立体几何

合集下载

解析几何中的立体几何图形

解析几何中的立体几何图形

解析几何中的立体几何图形几何学是数学中的一个重要分支,其研究对象是形状、大小、位置等空间属性。

在几何学中,立体几何图形是一种特殊的几何图形,具有重要的理论意义和实际应用价值。

本文将对解析几何中的立体几何图形进行详细的解析和分析。

一、平面和空间在讨论立体几何图形之前,先需要了解几何中的两个重要概念,即平面和空间。

平面是指一个无限大的、无厚度的、无限制的平面,即类似于二维坐标系中的平面。

而空间是指一个三维空间,包括长度、宽度和高度三个方向。

在几何学中,我们可以利用平面来描述、研究二维图形,利用空间来描述、研究三维图形。

二、在解析几何中,对于任意一个三维几何图形,我们可以通过一个点集合来表示它。

具体的说,我们可以利用一组三元数或三元组表示一个点的位置,这些三元数或三元组分别对应于点在三个坐标轴上的坐标。

例如,对于一个三维空间中的点P,我们可以用(x, y, z)来表示它在x轴、y轴、z轴上的坐标,其中x、y、z分别表示P与三个坐标轴的交点所在的直线的截距。

而对于一个立体几何图形,我们可以用一组点集合来表示它。

这个点集合中的每个点都表示立体几何图形中的一个顶点,多个点之间用线段连接起来,便可以形成一个完整的立体几何图形。

例如,一个正方体可以用八个点来表示,这八个点的坐标分别为(0,0,0)、(0,1,0)、(1,1,0)、(1,0,0)、(0,0,1)、(0,1,1)、(1,1,1)、(1,0,1)。

三、常见的立体几何图形1. 立方体立方体是指一个六个面都为正方形的立体图形。

它有八个顶点和十二个棱,每个顶点有三条棱相接。

立方体的一个重要特征是,它的所有面都是相等的。

例如,上面提到的正方体就是一种立方体。

2. 圆锥圆锥是指一个上面为圆形、下面为尖锐的锥形图形。

它有一个圆锥顶点和若干个圆锥侧面,圆锥侧面上的点都在圆锥顶点与底面圆周之间的线段上。

圆锥在数学和物理学中都有广泛的应用,例如在机械工程中就有很多使用圆锥切割器来切割圆形零件的实践。

立体几何(解析版)

立体几何(解析版)

立体几何(解析版)立体几何(解析版)立体几何是数学中的一个重要分支,研究物体的空间形状、尺寸以及相互关系。

通过立体几何的学习,我们可以更好地理解并描述物体的形状,并运用相关理论方法解决实际问题。

本文将以解析的方式介绍立体几何的基本概念、性质和定理,并探讨其在实际问题中的应用。

1. 点、线、面的基本概念在立体几何的世界中,点、线、面是最基本的几何元素。

点是没有大小的,只有位置的几何对象。

线由无数个点组成,是长度没有宽度的几何对象。

面是由无数个点和线组成,有着长度和宽度的几何对象。

了解这些基本概念是理解立体几何的第一步。

2. 空间几何关系的性质在立体几何中,物体之间有着各种各样的空间几何关系。

例如,平行是最基本的几何关系之一。

当两条直线或两个平面在空间中永远不相交时,我们称它们为平行。

此外,垂直、相交、共面等几何关系都在立体几何中发挥着重要作用。

通过研究这些几何关系的性质,可以更好地理解物体在空间中的位置和相互关系。

3. 空间几何图形的性质和分类空间几何图形是由点、线、面组成的。

常见的空间几何图形包括球、立方体、锥体等。

每种空间几何图形都有其独特的性质和分类标准。

例如,球是由所有距离圆心相等的点组成的,而立方体则有六个平面和八个顶点等。

通过深入研究这些性质和分类标准,我们能够更好地认识和应用空间几何图形。

4. 空间几何定理及其应用在立体几何中,有许多重要的定理和定律来描述和证明空间几何图形的性质。

例如,欧几里得空间中的平行公设和垂直公设是我们研究空间几何的基础。

此外,勾股定理、皮亚诺定理、欧拉公式等也为我们解决实际问题提供了强大的工具。

在实际问题中,我们可以通过运用这些定理和定律,推导出几何图形之间的关系,解决诸如面积、体积、距离等方面的问题。

5. 立体几何的应用立体几何的应用广泛而重要。

在建筑设计中,我们需要合理利用立体几何理论,确定房屋的尺寸和结构,确保建筑的稳定和美观。

在工程测量中,立体几何被用于计算地表面积和体积,指导建设工程的施工。

立体几何新课标

立体几何新课标

立体几何新课标
新课标对立体几何的知识要求主要包括以下几点:
1. 认识空间图形:学生应从整体观察感知入手,认识和理解空间几何体,包括它们的形状、大小和位置关系。

