [)1,1,2⎛⎤-∞-+∞ ⎥⎝⎦ D.11,2⎡⎤-⎢⎥⎣⎦二、多选题:(每小题给出的四个选项中,不止一项是符合题目要求的,请把正确的所有选项填涂在答题卡相应的位置上)9.(多选)下列各式比较大小,正确的是 ( BC )A .1.72.5>1.73 B .24331()22-> C .1.70.3>0.93.1D .233423()()34>10.(多选)若,,()()(y)x y R f x y f x f ∀∈+=+有,则函数()f x 满足 ( ACD )A. (0)0f = B.为偶函数()f x C.()f x 为奇函数 D.(2020)2020(1)f f = 11.(多选)下列说法正确的是 ( ABD )A .函数()24f x x x =-在区间()2,+?上单调递增B .函数()24xxf x e -=在区间()2,+?上单调递增C .函数()()2ln 4f x x x =-在区间()2,+?上单调递增D .若函数()()1f x x ax =-在区间()0,+?上单调递增,则0a ≤12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数“为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 3.5]4-=-,[2.1]2=.已知函数1()12=-+x xe f x e ,则关于函数()[()]g x f x =的叙述中正确的是 ( BC )A.()g x 是偶函数 B.()f x 是奇函数C.()f x 在R 上是增函数D.()g x 的值域是{}1,0,1-【解析】选BC ()()()111[012e g f e ==-=+,1111(1)[(1)][[]112121e g f e e-=-=-=-=-++,()()11g g ∴≠-,则()g x 不是偶函数,故A 错误; 1()12=-+x x e f x e 的定义域为R , 111()()11121211xxx x x x x x e e e e f x f x e e e e---+=-+-=+-++++11011x x xe e e=+-=++,()f x ∴为奇函数,故B 正确; 111111()121221x x x xxe ef x e e e +-=-=-=-+++, 又x e 在R 上单调递增,11()21xf x e ∴=-+在R 上是增函数,故C 正确;春雨教育0x e > ,11x e ∴+>,则1011x e <<+,可得11112212x e -<-<+,即11()22f x -<<. ()[()]{1g x f x ∴=∈-,0},故D 错误.故选BC.三、填空题.请把答案直接填写在答题卡相应位置上......... 13.已知定义在R 上的奇函数,当0x <时有3()2x f x x =-+,则()f x =____332,00,02,0x x x x x x x -⎧+>⎪=⎨⎪-+<⎩_____14.若关于x 的函数12(log )x y a =是R 上的减函数,则实数a 的取值范围是1(,1)2. 15.设函数2()log )f x x =,若对任意的(1,)x ∈-+∞,不等式(ln )(24)0f x a f x -++<恒成立,则a 的取值范围是___(0,]e ____.16.设函数()()()2,142,1x a x f x x a x a x ⎧-<⎪=⎨--≥⎪⎩. ①若1a =,则()f x 的最小值为____1-___;②若()f x 恰有2个零点,则实数a 的取值范围是___[)1,12,2⎡⎫+∞⎪⎢⎣⎭____.四、解答题.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17. 设函数()()⎪⎭⎫ ⎝⎛⋅=4log 8log 22x x x f ,144x ≤≤,(1)求⎪⎭⎫⎝⎛41f 的值(2)若2log t x =,求t 取值范围;(3)求()f x 的最值,并给出最值时对应的x 的值。

高一数学第一学期周练15+答案

高一数学第一学期周练15+答案

高一数学周练(15)一、选择题:(本题共12小题,每小题5分,共60分)1.tan390°的值等于()A.B.C.﹣D.﹣2.已知M={0,1,2},N={x|x=2a,a∈M},则M∪N=()A.{0}B.{0,1}C.{0,1,2}D.{0,1,2,4}3.设P是△ABC所在平面内的一点,,则()A.P、A、C三点共线B.P、A、B三点共线C.P、B、C三点共线D.以上均不正确4.给出下列四个式子:①=x;②a3>a2;③(log a3)2=2log a3;④log23>log49.其中正确的有()A.0 个B.1个C.2个D.3个5.如图,已知∠AOB=2弧度,点A1、A2、A3在OA上,点B1、B2、B3在OB上,其中每一条实线段和虚线段长度均为1个单位.一个动点M从点O出发,沿着实线段和以点O为圆心的实线圆弧匀速运动,速度为1单位/秒.则动点M到达A2处所需时间为()秒.A.6B.8C.2+πD.2+3π6.下列四个函数中,在(0,+∞)上为增函数的是()A.y=﹣1B.y=x2﹣3x C.y=﹣D.y=﹣|x|7.设f(x)=3x+3x﹣8,用二分法求方程3x+3x﹣8=0在x∈(1,3)内近似解的过程中取区间中点x0=2,那么下一个有根区间为()A.(1,2)B.(2,3)C.(1,2)或(2,3)D.不能确定8.已知函数f (x )=,若f (f (﹣1)=18,那么实数a 的值是( )A .0B .1C .2D .39.若,则sin2α的值为( )A .B .C .D .10.如图2-3-6所示,△ABC 中,若D ,E ,F 依次是AB 的四等分点,则以CB →=e 1,CA →=e 2为基底时,CF →=________.A. 34e 1+14e 2 B.C. D.11.已知函数f (x )=Asin (wx +φ)(A >0,w >0,|φ|<,x ∈R )在一个周期内的图象如图所示.则y=f (x )的图象可由函数y=cosx 的图象(纵坐标不变)( )A .先把各点的横坐标缩短到原来的倍,再向左平移个单位B .先把各点的横坐标缩短到原来的倍,再向右平移个单位C .先把各点的横坐标伸长到原来的2倍,再向左平移个单位D .先把各点的横坐标伸长到原来的2倍,再向右平移个单位12.设函数f (x )为偶函数,且当x ≥0时,f (x )=()x ,又函数g (x )=|xsinπx |,则函数h (x )=f (x )﹣g (x )在[﹣,2]上的零点的个数为( )个. A .3B .4C .5D .6二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知集合M={x |log 2(x ﹣3)≤0},N={x |y=},则集合M ∩N 为 .14.(5分)函数的单调增区间为 .15.(5分)甲、乙二人从A 地沿同一方向去B 地,途中都使用两种不同的速度v 1与v 2(v 1<v 2).甲前一半的路程使用速度v 1,后一半的路程使用速度v 2;乙前一半的时间使用速度v 1,后一半时间使用速度v 2.请在如图坐标系中画出关于甲、乙二人从A 地到达B 地的路程与时间的函数图象(其中横轴t 表示时间,纵轴s 表示路程,C 是AB 的中点,t 1是t 2的一半).16.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值是 . 三.解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(1)已知||=1,||=,若与的夹角为,求|﹣|.(2)已知=(﹣4,3),=(1,2),求(﹣3)•(2+)的值.18.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (﹣3,4).(1)求sinα,cosα的值;(2)的值.19.已知函数)32sin(23π+-=x y .(1)求函数的值域; (2)求函数取最小值时x 的集合; (3)当⎥⎦⎤⎢⎣⎡-∈3,3ππx 时,求函数的最大值.20.设函数f (x )=log a x ,x (0<a <1). (1)比较f (sin1)与f (cosl )的大小;(2)记函数f (x )的反函数为g (x ),若a +kg (x ﹣1)≥0在x ∈[2,+∞)上恒成立,求k 的最小值.21.已知函数2()log (21)x f x =+(1)求证:函数()f x 在(,)-∞+∞内单调递增;(2)若关于x 的方程2log (21)()x m f x -=+在[1,2]上有解,求m 的取值范围。

人教版高一数学第周每周一练

人教版高一数学第周每周一练

22.已知两直线 l1 : ax by 4 0, l2 : (a 1) x y b 0 ,求分别满足下列条件的 a 、 b 的值.
(1)直线 l1 过点 (3, 1) ,并且直线 l1 与直线 l2 垂直; (2)直线 l1 与直线 l2 平行,并且坐标原点到 l1 、 l2 的距离相等.
x y 1 0 ,则 PB 的方程为
()
A. x y 5 0 B. 2 x y 1 0 C. 2 y x 4 0 D. 2 x y 7 0
10.若三条直线 l1:x-y=0;l2:x+y-2=0; l3:5x-ky-15=0 围成一个三角形,则 k 的
取值范围是
()
A.k R 且 k 5 且 k 1
即 Ax x0 B y y 0 0 ,得证.
20.略解(利用待定系数发设出 P 点的坐标即可):⑴点 P(0,4);⑵|AB|= 6 2
21.解:设 P 关于 l 的对称点为 P x , y ,直线 l 的斜率为 3
PP l
1
k PP
3
∴直线 P P 的方程为: y 5 1 x 4
3
即: x 3 y 19 0 ,设 P P 与 l 交于 Q 点
B.k R 且 k 5 且 k -10
C.k R 且 k 1 且 k 0
D.k R 且 k 5
11.点 P (m n, m ) 到直线 x y 1 的距离为 mn
()
A. m 2 n 2
B. m 2 n 2
C. m 2 n 2
D. m 2 n 2
12.若点 (4, a ) 到直线 4 x 3 y 1 0 的距离不大于 3,则 a 的取值范围为
A. m 0
B. m 3 2
C. m 1

2024-2025学年上海延安中学高一上学期数学周测1及答案(2024.09)

2024-2025学年上海延安中学高一上学期数学周测1及答案(2024.09)

1延安中学2024学年第一学期高一年级数学周测2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.若不等式()23a x a −>+的解集为∅,则a 的取值集合为________.2.著名的哥德巴赫猜想指出:“任何大于2的偶数可以表示为两个素数的和”,用反证法研究该猜想,应假设的内容是________.3.已知集合{}0,2,4A =,{}|,,B x x ab a b A ==∈,则AB =________.4.已知18log 9a =,185b =,用a ,b 表示36log 45为________.5.若直角三角形斜边长等于10cm ,则直角三角形面积的最大值为________. 6.若不等式2240ax ax +−<的解集为R ,则实数a 的取值范围是________. 7.已知a ,b ,c R ∈,有四个推理:①22a b am bm >⇒>;②a ba b c c>⇒>;③a b >,110ab a b>⇒<;④22a b >,ab >110a b ⇒<,其中所有错误的序号是________.8.关于x 的不等式01x b ax +>−的解集是()1,2−,则20x ax b−>+的解集是________. 9.已知集合{}|523M x R x =∈−−为正整数,则M 的所有真子集的个数是________. 10.已知0a <,同时满足不等式220x x −−>和()225250x a x a +++<的x 的整数值只有2024个,则实数a 的取值范围是________. 11.若三个非零且互不相等的实数a ,b ,c 满足112a b c+=,则称a ,b ,c 是调和的;若满足2a c b +=,则称a ,b ,c 是等差的.已知集合{}20252025,M xx x Z =−≤≤∈|,集合P 是M 的三元子集,即{},,P a b c M =⊆.若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“延安集”.不同的“延安集”的个数为________.212.设a R ∈,若0x >时,均有()()22110a x x ax ⎡⎤−−−−≥⎣⎦成立,则实数a 的取值集合..为________.二、选择题(4题共18分,13~14每题4分,15~16每题5分) 13.下列表示错误的是( ) A .0∉∅B .{}1,2∅⊆C .(){}210,3,435x y x y x y ⎧+=⎧⎫⎪=⎨⎨⎬−=⎩⎭⎪⎩D .若A B ⊆,则AB B =14.111222a b c a b c ==,是“不等式21110a x b x c ++>与22220a x b x c ++>同解”的( ) A .充分非必要条件 B .必要非充分条件C .既不充分也不必要条件D .充要条件15.设a R ∈,关于x ,y 的方程组1x ay ax y a −=⎧⎨+=⎩.对于命题:①存在a ,使得该方程组有无数组解:②对任意a ,该方程组均有一组解,下列判断正确的是( ) A .①和②圴为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题 16.对任意实数a ,b ,c 给出下列命题: ①“a b >”是“22ac bc >”的充要条件;②若a b <,0c <,则c ca b<; ③“a b >”是“22a b >”的充分条件; ④若a b >> ⑤若1a >,0s >,则1s a >.其中真命题的个数是( ) A .1 B .2 C .3 D .43三、解答题(共78分,17~19每题14分,20~21每题18分)17.已知集合25|602m A x nx mx ⎧⎫=−+−=≠∅⎨⎬⎩⎭,集合{}14B x x x Z =<<∈|且,{}|30C x ax =+>,若AB A =,设m 的取值集合为D ,若A D =∅,求:m 的值及其对应a 的取值范围.18.设关于x 的不等式32ax x a −>+的解集为M . (1)求M ;(2)若1M −∈且0M ∉,求实数a 的取值范围.19.(1)已知a 、b 为正实数,a b ≠,0x >,0y >.试比较22a b x y +与2()a b x y ++的大小,并指出两式相等的条件; (2)求函数()31613f x x x =+−,10,3x ⎛⎫∈ ⎪⎝⎭的最小值.420.2022年2月24日,俄乌爆发战争,至今战火未熄.2023年10月7日巴以又爆发冲突.与以往战争不同的是,无人机在战场中起到了侦察和情报收集,攻击敌方目标和反侦察等多种功能,扮演了重要的角色.某无人机企业原有200名科技人员,年人均工资a 万元(0)a >,现加大对无人机研发的投入,该企业把原有科技人员分成技术人员和研发人员,其中技术人员x 名(x N ∈且50100x ≤≤),调整后研发人员的年人均工资增加(2)x %,技术人员的年人均工资调整为10x a m ⎛⎫− ⎪⎝⎭万元.(1)若要使调整后研发人员的年总工资不低于调整前200名科技人员的年总工资,求调整后的研发人员的人数最少为多少人?(2)为了激励研发人员的工作热情和保持技术人员的工作积极性,企业决定在工资方面要同时满足以下两个条件:①研发人员的年总工资始终不低于技术人员的年总工资;②技术人员的年人均工资始终不减少.请问是否存在这样的实数m ,满足以上两个条件,若存在,求出m 的范围;若不存在,说明理由.521.已知有限集{}()12,,2,n A a a a n n N =⋯≥∈,如果A 中的元素()1,2,,i a i n =⋯满足1212n n a a a a a a +++=⨯⨯⨯,就称A 为“完美集”.(1)判断:集合{11−−−+是否是“完美集”并说明理由;(2)1a 、2a 是两个不同的正数,且{}12,a a 是“完美集”,求证:1a 、2a 至少有一个大于2; (3)若i a 为正整数,求:“完美集”A6参考答案一、填空题1.{}2;2.存在一个大于2的偶数不可以表示为两个素数的和;3.{}0,4;4.2a ba+−; 5.25; 6.(]4,0−; 7.①②④; 8.()2,2−; 9.511; 10.[)2026,2025−−; 11.101212.⎪⎪⎩⎭二、选择题13.C 14.C 15.D 16.B15.设a R ∈,关于x ,y 的方程组1x ay ax y a −=⎧⎨+=⎩.对于命题:①存在a ,使得该方程组有无数组解:②对任意a ,该方程组均有一组解,下列判断正确的是( ) A .①和②圴为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题 【答案】D【解析】关于,x y 的方程组1x ay ax y a −=⎧⎨+=⎩, 对于命题:对于①,假设该两直线有无穷多解,则两直线重合,由于a 和a −互为相反数,故不存在a ,使得该方程组有无数组解;故①为假命题;对于②,对任意a ,两直线垂直,故该方程组均有一组解,故②为真命题;故选:D . 16.对任意实数a ,b ,c 给出下列命题: ①“a b >”是“22ac bc >”的充要条件;②若a b <,0c <,则c ca b<; ③“a b >”是“22a b >”的充分条件; ④若a b >⑤若1a >,0s >,则1s a >.其中真命题的个数是( ) A .1B .2C .3D .47【答案】B【解析】对①:当0c =时,由a b >,显然无法得到22ac bc >,充分性不成立,故①是假命题;对②:取1,1,1a b c =−==−,满足a b <,0c <,但此时1,1c cab==−,不满足c c ab<,故②是假命题;对③:取1,2a b ==−,满足a b >,但不满足22a b >,充分性不成立,取2,1a b =−=,满足22a b >, 但不满足a b >必要性不成立故③是假命题;对④:13y x =是R 上的单调增函数,故当a b >时故④是真命题; 对⑤:,(1)x y a a =>是R 上的单调增函数,故当0s >时,01s a a >=,故⑤是真命题. 综上所述,有2个真命题.故选:B . 三.解答题17.若0,12n m ==,则14a ,⎛⎤∈−∞− ⎥⎝⎦ 若0,12n m ==−,则()106a ,,⎡⎫∈−∞⋃+∞⎪⎢⎣⎭若1,4n m ==,则34a ,⎛⎤∈−∞− ⎥⎝⎦(此时0∆=)若1,6n m ==,则12a ,⎛⎤∈−∞− ⎥⎝⎦(此时)0∆=若1260,1313n m ==,则1320a ,⎛⎤∈−∞− ⎥⎝⎦(此时104620507Δ=>) 18.(1)当2a =时,M =∅;当2a >时,3,2a M a +⎛⎫=+∞ ⎪−⎝⎭;当2a <时,3,2a M a +⎛⎫=−∞ ⎪−⎝⎭;(2)13,2⎡⎫−−⎪⎢⎣⎭19.(1)22a b x y +≥2()a b x y++当ay bx =时,两式相等 (2)49 20.2022年2月24日,俄乌爆发战争,至今战火未熄.2023年10月7日巴以又爆发冲突.与以往战争不同的是,无人机在战场中起到了侦察和情报收集,攻击敌方目标和反侦察等多种功能,扮演了重要的角色.某无人机企业原有200名科技人员,年人均工资a 万8元(0)a >,现加大对无人机研发的投入,该企业把原有科技人员分成技术人员和研发人员,其中技术人员x 名(x N ∈且50100x ≤≤),调整后研发人员的年人均工资增加(2)x %,技术人员的年人均工资调整为10x a m ⎛⎫− ⎪⎝⎭万元.(1)若要使调整后研发人员的年总工资不低于调整前200名科技人员的年总工资,求调整后的研发人员的人数最少为多少人?(2)为了激励研发人员的工作热情和保持技术人员的工作积极性,企业决定在工资方面要同时满足以下两个条件:①研发人员的年总工资始终不低于技术人员的年总工资;②技术人员的年人均工资始终不减少.请问是否存在这样的实数m ,满足以上两个条件,若存在,求出m 的范围;若不存在,说明理由.【答案】(1)100 (2){}11m ∈【解析】(1)依题意可得调整后研发人员的年人均工资为()12%,x a ⎡⎤+⎣⎦万元 则()()20012%200,(0)x x a a a ⎡⎤−+>⎣⎦…,整理得20.0230x x −…,解得0150x 剟, 因为x N ∈,且50100x 剟,所以50100x 剟,即100200150x −剟, 所以要使这()200x −名研发人员的年总工资不低于调整前200名科技人员的年总工资, 调整后的研发人员的人数最少为100人。

2021-2022年高一数学下学期周练试题

2021-2022年高一数学下学期周练试题

2021年高一数学下学期周练试题一、选择题1.正方形绕某一条对角线所在直线旋转一周,所得几何体是()A.圆柱 B.圆锥C.圆台 D.两个圆锥2.如图是由哪个平面图形旋转得到的()A. B. C. D.3.将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括()A.一个圆台、两个圆锥 B.两个圆台、一个圆柱C.两个圆台、一个圆锥D.一个圆柱、两个圆锥4.下列结论正确的是()A.圆锥的顶点与底面圆周上的任意一点的连线都是母线B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.各个面都是三角形的几何体是三棱锥5.如图所示,观察四个几何体,其中判断正确的是().A.(1)是棱台 B.(2)是圆台C.(3)是棱锥 D.(4)不是棱柱6.下列命题中正确的个数是()①由五个面围成的多面体只能是三棱柱;②用一个平面去截棱锥便可得到棱台;③仅有一组对面平行的五面体是棱台;④有一个面是多边形,其余各面是三角形的几何体是棱锥.A.0个 B.1个C .2个D .3个7.如图所示,观察四个几何体,其中判断正确的是( ).A .(1)是棱台B .(2)是圆台C .(3)是棱锥D .(4)不是棱柱8.如下图,能推断这个几何体可能是三棱台的是( )A .,,,B.,,,,:] C .,,,,,D .,,9.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A. B. C. D.10.在正方体中,M 是棱的中点,点O 为底面ABCD 的中心,P 为棱A 1B 1上任一点,则异面直线OP 与AM 所成的角的大小为( )A .B .C .D .11.已知地球的半径为,球面上两点都在北纬45°圈上,它们的球面距离为,点在东经30°上,则两点所在其纬线圈上所对应的劣弧的长度为( )A .B .C .D .12.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为,则此球的体积为( )A .B .C .D .二、填空题13.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为 .14.平面截半径为2的球所得的截面圆的面积为,则球心到平面的距离为 .15.若圆锥的内切球与外接球的球心重合,且内切球的半径为,则圆锥的体积为 .16.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点。

