两个平面平行-

合集下载

两个平面平行的判定和性质

两个平面平行的判定和性质

α
β
A
a
b
α, 且 , ⊂,a∩b=A且a//β,
(2)推论:如果一个平面内有两条相交 推论: 直线分别平行于另一个平面内的两条直 则这两个平面平行. 线,则这两个平面平行
a A c
α β
d
b
d
, , , ⊂β,a //b,c /b
β, , ⊂
一般画法
错误画法
3. 平面与平面平行的判定定理 . 判定定理: (1)判定定理: ①文字语言:如果一个平 文字语言: 两条相交直线都平 面内有两条相交 面内有两条相交直线都平 行于另一个平面, 行于另一个平面,那么这 两个平面平行. 两个平面平行. ②图形语言: 图形语言: ③符号语言:a ⊂α,b 符号语言: , b//β α//β. ⇒
A P
F E C
B
//平面 同理EF//平面ABC, 又因为DE∩EF=E, //平面 所以 平面DEF//平面ABC。 P
D E A C F
B
为夹在α 例2.已知a∥β , AB和DC为夹在α、β间的平 2.已知 行线段。 行线段。 求证: 求证: AB=DC. 证明: 连接AD、BC 证明: ∵AB//DC ∴ AB和DC确定平面AC
AB DG = BC GC
DG DE = GC EF
所以
AB DE = BC EF
例1. 已知三棱锥P-ABC中,D,E,F,分 的中点, 别是PA,PB,PC的中点, 求证: //平面 求证:平面DEF//平面ABC。 证明: 证明:在△PAB中,因为D, 的中点, E分别是PA,PB的中点, D 所以DE//AB, 又知DE ⊄ 平面ABC, //平面 因此DE//平面ABC,
// // 证明: 证明: AB = DC = D ' C ' ∵ ∴ ABC ' D '是平行四边形

平面与平面平行的判定和性质

平面与平面平行的判定和性质
0

P
b a

已知:在平面 内有两条直线 a 、 相交且和 b 平面 平行. 求证: // 证明:(用反证法)
c 假设 .
a // , a
a // c
同理
b // c 这与题设 a和 b 是相交直线矛盾.
//
平面与平面平行的判定定理:
一个平面内的两条相交直线与另一个 平面平行,则这两个平面平行. (线面平行面面平行)
PF EF

同理: EP || AD
AS=18
CD=34
A
α
34
C
α
A
18 S
9
C
B β
9
D
β
D
B
S
1.如果三个平面两两相交,那么它们 的交线有多少条?画出图形表示你的 结论。
答:有可能1条,也有可能3条交线。
(1)
(2)
3. 3个平面把空间分成几部分?
(1)
4
(2)
6
(3)
6
(4)
证明: 连结AB, AB. 因为AA∥BB,
B
A

A′
B′
AB AB AB∥ AB AA∥BB ∥ AABB是平行四边形 AA BB.
所以经过AA,BB能确定一个平面,记为平面 .
推论2:平行于同一个平面的两个平面平行
下图表示两平面之间的两种位置,如 何用符号语言描述这两种位置关系?
β α


l
//
l
一、两平面平行:
1、定义:如果两个平面没有公共点,那么 这两个平面互相平行,也叫做平行平面.

两个平面平行的性质

两个平面平行的性质

α
A
α∥β,l⊥α, 则 l⊥β
两个平行平面的公垂线、公垂线段和距离
和两个平行平面α,β同时垂直的直线l, 叫做这两个平行平面α,β的公垂线 它夹在这两个平行平面间的部分叫做这 两个平行平面的公垂线段 我们把公垂线段的长度叫 做两个平行平面的距离
l
β
B
A
α
两个平面平行的其它性质
性质4:夹在两个平行平面间的平行线段相等. 性质5:经过平面外一点只有一个平面和已知平 面平行
E
A
C
N
D
两个平面平行的性质
1。如果两个平面平行,那么其中一个平面内的 直线平行于另一个平面.
2。如果两个平行平面同时和第三个平面相交, 那么它们的交线平行.
3。一条直线垂直于两个平行平面中的一个平面, 它也垂直于另一个平面.
4。夹在两个平行平面间的平行线段相等. 5。经过平面外一点E // BD

B
D
证明:连结 DM并延长交于E,连AE、CE AB DE M AB和DE可确定一个平面
AE, BD, 且 //
AE // BD
M是AB的中点 AEM BDM DM ME, M 又 DN NC, MN // EC, 又 EC ,MN B MN //
证明:在平面 内任取一条直线 b,平面是经过点A与直 线b的平面.设 a // a a // b b
l


b

a
A
已知: // ,l , l A.求证:l 证明:在平面 内任取一条直线 b,
两个平行平面的公垂线 段都相等,公垂线段的 长度具有唯一性.

两个平面平行的性质

两个平面平行的性质

抽象概括:
平面与平面平行的判定定理:
一个平面内有两条相交直线与另一个平面平 行,则这两个平面平行. a 即:a b A α b
a∩ b=A b// β //β β
a// β
简述为:线面平行面面平行
回顾:已知正方体ABCD-A1B1C1D1,
求证:平面AB1D1∥平面C1BD.
两个平面平行的性质
平面是经过点A与直线b的平面. 设 a // a a // b b a l a l

l


b
lbl

a
A
例1 一条直线垂直于两个平行平面中 的一个平面,它也垂直于另一个平面.
l
β
这个结论可作为两个 平面平行的性质 3
两个平面平行的性质
复习:
1、两个平面的位置关系 2、两个平面平行的判定方法
(a)如果两个平面没有公共点,那么这两个平面 平行。(定义) (b) 两上平面平行的判定定理——两条相交直线 都平行于另一个平面 (c) “例1”——垂直于同一条直线的两个平面平行 (d) “例2”——平行于同一个平面的两个平面平行
BD, 且 //
AE // BD

B
D
证明:连结 DM并延长交于E,连AE、CE AB DE M AB和DE可确定一个平面
AE, BD, 且 //
AE // BD
M是AB的中点 AEM BDM DM ME, M 又 DN NC, MN // EC, 又 EC ,MN B MN //
E A
C
N
D
两个平面平行的性质

平面与平面平行的性质和判定

平面与平面平行的性质和判定

两个平面平行的性质定理与结论:(面面平行→线线平行)②如果两个平面平行,那么某一个平面内的直线与另一个平面平行。

(面面平行→线面平行)面面平行的判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行⇒面面平行)面面平行的判定方法:①面面平行的定义:两个平面无公共点。

②判定定理:////a b a b a b Pββαα⊂⊂⋂= ⇒ //αβ平面与平面平行的判定练习一、选择题;1.设直线l,m,平面α,β,下列条件能得出α∥β的有 ( )①l ⊂α,m ⊂α,且l ∥β,m ∥β;②l ⊂α,m ⊂α,且l ∥m ;③l ