《子集、全集、补集》

合集下载

子集,全集和补集

子集,全集和补集

第二课 子集 全集 补集一.概念(1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 记作:A B B A ⊇⊆或 ,A ⊂B 或B ⊃A , 当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,同时集合B 的任何..一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或B A, 读作A 真包含于B 或B 真包含A(4)子集与真子集符号的方向不同与同义;与B A B A A B B A ⊇⊆⊇⊆(5)空集是任何集合的子集Φ⊆A 空集是任何非空集合的真子集ΦA 若A ≠Φ,则Φ A 任何一个集合是它本身的子集A A ⊆ (6)易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合(7) 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A的补集(或余集),记作A C S ,即C S A=},|{A x S x x ∉∈且(8)、性质:C S (C S A )=A ,C S S=φ,C S φ=S(9)、全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示二、讲解范例:例1(1) 写出N ,Z ,Q ,R 的包含关系,并用文氏图表示 (2) 判断下列写法是否正确 ①Φ⊆A ②Φ A ③A A ⊆ ④A A例2 (1)填空:N___Z, N___Q, R___Z, R___Q , Φ___{0}(2)若A={x∈R|x2-3x-4=0},B={x∈Z||x|<10},则A⊆B正确吗?⊆A,为什么?(3)是否对任意一个集合A,都有A(4)集合{a,b}的子集有那些?(5)高一(1)班同学组成的集合A,高一年级同学组成的集合B,则A、B的关系为. 例3 解不等式x+3<2,并把结果用集合表示出来.例4(1)若S={1,2,3,4,5,6},A={1,3,5},求C S A(2)若A={0},求证:C N A=N*(3)求证:C R Q是无理数集A例5已知全集U=R,集合A={x|1≤2x+1<9},求CU例6 已知S={x|-1≤x+2<8},A={x|-2<1-x≤1},B={x|5<2x-1<11},讨论A与CB的关系S三、练习:1.写出集合{1,2,3}的所有子集1、已知全集U={x|-1<x<9},A={x|1<x<a},若A≠φ,则a的取值范围是()(A)a<9(B)a≤9(C)a≥9(D)1<a≤92、已知全集U,A是U的子集,φ是空集,B=C U A,求C U B,C Uφ,C U U3、设U={梯形},A={等腰梯形},求C U A.4、已知U=R,A={x|x2+3x+2<0}, 求C U A.5、集合U={(x ,y )|x ∈{1,2},y ∈{1,2}} , A={(x ,y )|x ∈N*,y ∈N*,x+y=3},求C U A .6、设全集U (U ≠Φ),已知集合M ,N ,P ,且M=C U N ,N=C U P ,则M 与P 的关系是( )(A)M=C U P , (B )M=P , (C )M ⊇P , (D )M ⊆P .7、设全集U={2,3,322-+a a },A={b,2},A C U ={2b},求实数a 和b 的值.8、⑴写出集合{}1,2的所有子集:⑵写出集合{},,a b c 的所有真子集. (3)猜想若集合A 的元素有n 个,则A 的子集个数为多少?9、给出下面四个关系:①{}10,1,2∈;②{}{}10,1,2∈;③{}{}0,1,20,1,2⊆; ④{}0,1,2⊂∅≠;⑤{}{}2,0,10,1,2=,其中错误关系的序号是 。

第2讲 子集、全集、补集

第2讲 子集、全集、补集

BAU子集、全集、补集知识归纳和梳理:子集的定义:如果集合A 中的元素都是集合B 的元素,则称A 是B 的子集,记作B A ⊆,读作A 包含于B;或者记作A B ⊇,读作B 包含A. 子集的性质:(1)A ⊆∅, A A ⊆(2)若一个集合中含有n 个元素,则它的子集个数有n 2个真子集的定义:如果A 是B 的子集,并且集合B 中至少有一个元素不属于集合A,则称A 是B 的真子集,记作A ⊂≠B,读作A 真包含于B. 真子集的性质: (1)∅⊂≠A (其中A 是任意的非空集), (2)若一个集合中含有n 个元素,则它的真子集个数有12-n个子集、真子集(B A ⊆, A ⊂≠B )关系用韦恩图表示为:全集的定义:在研究集合间的关系时,如果有一个集合包含了我们研究范围内所有集合的全部元素,此时可以把它看成全集,全集一般用字母U 表示。

补集的定义:由全集U 中的元素,去掉它的一个子集A 中的元素,剩下的元素构成的集合叫做全集U 中子集A 的补集,记作A C U .补集性质:(1)U C U =φ (2) φ=U C U (3) A A C C U U =)( (4)B A ⊆,则B C A C U U ⊇【经典例题】例1. (1){}a A ,3,1=,{}1,12+-=a a B ,B A ⊇,求a 。

(2)已知{}01|=+=ax x A ,{}056|2=--=x x x B ,B A ⊆,求a 。

(3)已知{}04|2=+=x x x A ,{}01)1(2|22=-+++=a x a x x B ,若A B ⊆,求a 。

经典练习:已知{}52|≤≤-=x x A ,{}121|-≤≤+=m x m x B ,若A B ⊆,求m 的范围例2.设全集{}32,3,22-+=a a U ,{}2,12-=a A 。

(1) 若{}5=A C U ,求实数a 的值(2) 若A B ⊆,集合{}3=B C A ,求集合B 与集合U 。

子集、补集、全集

子集、补集、全集

子集、全集、补集
一、子集
(1)含义:一般的,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B或集合B包含集合
A。

记作A B
若集合A不包含于集合B(集合B不包含集合A),应记作AB(2)性质:任何一个集合是它本身的子集;
空集是任何集合的子集
注:不能把子集说成由原来集合中的部分元素组成的集合。

因为A的子集包括它本身,而这个子集由A的全体集合组成;空集也是A的子集,但这子集中不包A中的元素。

二、集合相等
(1)含义:一般的,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B任何一个元素都是集合A元素,我们就说集合A 等于集合B,记作:A=B
(A、B的所有元素均相等)
三、真子集
(1)含义:如果A是B的子集,并且B中至少有一个元素不属于A,则A是B的真子集
(即A包含于B但不等于B)
注:元素与集合之间是属于关系;集合于集合之间是包含关系
四、全集与补集
(1)补集含义:一般的,设C是一个集合,A是C的一个子集,由C中所有不属于A的元素组成的集合,叫做C中子集A的补集,记作:
(2)全集含义:如果集合C中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集
注:补集是对于给定的全集而言的,当全集不同时,补集也会不同。

子集、全集、补集

子集、全集、补集
书法加盟服务机构 少儿书法培训加盟
三、讲解范例
例1 (1)若S={1,2,3,4,5,6}, A={1,3,5},求CSA (2)若A={0},求证:CNA=N*
例2 S={三角形}, B={锐角三角形}, 求CSB
例3已知A={0,2,4}, CUA= {-1, 1}, CUB= {-1,0,2},求B
例3 已知全集U=R,集合A={x| 1≤2x+1<9},求CUA。
例4 已知S={x|-1≤x+2<8},A ={x|-2<1-x≤1},
B={x|5<2x-1<11},讨论A与 CSB的关系。
例5、设全集U(U Φ),已知集合M,
N,P,且M=CUN,N=CUP,则M与P 的关系是( )
M(A)P,M=(CDUP),M(B)P.M=P,(C)
四、练习
1、已知全集U={x|-1<x<9},A={x|1
<x<a},若A≠ ,则a的取值范围是
() (A)a<9 (B)a≤9 (C)a≥9 (D)1<
a≤9 2、已知全集U={2,4,1-a},A={2,a2
-a+2}。如果CUA= {-1},那么a的值为 。
3B、=已C知UA全,集求UCU,B,A是CUU的,子CU集U,。 是空集,
集A的补集(或余集),记作 CS A ,即
CS A = {x | x S,且x A}
二、全集的定义
如果集合S含有我们所要研究的各个 集合的全部元素,这个集合就可以
看作一个全集,全集通常用U表示。
性质:CS(CSA)=A ,CSS=
CS =S

蟹一样的屁股更让人猜想。这巨仙有着活像鼓锤似的腿和亮黑色金钵模样的爪子……轻飘的暗白色蛤蟆般的五条尾巴极为怪异,深红色娃娃模样的铅笔水云肚子有种 野蛮的霸气。紫宝石色球杆一样的脚趾甲更为绝奇。这个巨仙喘息时有种浓黑色舢板般的气味,乱叫时会发出浅灰色木偶样的声音。这个巨仙头上亮黄色水牛一样的 犄角真的十分罕见,脖子上犹如长笛一样的铃铛结实的脑袋感觉空前耀眼和疯狂。月光妹妹笑道:“就这点本事也想混过去!我让你们见识一下什么是雪峰!什么是 女孩!什么是雪峰女孩!”月光妹妹一边说着一边和壮扭公主组成了一个巨大的镊子驴脚鬼!这个巨大的镊子驴脚鬼,身长四百多米,体重二百多万吨。最奇的是这 个怪物长着十分痴呆的驴脚!这巨鬼有着紫红色玉兔样的身躯和水红色细小螺栓造型的皮毛,头上是亮橙色面具般的鬃毛,长着水蓝色馄饨样的舷窗碎花额头,前半 身是粉红色廊柱样的怪鳞,后半身是五光十色的羽毛。这巨鬼长着土黄色馄饨形 态的脑袋和水绿 色面条样的脖子,有着纯黄色蘑菇一样的脸和深黄色水波形态的眉毛 ,配着深绿色琵琶般的鼻子。有着金橙色软盘一样的眼睛,和纯蓝色猎犬样的耳朵,一张金橙色钢管样的嘴唇,怪叫时露出暗绿色树皮形态的牙齿,变态的粉红色门 柱造型的舌头很是恐怖,水红色葫芦一般的下巴非常离奇。这巨鬼有着活像油条形态的肩胛和活似虎尾般的翅膀,这巨鬼长长的金红色篦子造型的胸脯闪着冷光,很 像磨盘般的屁股更让人猜想。这巨鬼有着美如龙虾样的腿和淡绿色龟壳形态的爪子……肥大的亮橙色包子造型的二条尾巴极为怪异,深蓝色土豆形态的弯刀雪川肚子 有种野蛮的霸气。金红色木头般的脚趾甲更为绝奇。这个巨鬼喘息时有种深绿色弹头造型的气味,乱叫时会发出淡黄色蒜头一样的声音。这个巨鬼头上淡橙色娃娃般 的犄角真的十分罕见,脖子上特像春蚕般的铃铛淡紫色猪肺般的脑袋感觉空前正点和新奇!这时那伙校精组成的巨大卵石刀肝仙忽然怪吼一声!只见卵石刀肝仙转动 跳动的犹如长笛一样的铃铛,整个身体一边旋转一边像巨大的怪物一样膨胀起来……突然,整个怪物像巨大的浓黑色种子一样裂开……七条紫红色面条模样的残暴巨 根急速从里面伸出然后很快钻进泥土中……接着,一棵深红色白菜模样的炽热巨大怪芽疯速膨胀起来……一簇簇淡橙色糖块模样的残缺巨大枝叶疯速向外扩张……突 然!一朵碳黑色海带模样的邪恶巨蕾恐怖地钻了出来……随着深黑色花生模样的残疾巨花狂速盛开,无数锅底色果盘模样的受伤花瓣和纯蓝色花蕊飞一样伸向远方… …突然,无数白杏仁色刀峰模样的炽热果实从巨

1.2 子集、全集、补集讲义

1.2 子集、全集、补集讲义

1.2 子集、全集、补集要点一子集、真子集[重点]在上一节中,我们用约定的字母标记了一些特殊的集合,在这些特殊的集合中,我们会发现这样一个现象:正整数集中的所有元素都在自然数集中;自然数集中的所有元素都在整数集中;整数集中的所有元素都在有理数集中;有利数集中的所有元素都在实数集中.其实,上述各集合之间是一种集合见得包含关系;可以用子集的概念来表示这种关系.1.子集(1)定义:如果集合A的任意一个元素都是集合B的元素(若a∈A则a∈B),那么集合A成为集合B的子集,记作A B或B A,读作“集合A包含于集合B”或“集合B包含于集合A”.(2)举例:例如,{4,5} Z,{4,5} Q,Z Q,1-2-1来表示.(3)理解子集的定义要注意以下四点:①“A是B的子集”的含义是集合A中的任何一个元素都是集合B中的元素,既由x∈A,能推出x∈B,例如{-1,1} {-1,0,1,2}.②任何一个集合是它本身的子集,即对于任何一个集合A,它的任何一个元素都是属于集合A本身,记作A A.③我们规定,空集是任何集合的子集,即对于任何一个集合A,有 A.④在子集的定义中,不能理解为子集A是B中的“部分元素”所组成的集合.因为若A= ,则A中不含任何元素;若A=B,则A中含有B中的所有元素,但此时都说集合A 是集合B的子集.以上②③点告诉我们,在邱某一个集合时,不要漏掉空集和它的本身两种特殊情况.(4)例题:例1设集合A={1,3,a },B={1,a 2-a +1},且A B,求a的值.解:∵A B,∴a 2-a +1=3或a 2-a +1=a,由a 2-a +1=3,得a =2或a =-1;由a 2-a +1=a,得a =1.经检验,当a =1时,集合A、B中元素有重复,与集合元素的互异性矛盾,所以符合题意的a 的值为-1,2.2.真子集 (1)定义:如果A B ,并且A≠B ,那么集合A 称为集合B 的真子集,记作A B 或B A ,读作 “A 真包含于B ”或“B 真包含A ”.(2)举例: {1,2} {1,2,3}.(3)理解子集的定义要注意以下四点: ①空集是任何非空集合的真子集.②对于集合A 、B 、C ,如果A B ,B C ,那么A C . ③若A B ,则⎩⎪⎨⎪⎧A=B A B 且B A A ≠B A B .④元素与集合的关系是属于于不属于的关系,分别用符号“∈”和“ ”表示;集合 与集合之间的关系是包含于、不包含于、真包含于、相等的关系,分别用符号“ ”“ ”“ ”和“=”.(4)例题:例2 写出集合{a ,b ,c }的所有子集,并指出其中哪些是真子集,哪些是非空真子集. 解:{a ,b ,c }的所有子集是: ,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c }.其中除了{a ,b ,c }外,其余7个集合都是它的真子集.除了 ,{a ,b ,c }外,其余6个都是它的非空真子集.练习:1.判断下列命题的正误:(1){2,4,6} {2,3,4,5,6}; (2){菱形} {矩形}; (3){x |x 2+1=0} {0}; (4){(0,1)} {0,1}.根据子集的定义,判断所给的两集合中前一个集合的任何一个元素是否都是后一个集合的元素.解:根据子集的定义,(1)显然正确;(2)中只有正方形才既是菱形,也是矩形,其他 的菱形不是矩形;(3)中集合{ x | x 2+1= 0 }是 ,而 是任何集合的子集;(4)中{(0,1)} 是点集,而{0,1}是数集,元素不同,因此正确的是(1)(3),错误的是(2)(4). 判断两集合之间的子集关系时,主要是看其中一个集合的元素是不是都在另一个集合评点中.2.写出集合A ={p ,q ,r ,s }的所有子集.根据集合A 的子集中所含有元素的个数进行分类,分别写出,不要漏掉.解:集合A 的子集分为5类,即 (1) ;(2)含有一个元素的子集:{p },{q },{r },{s };(3)含有两个元素的子集:{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s }; (4)含有三个元素的子集有:{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s }; (5)含有四个元素的子集有:{p ,q ,r ,s }.综上所述:集合A 的子集有 ,{p },{q },{r },{s },{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s },{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s },{p ,q ,r ,s },共16个.给定一个含有具体元素的集合,写其子集时,应根据子集所含元素的个数进行分类.以下结论可以帮助检验所写子集数的正确性:若一个集合含有m 个元素,则其子集有2m 个,真子集有(2m -1)个,非空真子集有(2m -2)个.3.给出下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若 A ,则A≠ .其中正确的序号有____④______.从子集、真子集的概念以及空集的特点入手,逐一进行判断. 解析:①错误,空集是任何集合的子集, ;②错误,如空集的子集只有1个;③错误, 不是 的真子集;④正确,∵ 是任何非空集合的真子集. 求解与子集、真子集概念有关的题目时,应记住以下结论:(1)空集是任何集合的子 集,即对于任意一个集合A ,有 A .(2)任何一个集合是它本身的子集,即对任何一个集合A ,有A A . 4.满足集合{1,2,3} M {1,2,3,4,5}的集合M 的个数是 __2____ . 根据所给关系式,利用{1,2,3}是M 的真子集,且M 真包含于{1,2,3,4,5}的关系判断集合M 中的元素个数.解析:依题意,集合M 中除含有1,2,3外至少含有4,5中的一个元素,又M {1,2,3,4,5},∴M={1,2,3,4}或{1,2,3,5}. 