高一数学周周练试题 试题

高一数学周周练试题  试题

智才艺州攀枝花市创界学校淳中高一数学周周练试题一.选择题〔每一小题5分,一共50分〕1.⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,412|,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,214|,那么〔〕 〔A N M =〔B 〕M N 〔C 〕N M 〔D 〕N M ⊆ 2.设全集{}+∈≤=N x x x U ,8|,假设{}8,1)(=⋂B C A U ,{}6,2)(=⋂B A C U , {}7,4)()(=⋂B C A C U U ,那么〔〕〔A 〕{}{}6,2,8,1==B A 〔B 〕{}{}6,5,3,2,8,5,3,1==B A 〔C 〕{}{}6,5,3,2,8,1==B A 〔D 〕{}{}6,5,2,8,3,1==B A3.集合{}01|2=++=x m x x A ,假设Φ=⋂R A ,那么实数m 的取值范围是〔〕 〔A 〕4<m 〔B 〕4>m 〔C 〕40<<m 〔D 〕40<≤m4.假设关于x 的不等式|x+2|+|x-1|<a 的解集为φ,那么a 的取值范围是 〔〕 〔A 〕〔3,+∞〕〔B 〕[3,+∞〕 〔C 〕〔-∞,3] 〔D 〕〔-∞,3〕 5.设P=}|),{(},|{22x y y x Q x y x ===,那么P 、Q 的关系是〔〕 〔A 〕P Q 〔B 〕P Q 〔C 〕P=Q 〔D 〕P Q=Φ 6.以下四组函数,表示同一函数的是〔〕〔A 〕f (x )=2x ,g (x )=x 〔B 〕f (x )=x ,g (x )=x x 2 〔C 〕f (x )=42-x ,g (x )=22-+x x 〔D 〕f (x )=|x +1|,g (x )=⎩⎨⎧-<---≥+1111x x x x 7.假设奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是〔〕 〔A 〕增函数且最大值为-5 〔B 〕增函数且最小值为-5≠⊂≠⊂〔C 〕减函数且最小值为-5 〔D 〕减函数且最大值为-58.)(x f 是偶函数,且当0>x 时,x x x f -=2)(,那么当0<x 时,)(x f 的解析式为〔〕〔A 〕x x x f -=2)(〔B 〕x x x f --=2)(〔C 〕x x x f +=2)(〔D 〕x x x f +-=2)(9.函数24)(2++=ax x x f 在)6,(-∞内递减,那么a 的取值范围是〔〕 〔A 〕3≥a 〔B 〕3≤a 〔C 〕3-≥a 〔D 〕3-≤a10.函数x y 111+=的定义域是〔〕〔A 〕0>x 〔B 〕0>x 或者1-≤x 〔C 〕0>x 或者1-<x 〔D 〕10<<x二.填空题〔每一小题5分,一共10分〕11.=A {23|≤≤-x x },=B {1212|+≤≤-m x m x },且BA ,那么实数m 的 取值范围为。

高一数学周周练测试题

高一数学周周练测试题

高一数学周周练( 必修4综合)班级__________ 姓名_________ 学号______一、选择题: 本大题共10小题,每小题4分,共40分 1、若),1,3(),2,1(-==则=-2 ( )A 、 )3,5(B 、 )1,5(C 、 )3,1(-D 、 )3,5(--2、5a b ==,a与b的夹角为3π,则a b -等于( )A .35B .235 C .3 D . 53.已知角α 的终边过点P (-4,3),则ααcos sin 2+的值为( ) A .54- B .53C .52D .24、 已知函数f (x)sin(x )cos(x )=+ϕ++ϕ为奇函数,则ϕ的一个取值为( ) A 、0 B 、2π C 、4π-D 、π5.设),6,2(),3,4(21--P P 且P 在21P P=,则点P 的坐标是 ( )A 、)15,8(-B 、 (0,3)C 、)415,21(-D 、)23,1( 6.已知a=(4,3),向量b是垂直于a的单位向量,则b=( )A .5354)54,53(,或()B .5354)54,53(,或(-- )C .5453)54,53(--,或( )D . 5453)54,53(,或(--)7.a =1,b=2,c a b =+ ,且c ⊥a ,则向量a 与b 的夹角为( )A .30°B .60°C .120°D .150→→→→→→→→b a a b b a b a 的模与,则方向的投影为在,方向的投影为在是非零向量,与、设438的模之比值为( )A 、43 B 、34 C 、73 D 、749.函数44f (x)sin(x)sin(x)ππ=+-是( )A 、周期为2π的奇函数B 、周期为2π的偶函数C 、周期为π的奇函数D 、周期为π的偶函数10. 设两个向量22(2,cos )a λλα=+- 和(,sin ),2m b m α=+ 其中,,m λα为实数.若2,a b = 则mλ的取值范围是( )A .[6,1]-B .[4,8]C .(,1]-∞D .[1,6]-二、填空题:本大题共6小题,每小题4分,满分24分.11、已知113a (,2sin ),b (cos ,),a 322=α=α 且∥b ,则锐角α的值为 ;12、若|a |=|b |=1,a ⊥b ,且2a +3b 与k a -4b 也互相垂直,则k 的值为 ;13、函数y cos 2x 4cos x,x [,]32ππ=-∈-的值域是 ;14、若为则ABC AB BC AB ∆=+∙,02三角形;15将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a平移,则平移后所得图象的解析式为 16、下列命题:①若c a cb b a =⋅=⋅,则 ②若a 与b 是共线向量,b 与c 是共线向量,则a 与c 是共线向-=+0=⋅ba ④若a 与b 是单位向量,则1=⋅其中真命题的序号为 。

2024-2025学年上海建平中学高一上学期数学周测1试卷及答案(2024.09)

2024-2025学年上海建平中学高一上学期数学周测1试卷及答案(2024.09)

