《数列》教案(1)
苏教版高中数学(必修5)2.1《数列》word教案3篇

第 1 课时:§2.1 数列(1)【三维目标】:一、知识与技能1.通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊函数;认识数列是反映自然规律的基本数学模型;2.了解数列的分类,理解数列通项公式的概念,会根据通项公式写出数列数列的前几项,会根据简单数列的前几项写出数列的通项公式;3. 培养学生认真观察的习惯,培养学生从特殊到一般的归纳能力,提高观察、抽象的能力.二、过程与方法1.通过对具体例子的观察分析得出数列的概念,培养学生由特殊到一般的归纳能力;2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.3.通过类比函数的思想了解数列的几种简单的表示方法(列表、图象、通项公式);三、情感、态度与价值观1.体会数列是一种特殊的函数;借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。
2.在参与问题讨论并获得解决中,培养观察、归纳的思维品质,养成自主探索的学习习惯;并通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。
【教学重点与难点】:重点:数列及其有关概念,通项公式及其应用难点:根据一些数列的前几项抽象、归纳数列的通项公式【学法与教学用具】:1. 学法:学生以阅读与思考的方式了解数列的概念;通过类比函数的思想了解数列的几种简单的表示方法;以观察的形式发现数列可能的通项公式。
2. 教学方法:启发引导式3. 教学用具:多媒体、实物投影仪、尺等.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题1. 观察下列例子中的6列数有什么特点:(1)传说中棋盘上的麦粒数按放置的先后排成一列数:1,2,22,23,…,263(2)某种细胞,如果每个细胞每分钟分裂为2个,那么每过1分钟,1个细胞分裂的个数依次为1,2,4,8,16,…(3)π精确到0.01,0.001,0.0001…的不足近似值排成一列数:3.14,3.141,3.1415,3.14159,3.141592…(4)人们在1740年发现了一颗彗星,并推算出它每隔83年出现一次,则从出现那次算起,这颗彗星出现的年份依次为1740,1823,1906,1989,…(5)某剧场有10排座位,第一排有20个座位,后一排都比前一排多2个,则各排的座位数依次为:20,22,24,26,…,38(6)从1984年到今年,我国体育健儿共参加了6次奥运会,获得的金牌数依次排成一列数:15,5,16,16,28,32(7)"一尺之棰,日取其半,万世不竭"如果将"一尺之棰"视为1份,那么每日剩下的部分依次为1,12,14,18,116,... 这些数字能否调换顺序?顺序变了之后所表达的意思变化了吗?思考问题,并理解顺序变化后对这列数字的影响.(组织学生观察这六组数据后,启发学生概括其特点,教师总结并给出数列确切定义)注意:由古印度关于国际象棋的传说、生物学中的细胞分裂问题及实际生活中的某些例子导入课题,既激活了课堂气氛,又让学生体会到数列在实际生活中有着广泛的应用,提高学生学习的兴趣。
人教版中职数学基础模块下册《数列的概念》教案 (一)

人教版中职数学基础模块下册《数列的概念》教案 (一)本文将围绕人教版中职数学基础模块下册《数列的概念》教案进行阐述和分析。
文章结构分为引言、教案分析和教学体会。
希望本文能够对数学教学教师以及学生们提供一些参考和帮助。
引言数列是数学中的一个重要概念,在高中数学中便有涉及。
而在中职教学中,更是需要对数列进行更加深入的了解和探究。
为此,人教版编写了《数列的概念》的教案,帮助教师更好地教授这一内容。
接下来将对这一教案进行分析和讨论。
教案分析一、教学目标本教案的教学目标明确,包括基本知识、技能、过程、情感和价值观的培养。
其中包括对数列和等差数列的定义和性质、数列的公式和求和公式以及解决实际问题的能力。
通过教学,学生们可以具备较好的数列分析能力,掌握一定的实际问题解决能力。
二、教学内容本教案的教学内容主要包括以下几个方面:数列的概念、等差数列的定义和性质、数列的公式和求和公式以及解决实际问题。
这些内容相辅相成,包含了数列最基本的知识点,可以帮助学生们全面地了解数列的性质和应用。
三、教学方法本教案的教学方法多样,包括了讲授、自主学习、小组合作等多种形式。
其中,小组合作能够增强学生们的合作意识和解决问题的能力;自主学习则可以培养学生们的自主学习能力。
这些教学方法能够帮助学生们更好地掌握数列相关知识点。
四、教具准备和课堂安排本教案的教具准备比较充足,包括了PPT、教学黑板、教学实物等。
这些教具对于教师讲解、学生学习都有很大的帮助。
此外,教案规定了较为详细的课堂安排,包括了准备、导入、展示、提高、反思等五个环节。
这种严谨的课堂安排有助于教学效果的提高。
教学体会通过对教案的分析和讨论,我们可以看到这份教案的编写有着较为严谨的逻辑和合理的设计。
在实际教学中,我也发现了教案的优点和好处。
例如,教案具有较高的针对性和系统性,能够帮助学生们更好地理解和掌握数列相关知识点;同时,教案的安排合理,能够帮助教师更好地指导和管理整个教学过程。
高中教学数列设计数学教案

高中教学数列设计数学教案
教学内容:数列
一、教学目标
1.了解数列的定义和性质。
2.掌握常见数列的求和公式。
3.能够应用数列知识解决问题。
二、教学重点和难点
重点:数列的定义和性质,常见数列的求和公式。
难点:能够灵活运用数列知识解决问题。
三、教学准备
1.教师准备教案和教学PPT。
2.学生准备数学笔记本和作业本。
四、教学过程
1.引入:通过引入一个简单的问题引出数列的概念,让学生思考数列的定义。
2.概念讲解:讲解数列的定义和性质,包括等差数列、等比数列等常见数列的特点。
3.例题讲解:通过几个例题,帮助学生掌握常见数列的求和公式。
4.练习:让学生做一些练习题,巩固所学知识。
5.拓展:提出一些拓展问题,让学生运用所学知识解决问题。
6.总结:总结本节课的重点内容,梳理学生的思路。
五、教学反馈
1.教师让学生口头回答一些问题,检查他们的理解情况。
2.教师布置相关作业,巩固所学知识。
六、教学手段
1.课堂互动:让学生积极参与,通过讨论和解答问题来加深理解。
2.多媒体辅助:通过PPT呈现数列的概念和例题,提高学生的学习效果。
七、教学总结
本节课通过引入、讲解、练习等环节,使学生初步掌握数列的相关知识,为以后的学习打下坚实基础。
数列的概念与简单表示法教案

数列的概念与简单表示法教案第一章:数列的概念1.1 数列的定义引导学生理解数列是由按照一定顺序排列的一列数。
举例说明数列的组成,如自然数数列、等差数列等。
1.2 数列的项解释数列中的每一个数称为数列的项。
强调数列项的顺序和重复性质。
1.3 数列的通项公式引导学生了解通项公式的概念,即用公式表示数列中任意一项的方法。
举例讲解如何写出简单数列的通项公式。
第二章:数列的表示法2.1 列举法讲解如何用列举法表示数列,即直接写出数列的所有项。
练习写出几个给定数列的列举表示。
2.2 公式法解释公式法表示数列的方法,即用公式来表示数列的任意一项。
举例说明如何用公式法表示等差数列和等比数列。
2.3 图像法介绍图像法表示数列的方法,即用图形来表示数列的项。
引导学生通过观察图形来理解数列的特点。
第三章:数列的性质3.1 数列的项数解释数列的项数是指数列中项的数量。
举例说明如何确定一个数列的项数。
3.2 数列的单调性引导学生理解数列的单调性,即数列项的增减规律。
举例说明如何判断一个数列的单调性。
3.3 数列的周期性解释数列的周期性是指数列中项按照一定规律重复出现。
举例说明如何判断一个数列的周期性。
第四章:数列的通项公式4.1 等差数列的通项公式讲解等差数列的定义和性质。
推导等差数列的通项公式。
4.2 等比数列的通项公式讲解等比数列的定义和性质。
推导等比数列的通项公式。
4.3 其他类型数列的通项公式引导学生了解其他类型数列的通项公式。
举例讲解如何求解其他类型数列的通项公式。
第五章:数列的前n项和5.1 等差数列的前n项和讲解等差数列的前n项和的定义和性质。
推导等差数列的前n项和的公式。
5.2 等比数列的前n项和讲解等比数列的前n项和的定义和性质。
推导等比数列的前n项和的公式。
5.3 其他类型数列的前n项和引导学生了解其他类型数列的前n项和的求法。
举例讲解如何求解其他类型数列的前n项和。
第六章:数列的求和公式6.1 数列求和的定义解释数列求和是指将数列中的所有项相加得到一个数值。
数列教案范文

数列教案范文一、教学目标1.知识目标:①了解等差数列和等比数列的概念以及它们的发展规律;②掌握求等差数列和等比数列的公式与方法;③了解数列在生活中的应用。
2.能力目标:①能够熟练地运用等差数列及等比数列求解问题;②能够将所学知识应用到实际生活中。
3.态度目标:①激发学生学习数学的兴趣;②培养学生积极探索、勇于创新的精神。
二、教学重点难点1.重点:等差数列和等比数列的概念、求和公式以及应用;2.难点:应用实例的解决。
三、教学内容及方法1.教学内容(1)等差数列及其求和公式;(2)等差数列在生活中的应用;(3)等比数列及其求和公式;(4)等比数列在生活中的应用。
2.教学方法(1)讲解法:讲解等差数列和等比数列的概念、求和公式及应用,通过例题演示方法,引领学生逐步了解并掌握。
(2)归纳法:在学生学习过程中,引导学生进行概念归纳、规律总结,使学生更深入地理解知识点。
(3)练习法:开展各类型的例题练习,让学生熟练掌握所学知识,提高能力。
(4)探究法:利用生活实际问题,让学生自主探索并解决问题,培养学生创新精神。
四、教学步骤1.导入:与学生讲述数学在生活和科技中的应用,引起学生对数学的兴趣。
2.讲解等差数列和等比数列的概念。
3.介绍等差数列及其求和公式,让学生对等差数列有一个深入的了解。
4.介绍等差数列在生活中的应用,例如:物流运输中的时间问题。
5.介绍等比数列及其求和公式,让学生对等比数列有一个深入的了解。
6.介绍等比数列在生活中的应用,例如:光传输中的问题。
7.练习,让学生能够熟练掌握所学的知识。
8.探究性学习,让学生认识数学应用实际中的作用。
五、教学评价1.能在学生生活中讲述数学的应用,并引起学生对数学的兴趣。
2.能在学生心中形成数学发展规律的认识,掌握等差数列及等比数列的求和方法。
3.能培养学生探究问题的能力,使学生在应用实例上更加熟练。
四、教学总结数列是数学中的重要概念,应用广泛,它既是数学教育的基石,也是日常生活中的基础知识,掌握好数列及其应用,能起到事半功倍的效果。
职业高中数学数列教案

职业高中数学数列教案
教学目标:
1. 了解数列的概念和性质;
2. 掌握等差数列和等比数列的概念,能够判断一个数列是等差数列还是等比数列;
3. 能够求解等差数列和等比数列的通项公式;
4. 能够利用数列的性质解决实际问题。
教学重点和难点:
1. 等差数列和等比数列的概念及性质;
2. 求解等差数列和等比数列的通项公式;
3. 判断一个数列是等差数列还是等比数列。
教学准备:
1. 课件、教材和教具;
2. 学生练习题和课堂练习题。
教学过程:
一、导入新知识(5分钟)