2. 空间点、线、面的位置关系:以长方体为载体,直观认识和理解空间点、线、面的位置关系,并能用数学语言表述有关平行、垂直的性质与判定。

3. 计算简单几何体的表面积与体积:学生应了解一些简单几何体的表面积与体积的计算方法。

4. 培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。

新课标对立体几何教学的要求主要包括以下几点:
1. 降低学习门槛:采用先整体后局部的展开方式,将几何知识生活化地体现出来,有助于提高学生学习立体几何的兴趣,降低学习入门的门槛。

2. 培养学生的空间观念:通过立体几何的学习,学生应能发展他们的空间观念,把握图形的能力和空间想象能力。

3. 培养逻辑思维能力:在理解空间点、线、面的位置关系的过程中,学生需要运用逻辑推理和论证,有助于培养他们的逻辑思维能力。

总体来说,立体几何新课标旨在培养学生认识和描述三维空间的
能力,通过直观的方式引导他们理解和掌握空间几何体的基本知识,并在此基础上发展他们的空间思维和逻辑推理能力。

高中数学—立体几何知识点总结(精华版)

高中数学—立体几何知识点总结(精华版)

立体几何知识点一.基本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)(规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°])斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。

直,那么这条直线垂直于这个平面。

如果两条直线同垂直于一个平面,那么这两条直线平行。

如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

行,那么这条直线和这个平面平行。

如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

面,那么这两个平面平行。

如果两个平行平面同时和第三个平面相交,则交线平行。

8.(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

(完整版)立体几何初步知识点(很详细的)

(完整版)立体几何初步知识点(很详细的)

立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线) ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥'1()3V S S h =++台 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π 4、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

高中数学—立体几何知识点总结(精华版)

高中数学—立体几何知识点总结(精华版)

立体几何知识点一.根本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)〔规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]〕斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。

直,那么这条直线垂直于这个平面。

如果两条直线同垂直于一个平面,那么这两条直线平行。

如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

行,那么这条直线和这个平面平行。

如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

面,那么这两个平面平行。

行。

8.〔1〕二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°]〔2〕二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

立体几何基本概念

立体几何基本概念

1基本概念数学上,立体几何(solid geometry)是3维欧氏空间的几何的传统名称。

立体几何一般作为平面几何的后续课程,暂时在人教版数学必修二中出现。

立体测绘(Stereometry)是处理不同形体的体积的测量问题。

如:圆柱,圆锥,圆台,球,棱柱,棱锥等等。

立体几何空间图形毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。

立体几何形戒指尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。

2基本课题课题内容包括:各种各样的几何立体图形(10张)- 面和线的重合- 二面角和立体角- 方块, 长方体, 平行六面体- 四面体和其他棱锥- 棱柱- 八面体, 十二面体, 二十面体- 圆锥,圆柱- 球- 其他二次曲面: 回转椭球, 椭球,抛物面,双曲面公理立体几何中有4个公理公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2 过不在一条直线上的三点,有且只有一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4 平行于同一条直线的两条直线平行。

各种立体图形表面积和体积一览表注:初学者会认为立体几何很难,但只要打好基础,立体几何将会变得很容易。

学好立体几何最关键的就是建立起立体模型,把立体转换为平面,运用平面知识来解决问题,立体几何在高考中肯定会出现一道大题,所以学好立体是非常关键的。

三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:在平面内的一条直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。