1建平中学2024学年第一学期高一年级数学周测一2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.用描述法表示直角坐标系中第二象限的所有点组成的集合________. 2.若22232()a b a b +=+,则20242025a b +=________.3.设a ,b R ∈,集合{}1,,0,b a b a a ⎧⎫+⊇⎨⎬⎩⎭,则a b +=________.4.已知5.43x =,0.63y =,则11x y−=________.5.若不等式1ax b +<的解集为()1,2−,则实数a 的取值集合为________. 6.已知集合{}2|320A x x x =++=,(){}2|10B x x m x m =+++=,若A B A =,则m =________.7.已知集合{}|24A x x =−<<,{}|10B x x a =+−<,若{}|2A B x x =>−,则a 的取值范围为________.8.已知:124m x m α+≤≤+,:13x β≤≤,若α是β的必要不充分条件,则实数m 的取值范围是________.9.已知x R ∈,记符号[]x 表示不大于x 的最大整数,集合[][]{}2|23A x x x =−=,[]1,3B =−,则AB =________.10.已知方程()2110x a x a +−++=的两根为1x ,2x ,且满足22124x x +=,则实数a =________.11.已知x ,y 是正实数,且关于x ,y=k 的取值范围是________.12.在算式“4130□○⨯+⨯=”的两个□,○中,分别填入两个正整数,使它们的倒数之和最小,则这两个数构成的数对(,)□○应为________.2二、选择题(4题共18分,13~14每题4分,15~16每题5分) 13.若a ,b ,c R ∈,a b >,则下列不等式成立的是( ). A .11a b< B .22a b < C .2211a bc c >++ D .a c b c >14.若关于x 的方程()2110x m x +−+=至多有一个实数根,则它成立的必要条件可以 是( ). A .13m −<<B .24m −<<C .4m <D .12m −≤<15.关于x 的不等式20ax bx c ++>的解集为()2,1−,对于系数a 、b 、c ,有如下结论:①0a >;②0b >;③0c >;④0a b c ++>;⑤0a b c −+>则结论正确的数量为( ). A .1B .2C .3D .416.关于集合,下列说法正确的是( ). A .空集是任何集合的真子集B .集合真子集的个数是21n −,其中n 是集合中元素的数量C .无限集不可能真包含无限集D .对于有序数对(,)a b ,(,)c d 属于集合A ,必有a c ≠或b d ≠三、解答题(共78分,17~19每题14分,20~21每题18分) 17.已知关于x 的不等式50ax x a−≤−的解集为M . (1)当4a =时,求集合M : (2)若5M ∉,求实数a 的取值范围.318.(1)解:关于x 的不等式()()331m x x −<+(2)已知不等式()()222240m x m x −−−−≤对切x R ∈都成立.求实数m 的取值范围.19.已知实数a ,b ,c ,d ,显然ab cd ab ad ad cd −=−+−,定义两实数的误差为两数差的绝对值.(1)求证:ab cd a b d d a c −≤−+−;(2)若任取a ,[]1,10b ∈,a 与c 的误差、b 与d 的误差最大值均为0.1,求ab 与cd 误差的最大值,并求出此时a ,b ,c ,d 的值.420.己知关于x 的不等式()24(4)0kx k x −−−>,其中k R ∈. (1)当k 变化时,试求不等式的解集A : (2)对于不等式的解集A ,若满足AZ B =(其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表小集合B ;若不能,请说明理由.21.对于正整数的子集{}123,,(1)n A a a a a n Z n =∈>且,如果任意去掉其中一个元素()1,2,3i a i n −之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A 为“平分集” (1)请你自接写出一个‘平分集’ (2)若集合{}123,,a B a a a a =(n Z ∈且1n >)是‘平分集’①判断n 的奇偶性并证明②求:集合A 中元素个数的最小值5参考答案一、填空题1.(){},|0,0x y x y <>;2.2;3.0;4.2;5.{}2−;6.12或;7.[)3,3−; 8.1,02⎡⎤−⎢⎥⎣⎦; 9.[){}1,03−⋃; 10.1−;11.⎫⎪⎪⎢⎣⎭12.()5,1011.已知x ,y 是正实数,且关于x ,y=k 的取值范围是________.【答案】⎫⎪⎪⎢⎣⎭ 【解析】1k=有解,而21112k ⎛⎫==+≤+= ⎪⎝⎭,当且仅当x y =时,等号成立,又2111k ⎛⎫==+> ⎪⎝⎭,所以2112k ⎛⎫< ⎪⎝⎭…,又10k >,可得11k <≤故答案为:⎫⎪⎪⎢⎣⎭. 