老师通过引入实际生活中的数字问题,引起学生对数列的兴趣,帮助学生理解数列的概念和意义。
二、讲解理论知识(20分钟)
1. 介绍等差数列和等比数列的定义和性质;
2. 分别讲解等差数列和等比数列的通项公式;
3. 讲解如何判断一个数列是等差数列还是等比数列。
三、练习与实践(25分钟)
1. 让学生做一些练习题,巩固所学知识;
2. 给学生几道实际问题,让他们利用所学知识解决问题。
四、总结归纳(5分钟)
老师总结本节课的重点知识,帮助学生理解整体知识结构。
五、课后作业(5分钟)
布置相应的课后作业,让学生巩固所学知识。
教学反思:
本节课主要是对数列的基本知识进行介绍和讲解,通过实例练习和实际问题来深化学生对数列的理解和应用能力。
希望学生能够掌握数列的基本性质,并能够熟练运用通项公式进行求解问题。
高中必修二数学教材数列教案

高中必修二数学教材数列教案
教学内容:数列
教学目标:1. 了解数列的概念及特点。
2. 掌握常见数列的表示方法及性质。
3. 能够解决与数列相关的问题。
教学重点:数列的概念、常见数列的特点、递推公式的求解。
教学难点:数列的性质应用题的解题技巧。
教学准备:黑板、彩色粉笔、教学PPT、习题集。
教学过程:
1. 概念引入:通过举例引入数列的概念,让学生了解什么是数列,并询问学生对数列的认识。
2. 数列的表示方法:介绍等差数列、等比数列等常见数列的表示方法及特点,并通过实例引导学生理解。
3. 数列的性质:讲解数列的性质,如首项、公差、通项公式等,让学生掌握数列的基本概念。
4. 数列的递推公式:通过实例引导学生如何求解数列的递推公式,让学生熟练掌握求解方法。
5. 综合练习:布置一些数列的练习题目,让学生独立解题,并及时纠正学生的错误。
6. 总结提问:对本节课所学的知识进行总结,并提出一些问题让学生思考,加深对数列的理解。
7. 课后作业:布置一些相关的练习题目,帮助学生巩固复习所学知识。
教学反思:在教学过程中要注重引导学生思考和探究,通过实例让学生理解数列的概念及性质,让学生在解题中得到实际应用。
同时要及时纠正学生的错误,并鼓励他们勇于探索和学习。
高中数学单元设计数列教案

高中数学单元设计数列教案
一、教学目标:
1. 了解数列的定义和性质;
2. 能够识别和推断等差数列、等比数列;
3. 能够求解数列的通项公式;
4. 能够利用数列解决实际问题。
二、教学重点:
1. 数列的定义和分类;
2. 等差数列和等比数列的特点;
3. 数列的通项公式的求解方法。
三、教学难点:
1. 数列的通项公式的推导过程;
2. 利用数列解决实际问题的能力。
四、教学内容:
1. 数列的定义和性质;
2. 等差数列和等比数列;
3. 数列的通项公式;
4. 数列在实际问题中的应用。
五、教学过程:
1. 概念引入:通过举例介绍数列的概念和分类;
2. 理论讲解:依次介绍等差数列、等比数列的概念和性质;
3. 示例演练:通过例题演练,让学生掌握数列的求解方法;
4. 拓展应用:结合实际问题,让学生掌握利用数列解决问题的能力;
5. 总结反思:总结本节课的重点和难点,让学生对数列的概念有更深刻的理解。
六、教学手段:
1. 讲义和教材;
2. 幻灯片和黑板;
3. 课堂练习和作业。
七、教学评价:
1. 考试成绩;
2. 课堂表现;
3. 作业质量。
八、教学反馈:
1. 随堂测验;
2. 学生互评;
3. 教师评语。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列 教学目标 了解数列的概念、了解数列的分类、了解数列是一种特殊的函数,会用图象法的列表法表示数列. 理解数列通项公式的概念,会根据通项公式写出数列数列的前几项,会根据简单数列的前几项写出数列的通项公式;
重点难点 数列通项公式的概念理解,及由通项公式写出数列的前几项.