1,三垂线定理描述的是PO(斜线),AO(射影),a(直线)之间的垂直关系.2,a与PO可以相交,也可以异面.3,三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理.关于三垂线定理的应用,关键是找出平面(基准面)的垂线.至于射影则是由垂足,斜足来确定的,因而是第二位的.从三垂线定理的证明得到证明a⊥b的一个程序:一垂,二射,三证.即几何模型第一,找平面(基准面)及平面垂线第二,找射影线,这时a,b便成平面上的一条直线与一条斜线.第三,证明射影线与直线a垂直,从而得出a与b垂直.注:1.定理中四条线均针对同一平面而言2.应用定理关键是找"基准面"这个参照系用向量证明三垂线定理已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b 垂直OA,求证:b垂直PA证明:因为PO垂直a,所以PO垂直b,又因为OA垂直b 向量PA=(向量PO+向量OA)所以向量PA乘以b=(向量PO+向量OA)乘以b=(向量PO 乘以b)加(向量OA 乘以b )=O,所以PA垂直b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲直线、平面平行的判定与性质[学习目标]1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质和判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.知识梳理1.直线与平面平行的判定与性质2.考点一有关线面、面面平行的命题真假判断【例1】(1)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是().A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β(2)设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是().A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β【训练1】(1)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是().A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α(2)给出下列关于互不相同的直线l,m,n和平面α,β,γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为().A.3 B.2 C.1 D.0考点二线面平行的判定与性质【例2】如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=2,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.【训练2】如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC的中点,G为DE 的中点.证明:直线HG∥平面CEF.考点三面面平行的判定与性质【例3】如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.【训练3】在正方体ABCD-A1B1C1D1中,M,N,P分别是C1C,B1C1,C1D1的中点,求证:平面PMN∥平面A1BD.【典例】如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.【自主体验】如图,在四棱锥P-ABCD中,AB∥DC,AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC.过关检测1.已知直线a,b,c及平面α,β,下列条件中,能使a∥b成立的是().A.a∥α,b⊂αB.a∥α,b∥αC.a∥c,b∥c D.a∥α,α∩β=b2.在梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α内的直线的位置关系只能是().A.平行B.平行和异面C.平行和相交D.异面和相交3.已知直线a和平面α,那么a∥α的一个充分条件是().A.存在一条直线b,a∥b且b⊂αB.存在一条直线b,a⊥b且b⊥αC.存在一个平面β,a⊂β且α∥βD.存在一个平面β,a∥β且α∥β4.若m,n为两条不重合的直线,α,β为两个不重合的平面,则下列命题中正确的是().A.若m,n都平行于平面α,则m,n一定不是相交直线B.若m,n都垂直于平面α,则m,n一定是平行直线C.已知α,β互相平行,m,n互相平行,若m∥α,则n∥βD.若m,n在平面α内的射影互相平行,则m,n互相平行5.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则().A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形6.下列四个命题:①过平面外一点有且只有一条直线与该平面垂直;②过平面外一点有且只有一条直线与该平面平行;③如果两个平行平面和第三个平面相交,那么所得的两条交线平行;④如果两个平面互相垂直,那么经过第一个平面内一点且垂直于第二个平面的直线必在第一个平面内.其中所有真命题的序号是________.7.在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.8四棱锥P-ABCD中,底面ABCD为平行四边形,N是PB中点,过A,N,D三点的平面交PC于M.(1)求证:PD∥平面ANC;(2)求证:M是PC中点.9.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F.第2讲 直线、平面垂直的判定与性质[学习目标]1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线、面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形垂直关系的简单命题.知 识 梳 理1.直线与平面垂直(1)定义:若直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直.(2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(线线垂直⇒线面垂直).即:a ⊂α,b ⊂α,l ⊥a ,l ⊥b ,a ∩b =P ⇒l ⊥α.(3)性质定理:垂直于同一个平面的两条直线平行.即:a ⊥α,b ⊥α⇒a ∥b . 2.平面与平面垂直(1)定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.即:a ⊂α,a ⊥β⇒α⊥β. (3)性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.即:α⊥β,a ⊂α,α∩β=b ,a ⊥b ⇒a ⊥β. 3.直线与平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条斜线和这个平面所成的角.(2)线面角θ的范围:θ∈⎣⎢⎡⎦⎥⎤0,π2.4.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:二面角棱上的一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.考点一 直线与平面垂直的判定和性质【例1】 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点. 证明:(1)CD ⊥AE ; (2)PD ⊥平面ABE .【训练1】如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.【训练2】如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题【例3】如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.【训练3】如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.【自主体验】如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.过关检测1.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是A.若α⊥β,α∩β=n,m⊥n,则m⊥αB.若m⊂α,n⊂β,m⊥n,则n⊥αC.若n⊥α,n⊥β,m⊥β,则m⊥αD.若m∥α,n∥β,m⊥n,则α⊥β3.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l4.如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE5.已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是().A.①④B.②④C.②③D.③④6.如图,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为正确的条件即可).7.如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A ⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.8.如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.。

相关文档
最新文档