12.在算式“4130□○⨯+⨯=”的两个□,○中,分别填入两个正整数,使它们的倒数之和最小,则这两个数构成的数对(,)□○应为________. 【答案】()5,10【解析】设这两个正整数分别为,m n ,问430m n +=, ()()1111114134,55430303010n m m n m n m n m n ⎛⎫⎛⎫∴+=⨯++=+++= ⎪ ⎪⎝⎭⎝⎭…6当且仅当4n mm n=即2,630n m m =∴=,5,10m n ∴==时取等号 ∴当5,10m n ==时,11m n+取得最小值310,处为5,○处为10,故答案为()510,二、选择题13.C 14.B 15.B 16.B15.关于x 的不等式20ax bx c ++>的解集为()2,1−,对于系数a 、b 、c ,有如下结论:①0a >;②0b >;③0c >;④0a b c ++>;⑤0a b c −+>则结论正确的数量为( ). A .1B .2C .3D .4【答案】B【解析】由题意,2,1−是方程20ax bx c ++=的根,且0a <()21,21b ca a ∴−+=−−⋅=0,20b a c a ∴=<=−>0,0a b c a b c ∴++=−+>,故答案为:B.三.解答题17.(1)5,44M ⎡⎫=⎪⎢⎣⎭(2)(]1,518.(1)若3m >则333m x m +<−;若3,012m =<恒成立x R ∈;若333,3mm<x>m +− (2)[]22,−19.(1)证明略 (2)2.01此时,10,10,10.1,10.1a b c d ==== 20.己知关于x 的不等式()24(4)0kx k x −−−>,其中k R ∈. (1)当k 变化时,试求不等式的解集A : (2)对于不等式的解集A ,若满足AZ B =(其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表小集合B ;若不能,请说明理由.【答案】(1)见解析 (2){}3210123B ,,,,,,=−−− 【解析】(1)当0k =时,()4A ,=−∞;7当0k >且2k ≠时,44k k <+,()44A ,k ,k ⎛⎫=−∞⋃++∞ ⎪⎝⎭;当2k =时,()()44A ,,=−∞⋃+∞; 当0k <时,444,,4k A k k k ⎛⎫+<=+ ⎪⎝⎭. (2)由(1)知:当0k …时,集合B 中的元素的个数无限; 当0k <时,集合B 中的元素的个数有限,此时集合B 为有限集. 因为44k k+−…,当且仅当2k =−时取等号,所以当2k =−时,集合B 的元素个数最少. 此时()44A ,=−,故集合{}3210123B ,,,,,,=−−− 21.(1){}1,3,5,7,9,11,13(2)n 为奇数(3)7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淮南三中高一第七次周练试卷
(时间:75分钟 满分:100分)
一、选择题(本大题共6小题,每小题6分,共36分)
1 .sin105cos105 的值为 ( )
A.1
4 B.-14 2.已知tan(α+β)=5
2,tan(β-4π)=41,则tan(α+4π)等于 ( ) A .183 B .2213 C .22
3 D .61 3.要得到)42sin(3π+
=x y 的图象只需将y=3sin2x 的图象 ( ) A .向左平移4π个单位 B .向右平移4
π个单位 C .向左平移8π个单位 D .向右平移8
π个单位 4.α为第三、四象限角,且m
m --=432sin α,则m 的取值范围为 ( ) A .(1,0)- B .)21,1(- C .)2
3,1(- D .(1,1)-
5.已知sin α,则cos4α的值是 ( ) A .254 B .257- C .25
12 D .2518- 6.如图,曲线对应的函数是
( )
A .y=|sin x |
B .y=sin|x |
C .y=-sin|x |
D .y=-|sin x |
二、填空题(本大题共4小题,每小题6分,共24分)
7.如果21)cos(-=+A π,那么=+)2
sin(A π 8.在ABC ∆中,3sin 5A =,5cos 13
B =,则cos
C = 9.函数])3
2,6[)(8cos(πππ∈-=x x y 的最小值是 10.)(x f 为奇函数,=<+=>)(0,cos 2sin )(,0x f x x x x f x 时则时 .

三、解答题(本大题共3小题,共40分)
11.(12分) 求函数)32tan(
π+=x y 的定义域和单调区间.
12.(14分) 已知tan θ=2,求
)4sin(21
sin 2cos 22θπθθ
+--的值
13.(14
分)已知函数2()5sin cos f x x x x =-+x ∈R ),求: (1)函数()f x 的最小正周期; (2)
函数()f x 图象的对称轴和对称中心. .。

相关文档
最新文档