引入新课
一、学前准备:自学课本P29~31
1.数列: 称为数列.
2.项: 叫做这个数列的项.
说明:数列的概念和记号{}n a 与集合概念和记号的区别:
(1)数列中的项是有序的,而集合中的项是 的;
(2)数列中的项可以重复,而集合中的元素 .
3.数列的分类: ①按项数分类:有穷数列(项数有限的数列)
无穷数列( )
②按项与项间的大小关系分类:递增数列(n n a a >+1)
递减数列( )
常数列( ) …
4.数列是特殊的函数:
在数列{}n a 中,对于每一个正整数n (或{}1,2,...,n k ∈),都有一个数n a 与之对应,因此,数列可以看成是 为定义域的函数()n a f n =,当
时,所对应的一列函数值.反过来,对于函数()y f x =,如果 有意义,那么就得到一个数列 (强调有序性).
说明:数列的图象是一些离散的点.
5.通项公式
一般地,如果 来表示.那么这个公式叫做这个数列的通项公式.通项公式可以看成数列的函数解析式.
.
例题剖析
已知数列的第n 项n a 记为12-n ,写出这个数列的首项,第2项和第3项.
已知数列{}n a 的通项公式,写出这个数列的前5项,并作出它的图象: (1)1
+=n n a n (2)n
n n a 2)1(-=
例1 例2 例3
写出数列的一个通项公式,使它的前4项分别是下列各数:
(1)211⨯,321⨯-,431⨯,541⨯-; (2)0,2,0,2.
巩固练习
1.根据数列{}n a 的通项公式,写出这个数列的前6项和第10项:
(1)n a n 31-=;
(2)n a n n 2)1(-=. (3)n n a n +=2; (4)12
5--=n n a .
2.数列{}13+n 的第50项是________________.
3.37是否为数列{}13+n 中的项?如果是,是第几项?
4.写出数列的一个通项公式,使它的前4项分别是下列各数:
① 1, 3, 5, 7; ② 5
15,414,313,2122222----;
课堂小结
数列的概念、表示形式、通项公式及由通项公式写出前几项;数列与集合、函数的异同.
课后训练 班级:高一( )班 姓名:____________
一 基础题
1.不是数列{}n n )1(2-+中的一项的是
(1)0 (2)5 (3)24 (3)99
2.已知数列+∈+=N n n n f 12)(,则函数)(n f 的图象是
(1)一条直线 (2)在第一象限的一条射线
(3)一条直线上的任意一点 (4)一条直线上间隔相等的一些点
3.通项公式为n n n a )1(2-+=的数列{}n a 的第4项,第5项分别为_______,______.
4.已知数列{}n a 满足1110,2
n n a a a +>=,则数列{}n a 是 数列 (1)递增数列 (2)递减数列 (3)摆动数列 (4)常数列
5.写出数列{}n a 的前5项,并作出它的图象:
(1)32+=n a n ; (2)3=n a ;
(3))12(31-=n n a ; (4)⎩⎨⎧-=为偶数为奇数n n n a n ,12,1.
6.数列{}n a 的通项公式232++=n n a n ,56是此数列中的项吗?若是,是第几项?
二 提高题
7.已知数列{}n a 的通项公式为 ⎪⎩⎪⎨⎧=为正偶数为正奇数n n n a n ,2
,1, (1)写出这个数列的前6项,并画出图象;
(2)判断7是否是该数列的项,若是,是第几项?
8、写出下面数列的一个通项公式,使它的前4项分别是下列各数:
(1) 5
41,431,321,211⨯⨯-⨯⨯-;
(2)-1,7,-13,19;
(3)
23,45,169,25617.。