评点 评点(1)解答此题应首先根据子集与真子集的概念判断出集合M中含有元素的可能情况,然后根据集合M中含有元素的多少进行分类讨论,防止遗漏.(2)若{ a1,a2,…,a m } A {a1,a2,…,a m ,a m+1,…,a n } ,则A的个数为2n-m.若{ a1,a2,…,a m } A {a1,a2,…,a m ,a m+1,…,a n },则A的个数为2n-m -1.若{ a1,a2,…,a m } A {a1,a2,…,a m ,a m+1,…,a n },则A的个数为2n-m -2.要点二补集、全集[重点]1.补集设A S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作 S A(读作“A在S中的补集”),即S A={ x | x∈S,且x A}.C S A可用图1-2-22.全集.(1)定义:如果集合S包含我们所要研究的各个集合,这时S可以看做一个全集,全集通常记作U.(2)举例:例如,在实数范围内讨论集合时,R便可看做一个全集U,在自然数范围内讨论集合时,N便可看做一个全集U.3.理解补集、全集要注意以下两点:(1)对全集概念的理解:全集是相对于所研究的问题而言的一个相对概念,它含有与所研究的问题有关的各个集合的全部元素,因此,全集因研究问题而异.例如在研究数集时,常常把实数集R看做全集;在立体几何中,三维空间是全集,这是平面是全集的一个子集;而在平面几何中,整个平面可以看做一个全集.(2)求子集A在全集U中的补集的方法:从全集U中去掉所有属于A的元素,剩下的元素组成的集合即为A在U中的补集.如已知U= a,b,c,d,e,f ,A= b,f ,求C U A.该题中显然A U,从U中除去子集A的元素b、f ,乘下的a、c、d、e组成的集合即为 U A= a,c,d,e .求补集,我们则可以充分利用数轴的直观性来求解.如已知U=R,A= x x > 3 ,求 U A.用数轴表示如图1-2-3,可知 U A= x x > 3 .4.例题 例2 不等式组⎩⎪⎨⎪⎧2x -1>0,3x -6≤0的解集为A ,U=R .试求A 及C U A ,并把它们分别表示在数轴上.解:A= x 2 x -1 > 0且3 x –6 ≤ 0 =122<x x ⎧⎫≤⎨⎬⎩⎭,在数轴上表示如图1-2-4(1).C U A=1,22x x x ⎧⎫≤>⎨⎬⎩⎭或,在数轴上表示如图1-2-4(2).练习5.已知全集U=R ,集合A={ x |1< x ≤6},求C U A .在数轴上标出集合A ,结合补集的定义求解.解:根据补集的定义,在实数集R 中,由所有不属于A 的实数组成的集合,就是C U A ,如图1-2-5,结合数轴可知,C U A={ x |1< x ≤6}.涉足与数集有关的补集,求解时一般要利用数轴只管求解,求解时要注意端点值的取舍.6.已知全集U={不大于5的自然数},A={0,1},B={x |x ∈A ,且x <1},C={x |x -1 A ,且x ∈U}.(1)判断A 、B 的关系;(2)求C U B 、C U C ,并判断其关系.根据题意,先写出全集U ,按所给集合B 、C 的含义,写出B 、C ,并求其补集后求解第(2)题.解:由题意知U={0,1,2,3,4,5},B={0},又集合C 中的元素必须满足以下两 个条件:x ∈U ,x -1 A .若x =0,此时0-1=-1 A ,∴0是C 中的元素; 若x =1,此时1-1=0∈A ,∴1不是C 中的元素; 若x =2,此时2-1=1∈A ,∴2不是C 中的元素;同理可知3,4,5是集合C 中的元素,∴C={0,3,4,5}. (1)∵A={0,1},B={0},∴B A ;(2)C U B={1,2,3,4,5},C U C={1,2},∴C U C C U B . 1212评点若给定具体的数的集合,判断其两个子集的补集之间的关系时,应先求集合的补集. 7.设全集U={1,2,x 2-2},A={1,x },求C U A .要求C U A ,必须先确定集合A ,实际上就是确定x 的值,从而需要分类讨论.解:由条件知A U ,∴x ∈U={1,2,x 2-2},又x ≠1,∴x =2或x = x 2-2. 若x =2,则x 2-2=2,此时U={1,2,2},这是与互异性矛盾,舍去. 由x =x 2-2得x 2-x -2=0,解得x =-1或x =2(舍去). 此时U={-1,1,2},A={1,-1},∴C U A={2}.求解此题首先确定参数x 的值,然后确定出U 和A 的具体结果.在求解集合问题时必须密切关注集合元素的特征,并且特别注意互异性,以免产生增根.8.已知A={x |x <5},B={x |x <a },分别求满足下列条件的a的取值范围:(1)B A ;(2)AB .紧扣子集、全集、补集的定义,利用数轴,数形结合求出a 范围. 解:(1)因为B A ,B 是A 的子集,如图1-2-6(1),故a ≤5.(2)因为A B ,B 是A 的子集,如图1-2-6(2),故a ≥5.9.已知M={x |x = a 2+1,a ∈N *},P={ y | y =b 2- 6b +10,b ∈N},判断集合M 与P 之间的关系.解法一:集合P 中,y =b 2-6b +10=(b -3)2+1当b =4,5,6,…时,与集合M 中a =1,2,3,…时的值相同,而当b =3时,y =1∈P ,1 M ,∴M P .解法二:对任意的x 0∈M ,有x 0=a 20+1=(a 0+3)2-6(a 0+3)+10∈P(∵a 0∈N *,∴a 0+3∈ N),∴M P ,又b =3时,y =1,∴1∈P .而1<1+ a 20+1=(a 0∈N *),∴1 M ,从而M P .10.已知全集U ,集合A={1,3,5,7,9},C U A={2,4,6,8},C U B={1,4,6,8,9},求集合B .求集合B ,需根据题意先求全集U ,由于集合A 及C U A 已知,因此可用V enn 图来表示所给集合,将A 及C U A 填入即可得U解:借助V een 图,如图1-2-7.评点 (2)(1)由题意知U={1,2,3,4,5,6,7,8,9}. ∵C U B={1,4,6,8,9} ∴B={2,3,5,7}.求本题中的全集,用V een 较直观,本题的求解实际上应用了补集的性质C U (C U B)=B .教材问题探究1.教材第8页“思考”对于集合A 、B ,如果A B ,同时B A ,那么A=B .这是因为由A B 可知,集合A 的元素都是集合B 的元素,又由B A 知,集合B 的元素也都是集合A 的元素,这就是说,集合A 和集合B 的元素是完全相同的,因而说集合A 与集合B 是相等的.当A=B 时,集合A 中的每一个元素都在集合B 中,集合B 中的元素也都在集合A 中,即A B 与B A 同时成立.综上所述,A B 与B A 同时成立的等价条件是A=B . 例 判断下列两个集合的关系: (1)A={x |(x -1)(x +1)= 0},B={x | x 2=1};(2)C={x | x =2n ,n ∈Z },D={x | x =2(n -1),n ∈Z }. 解:∵(1)A={-1,1},B={-1,1},∴A=B .(2)易知集合C 为偶数,∵n ∈Z ,n -1∈Z ,∴集合D 也为偶数集,∴C=D .2.教材第9页“思考”在(1)(2)(3)中除有A S ,B S 外,不难看出在S 中属于A 的所有元素均不属于B ,即x i∈S ,x i∈A ,但x iB ,在S 中属于B 的所有元素均不属于A ,即x i∈S ,xi ∈A ,但x iA ,也就是说,A 、B 两个集合没有公共元素,且它们的元素合在一起,恰好是集合S 的全部元素.探究学习1.教材第8页“?”集合{a 1,a 2,a 3,a 4}的子集有: ,{a 1},{a 2},{a 3},{a 4},{a 1,a 2},{a 2,a 3},{a 3,a 4},{a 1,a 4},{a 1,a 3},{a 2,a 4},{a 1,a 2,a 3},{a 1,a 2,a 4},{a 2,a 3,a 4},{a 1,a 3,a 4},{a 1,a 2,a 3,a 4}.拓展:集合{a 1,a 2,a 3,a 4}有多少个真子集?有多少个非空真子集?由上可知,集合{a 1,a 2,a 3,a 4}有15个真子集,有14个非空真子集. 一个集合含有n 个元素,则它的所有自己有2n 个,真子集有(2n-1)个(去掉集合本身),评点非空真子集有(2n -2)个(去掉集合本身及空集).典型例题解析例1 设A={x | ( x 2-16)( x 2+5x +4) = 0},写出集合A 的子集,并指出其中哪些是它的真子集?要确定集合A 的子集、真子集,首先必须清楚集合A 中的元素,由于集合A 中的元素是方程( x 2-16)( x 2+5x +4) = 0的根,所以要先解该方程.解:将方程( x 2-16)( x 2+5x +4) = 0变形,得( x -4)( x +1)( x +4)2=0,则可得方程的根为x =-4 或x =-1或x =4.故集合A={-4,-1,4},真子集有 ,{-4},{-1},{4},{-4,-1},{-4, 4},{-1,4},{-4,-1,4},真子集有 ,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}写出一个集合的所有子集,首先要注意两个特殊的子集— 和自身;其次,依次按含有一个元素的子集,含有两个元素的子集,含有三个元素的子集等一一写处,就可避免重复和遗漏现象的发生.-2},A={| 3a -2 |,4},C U A={3},求实数a 的值.∵C U A={3},∴3∈U ,且3 A ,由补集的定义知A={1,4}. 解:∵C U A={3},说明3∈U ,且3 A ,∴a 2+4a -2=3,∴a =-5或a =1. ①当a =1时,| 3a -2 |=1≠3,此时A={1,4},满足题意. ②当a =-5时,| 3a -2 |=17,此时A={17,4} U ,不满足题意. ∴a 的值为1.例3 已知{1,2} M {1,2,3,4,5},则这样的集合M 有 8 .根据题目给出的条件可知,集合M 中至少含有元素1、2,至多含有元素1、2、3、4、5,故可按M 中所含元素的个数分类写出集合M ,解析:(1)当M 中含有两个元素时,M 为{1,2};(2)当M 中含有三个元素时,M 可能为{1,2,3},{1,2,4},{1,2,5}; (3)当M 中含有两个元素时,M 可能为{1,2,3,4},{1,2,3,5},{1,2,4,5}; (4)当M 中含有两个元素时,M 为{1,2,3,4,5};所有满足条件的M 为{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共8个.评点首先根据子集的概念判断出集合M 中含有元素的可能情况,然后根据集合M 中含有元素的多少进行分类讨论,防止遗漏.例4 已知集合A={x | - 2 ≤ x ≤ 5},B={x |m +1≤ x ≤ 2m -1},若B A ,求实数m 的取 值范围.对B 要进行讨论,分B 为空集和非空集合两种情况.解:(1)若B ≠ ,则由B A (如图1-2-5),得 ⎩⎪⎨⎪⎧m +1≤ 2m -1,m +1≥ -2,2m -1≤ 5, 解的2 ≤ m ≤ 3.(2)若B= ,则m +1>2m -1,m <2,此时B A 也成立. 由(1)和(2),得m ≤ 3,所以实数m 的取值范围是{ m | m ≤ 3}. 求解.例5 已知集合A={x | 1 ≤ a x ≤ 2},B={x | | x | < 1},求满足A B 的实数a 的取 值范围.对参数进行讨论,写出集合A 、B ,使其满足,求a 的值. 解:(1)当a = 0时,A= ,满足A B .(2)当a > 0时,{}21A=.B=11,A B x x x x a a ⎧⎫⊂<<-<<=⎨⎬⎩⎭又.∴11 2.21a a a ⎧≥-⎪⎪∴∴≥⎨⎪≤⎪⎩(3)当a < 0时,{}2121A= B=11 2.1 1.ax x x x a a a a⎧≥-⎪⎧⎫⎪<<-<<⊆∴∴≤-⎨⎬⎨⎭⎩⎪≤⎪⎩,,又,A B .综上所述,a = 0,或a ≥2,或a ≤-2. 根据子集的定义,把形如A B 的问题转化为不等式组问题,使问题得以解决.在解决 问题的过程中,应首先考虑A= 的情况.在建立不等式的过程中,借助数轴,是解决本题 重要一环,若不等式中含有参数,一般需对参数进行讨论,进而正确解出不等式.评点 评点例6已知全集S={1,3,x3+3 x2+2x},集合A={1,|2x-1|},如果C S A={0},那么这样的实数x是否存在?若存在,求出x;若不存在,请说明理由.由C S A={0}可知0∈S,但0 A,所以x3+3 x2+2x=0,且|2x-1|=3,从中求出x即可.解法一:∵S={1,3,x3+3 x2+2x},A={1,|2x-1|},C S A={0},∴0∈S,但0 A,∴323201. 213x x xxx++=⎧⎪=-⎨⎪-=⎩,解的,综上知,实数x存在,且x=-1.由C S A={0}可知0∈S,但0 A,由0∈S可求x,然后结合0 A来验证是否有A S及是否符合集合中元素的互异性,从而得出结论.解法二:∵C S A={0},∴0∈S,但0 A,∴x3+3 x2+2x=0,即x(x+1)(x+3)=0,∴x=0或x=-1或x=-2.当x=0时,|2x-1|=1,A中已有元素1,故不符合互异性,舍去;当x=-1时,|2x-1|=3,而3∈S,符合题意;当x=-2时,|2x-1|=5,而5 S,舍去.例7已知A={x|x<-1或x>5},B={x∈R|a<x<a+4},若AB,求实数a的取值范围.注意到B≠ ,将A在数轴上保释出来,再将B在数轴上表示出来,使得A B,即可得a的取值范围.解:如图-2-6,∵A B,∴a+4≤-1或a≥5,∴a≤-5或a≥5.本题利用数轴处理一些实数集之间的关系,以形助数直观、形象,体现了数形结合的思想,这在以后的学习中会经常用到,但一定要检验端点值是否能取到,此题的易错点是各端点的取值情况,方法一数形结合思想1-4a+a4a+51-评点例8 设{}{}2A=8150B=10,x x x x ax -+=-=,若B A ,求实数a 的值.集合B 是方程ax -1=0的解集,该方程不一定是一次方程,当a =0时,B= ,此时符合B A .解:集合A={3,5},当a =0时,B= ,满足B A .∴a =0符合题意. 当a ≠0时,B≠ ,1.x a = ∵B A ,∴综上,a 的值为0或13或15.当B A 时,B 中含有参数,而A 是一个确定的非空集合,要特别注意B= 的情况, 考点点击:高考中对子集、真子集、补集以及集合相等的概念考察较多,但难度不大,命题多为填空题.例1 (2010·重庆高考)设,若,则实数.{}{}{}2U U =0123.A=U 0A=12x x m x ∈+=,,,,若,,ð }{} U 0A=12 m x =,若,,ð则实数m = -3 .解析:{}{}2U A=12A=030 30 3.x mx m ∴∴+-∴=-,,,,,是方程的根,ð 例2 (2010·天津高考)设集合{}{}A=1R B=2R A Bx x a x x x b x -<∈->∈⊆,,,,若, }2R A B x >∈⊆,,若,则实数a ,b 满足 3 a b -≥ .解析:{}{}A=11B=22x a x a x x b x b -<<+>+<-,或,由A B ⊆得12a b +-≤或12a b +-≥,即3a b -≥或3a b --≤,即 3.a b -≥ 例3 (2007·北京高考)记关于x 的不等式01x a x -<+的解集为P ,不等式11x -≤的解集为Q .(1)若a =3,求P ;(2)若Q P ,求整数a 的取值范围. 解:{}3(1)0P =13.1x x x x -<-<<+由得方法二 分类讨论思想 评点{}{}(2)Q =11,02x x x x -≤=≤≤{}0P=1.Q P 2a x x a a >-<<⊆>由,得又,所以,即a 的取值范围是( 2,+ ∞). 学考相联判断两个集合之间的关系是集合中的重要题型,且是高考热点之一.下面举两例介绍几种常用的方法,帮助你开拓思想.1.对比集合的元素例1 {}{}*A =N 8B =2N05,x x x x k k k ∈≤=∈<<已知,,,且那么集合A 与B 的关系为( B A ).解析:因为A={1,2,3,4,5,6,7,8},B={2,4,6,8},集合B 中的元素2,4, 6,8都是集合A 中的元素,而集合A 中的元素1,3,5,7不是集合B 中的元素,所以 B A .2.数形结合比较范围例2 已知{}{}2A=y y=26R B=475x x x x x --∈->,,,那么集合A 与B 的关系为( B A ) .解析:对于二次函数{}{}2A =y y =26RB =475x x x x x --∈->,,,,{}4(6)47A =y y 7.4y ⨯---==-∴≥最小,又{}B=3x x >,由图1-2-7知,B A .3.利用传递性判断例3 已知集合11A B B=Z C =Z 4284k k x x k x x k ⎧⎫⎧⎫⊆=+∈=+∈⎨⎬⎨⎬⎩⎭⎩⎭,,,,,那么集合A 与C 的关系为( A C ).解析:将B 、C 变形得242B =Z C =Z 88k k x x k x x k ⎧+⎫⎧+⎫=∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,,,,可知B C .又A B C ,即A C .例4 已知集合(){}{}22A=4640B=0 6x x m x m -++=,,,若A B ,求实数m 的取值范围.解:{}{}{}{}A B B=0 6 A=A=0A=6A=0 6.⊆∴∅ ,,,或或或, (1)当A= 时,Δ=(4m +6)2-4×4m 2<0,解得m <- 34.(2)当A={0}时,由根与系数的关系得20+0=46004m m +⎧⎨⎩⨯=,,此方程组无解.(3)当A={6}时,由根与系数的关系得26+6=46664m m +⎧⎨⎩⨯=,,此方程组无解.(4)当A={0,6}时,由根与系数的关系得20+6=4606=4m m +⎧⎨⎩⨯,,解得m =0.综上知实数m 的取值范围为m <-34或m =0解决子集问题时,往往易溢漏“ ”和它“本身” ,所以杂解决有关子集的问题时,一定要考虑到两个特殊的子集:“ ”和它“本身” ,并注意单独验证它们是否符合题意.。

子集、全集、补集(教案)

子集、全集、补集(教案)

子集、全集、补集[知识要点]1.子集的概念:如果集合A中的任意一个元素都是集合B),那么称集合A为集合B的子集(subset),记作或,.还可以用Venn图表示.我们规定:.即空集是任何集合的子集.根据子集的定义,容易得到:⑴任何一个集合是它本身的子集,即.⑵子集具有传递性,即若且,则.2.真子集:如果且,这时集合A称为集合B的真子集(proper subset).记作:A B⑵定:空集是任何非空集合的真子集.⑵如果A B, B,那么3.两个集合相等:如果与同时成立,那么中的元素是一样的,即.4.全集:如果集合S包含有我们所要研究的各个集合,这时S可以看作一个全集(Universal set),全集通常记作U.5.补集:设,由S中不属于A的所有元素组成的集合称为S的子集A的补集(complementary set), 记作:(读作A在S中的补集),即补集的Venn图表示:[简单练习]1.判断以下关系是否正确:⑴;⑵;⑶;⑷;⑸;⑹;2.下列关系中正确的个数为()①0∈{0},②Φ{0},③{0,1}{(0,1)},④{(a,b)}={(b,a)}A)1 (B)2 (C)3 (D)43.集合的真子集的个数是()(A)16 (B)15 (C)14 (D) 13a B∈BA⊆AB⊇BA⊆A∅⊆A A⊆BA⊆B C⊆A C⊆BA⊆A B≠C A CBA⊆B A⊆,A B A B=A S⊆Að{,}.SA x x S x A=∈∉且ð{}{}a a⊆{}{}1,2,33,2,1={}0∅⊆{}00∈{}0∅∈{}0∅=⊆{}8,6,4,24.集合,,,,则下面包含关系中不正确的是( )(A ) (B) (C) (D)5.已知M={x| -2≤x ≤5}, N={x| a+1≤x ≤2a -1}. (Ⅰ)若M N ,求实数a 的取值范围; (Ⅱ)若M N ,求实数a 的取值范围.6.设,写出的所有子集.[巩固提高]1.四个关系式:①;②0;③;④.其中表述正确的是( ) A .①,②B .①,③C . ①,④D . ②,④2.若U={x ∣x 是三角形},P={ x ∣x 是直角三角形},则( )A .{x ∣x 是直角三角形}B .{x ∣x 是锐角三角形}C .{x ∣x 是钝角三角形}D .{x ∣x 是锐角三角形或钝角三角形}3.下列四个命题:①;②空集没有子集;③任何一个集合必有两个子集;④空集是任何一个集合的子集.其中正确的有( )A.0个 B.1个 C.2个 D.3个4.满足关系 的集合A的个数是( ) A.5 B.6 C.7 D.8{}正方形=A {}矩形=B {}平行四边形=C {}梯形=D B A ⊆C B ⊆D C ⊆C A ⊆⊆⊇{}13,A x x x Z =-<<∈A ∅}0{⊂}0{∈}0{∈∅}0{=∅=P CU{}0∅={}1,2A ⊆{}1,2,3,4,55.设A=,B={x ∣1< x <6,x ,则 .6.U={x ∣,则U 的所有子集是 .7.已知集合,≥,且满足,求实数的取值范围.8.设全集,,,求实数的值.9.已知,. (1)若,求的取值范围; (2),求的取值范围;(3) ,求的取值范围.10.已知M={x ∣x },N={x ∣x } (1)若M ,求得取值范围; (2)若M ,求得取值范围; (3)若,求得取值范围.{}5,x x x N ≤∈}N ∈=B CA},01582R x x x ∈=+-}5|{<<=x a x A x x B |{=}2B A ⊆a {}22,3,23U a a =+-{}21,2A a =-{}5U C A =a {}3A x x =<{}B x x a =<B A ⊆a A B ⊆a RC A R C B a ,0>R x ∈,a >R x ∈N ⊆a N ⊇a M CRN CRa。

子集、全集、补集

子集、全集、补集

好的,以下是子集、全集、补集知识点的教案:子集知识点子集的定义子集的符号表示空集和全集子集的性质例题和解答给出两个集合=1,2,3和=1,2,3,4,判断是否是的子集解答:由于中的所有元素都属于,因此是的子集给出两个集合=,,和=,,判断是否是的子集解答:由于中的所有元素都属于,因此是的子集给出两个集合=1,2,3和=4,5,6,判断是否是的子集解答:由于中的元素都不属于,因此不是的子集全集和空集知识点全集的定义空集的定义全集和空集的符号表示全集和空集的性质例题和解答给出一个集合=1,2,3,求的全集解答:在这个问题中,全集是指包含所有元素的集合。

因此,的全集可以是所有正整数的集合,即$U={1,2,3,4,5,...}$给出一个集合=,,,求的空集解答:在这个问题中,空集是指不包含任何元素的集合。

因此,的空集为${}$给出一个集合=1,2,3,求的补集解答:在这个问题中,补集是指不属于原集合的元素的集合。

因此,的补集为$C'={x|x\notin C}$因为是由1,2,3组成的集合,所以的补集为$C'={x|x\notin{1,2,3}}={x|x\in\mathbb{Z},x\leq0\text{或}x\geq4}$补集知识点补集的定义补集的符号表示补集的性质例题和解答给出一个集合=1,2,3,求的补集解答:在这个问题中,补集是指不属于原集合的元素的集合。

因此,的补集为$A'={x|x\notin A}$因为是由1,2,3组成的集合,所以的补集为$A'={x|x\in\mathbb{Z},x\leq0\text{或}x\geq4}$给出一个集合=,,,求的补集解答:在这个问题中,补集是指不属于原集合的元素的集合。

因此,的补集为$B'={x|x\notin B}$因为是由,,组成的集合,所以的补集为$B'={x|x\notin{a,b,c}}$给出一个集合=1,2,3,求的补集的补集解答:在这个问题中,补集的补集是指原集合。

高一数学《子集、全集、补集 》教案模板

高一数学《子集、全集、补集 》教案模板

高一数学《子集、全集、补集》教案模板一、教学目标1.了解集合、子集、全集、真子集、空集、补集等概念,并能够应用到实际问题中;2.掌握求解集合的并、交、差、对称差等操作及其运算规律;3.能够用Venn图表示集合关系,读懂文本或图示中的集合关系,并能够进行简单的逻辑推理。

二、教学重点1.子集、全集、真子集、空集等集合概念的区分与应用;2.集合并、交、差、对称差的概念及运算规律。

三、教学难点1.子集、真子集的抽象概念的理解与应用;2.布尔代数与集合运算的关系的理解。

四、教学程序1.集合概念引入(5分钟)–通过生活中的例子引入集合的概念,并解释集合的形式化定义;–引入子集、全集、真子集和空集等概念。

2.集合的运算及其规律(20分钟)–引导学生理解集合的运算,如集合的并、交、差、对称差,并详细解释每种运算;–利用生活实例和平面图形进行集合运算练习;–讨论每种集合运算的交换律、结合律、分配律等运算规律。

3.集合概念实例演示与分组活动(25分钟)–引导学生参与实例分析,通过文本或图示分析集合关系,并进行简单的逻辑推理;–利用分组活动引导学生自主运用所学知识,进行集合的分类识别,并进行交、并、补集等运算。

4.Venn图表示集合关系(20分钟)–引导学生了解Venn图的原理及其应用;–利用Venn图分析实际问题,探究Venn图的意义,并讨论如何利用Venn图进行简单逻辑推理;–利用Venn图的组合表示运用集合关系的复合逻辑推理。

5.练习巩固(20分钟)–针对所学知识设计综合练习题目;–让学生独立完成作业,并评估学生的掌握情况。

五、教学反思1.本课以集合、子集、全集、补集等概念为主线,通过讲解运算法则、举例分析、Venn图实践等方式让学生从多个角度理解和应用知识,有利于培养学生的逻辑思考能力和综合运用能力。

2.本课采用分组活动和Venn图演示等形式,将抽象的数学概念和实际问题进行关联,提高了学生的学习兴趣和参与度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012高一数学子集、全集、补集学案
学习目标:理解集合之间包含与相等的含义,能识别给定集合的子集,会写出给定集合的所有子集和真子集;
理解在一个给定的集合中一个子集的补集的含义,会求给定子集的补集。

复习旧知:1.元素与集合的关系表示;
2.集合的表示方法及其注意点。

问题情境:观察下列几组集合[
(1)A={-1,1},B={-1,0,1};
(2)A=N,B=R;
(3)A={x│x是江苏人},B={x│x是中国人}
问题1、它们之间的共同特点是什么?如何用符号描述这种关系?
问题解决:
1.子集的概念、符号表示及图形表示
概念:对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,则称集合A为集合B的子集,记为:A⊆B(或B⊇A),读作“集合A包含于集合B”或“集合
B包含集合A”.
符号表示:
图形表示:
规定:
问题2、(1)A⊆A正确吗?
(2)A⊆B和B⊆A能否同时成立?
(3)A⊆B和B⊆A意味着什么?
(4)A⊆B,B⊆C,你能得出什么结论?
问题3、:如何区别∈和⊆的使用?
2.例1写出集合{a,b}的所有子集.
问题4、(1)如何书写有限集的所有子集?
(2)一个n元集合的子集个数有多少个?
3、真子集:
问题5、(1)能说空集是任何集合的真子集吗?
(2)如何判别A B?
4、例2下列各组的三个集合中,哪两个集合之间具有包含关系?
(1)S={-2,-1,1,2},A={-1,1},B={-2,2};(2)S=R,A={x│x≤0,x ∈R},B={x│x>0,x∈R};(3)S={x│x为地球人},A={x│x为中国人},B={x│x 为外国人}.
问题6、观察例2中每一组的三个集合,它们之间还有什么关系?
5、补集的概念、符号表示及图形表示
概念:设A⊆B,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记为S A(读作A在S中的补集),
符号表示:S A={x│x∈S,且x∉A}
图形表示:
6、全集:
说明:(1)补集是相对全集而言,离开全集谈补集没有意义;
(2)若B=S A,则A=S B,即S(S A)=A;
(3)S S=∅, S∅=S.
7、例3已知集合S ={1,2,3,4,5,6},A ={1,3,5},试写出S A .
例4 不等式组⎩⎨
⎧≤->-0
63012x x 的解集为A ,U =R ,试求A 及U A ,并把它们在数轴上表示出来.
新知应用(课堂练习)
1、用适当的符号填空:
(1)a _{a }; (2)a _{a ,b ,c };(3)d _{a ,b ,c };
(4){a }_{a ,b ,c };(5){a ,b }_{b ,a };
(6){3, 5}_{1,3,5,7};(7){2,4,6,8}_{2,8};(8)Ф_{1,2,3}
2、判断正误
(1)空集没有子集 ( )
(2)空集是任何一个集合的真子集 ( )
(3)任一集合必有两个或两个以上子集 ( )
(4)若B ⊆A ,那么凡不属于集合a 的元素,则必不属于B ( )
3、下列命题正确的是 ( )
A.无限集的真子集是有限集
B.任何一个集合必定有两个子集
C.自然数集是整数集的真子集
D.{1}是质数集的真子集
4、以下五个式子中,错误的是
①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}⊆{1,0,2}
④∅∈{0,1,2} ⑤∅∈{0}
5、集合A ={x |-1<x <3,x ∈Z },写出A 的真子集.
6、判断如下a 与B 之间有怎样的包含或相等关系:
(1)A ={x |x =2k -1,k ∈Z },B ={x |x =2m +1,m ∈Z }
(2)A ={x |x =2m ,m ∈Z },B ={x |x =4n ,n ∈Z }
7、已知集合P ={x |x 2+x -6=0},Q ={x |ax +1=0}满足Q P ,求a 所取的一切值.
课后小结:
课后作业
基础训练
1.判断下列表示是否正确:
(1) a ⊆{a }
(2) {a }∈{a ,b }
(3) {a ,b } ⊆{b ,a } (4) {-1,1} {-1,0,1} (5) ∅ {-1,1}
1. 设M 满足{1,2,3}⊆M ⊆{1,2,3,4,5,6},则集合M 的个数为
2.下列各式中,正确的个数是 ( ) ①∅={0};②∅⊆{0}; ③∅∈{0};
④0={0};⑤0∈{0};⑥{1}∈{1,2,3};
⑦{1,2}⊆{1,2,3};
⑧{a ,b}⊆{a ,b}.
3.若U={x|x 是三角形},P={x|x 是直角三角形}则U C P =
4.设A={x|1<x<2} ,B={x|x<a},若A 是B
的真子集,则a 的取值范围是 ( )
A .a ≥2
B .a ≤1
C .a ≥1
D .a ≤2 ≠

⊂ ≠
5.若集合A={1,3,x},B={x 2
,1},且B ⊆A ,则满足条件的实数x 的个数为 ( ) 6.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M 与P 的关系
为____________________________.
7.集合A={x|x=a 2-4a+5,a ∈R},B={y|y=4b 2+4b+3,b ∈R} 则集合A 与集合B 的关系是___________________.
8.设x ,y ∈R ,B={(x,y)|y-3=x-2},A={(x,y)|
32
y x --=1},则集合A 与B 的关系 是____________________________.
9. 已知a ∈R ,b ∈R ,A={2,4,x 2-5x+9},B={3,x 2+ax+a},C={x 2+(a+1)x-3,1} 求
(1)A={2,3,4}的x 值;
(2)使2∈B ,B A ,求a,x 的值;
(3)使B= C 的a ,x 的值.
10.设全集U={2,4,3-x},M={2,x 2-x+2},U C M ={1},求x .
拓展延伸 12、设集合P={3,4,5},Q={4,5,6,7},定义P ⊕Q={(a,b)|a ∈P ,b ∈Q}, 则P ⊕Q 的真子集个数
13、集合M={x|x ∈Z 且
121N x ∈+},则M 的非空真子集的个数是 14、 已知集合P={x|x 2+x-6=0},M={x|mx-1=0},若M P ,求实数a 的取值范围.
⊂ ≠ ⊂ ≠。

相关文档
最新文档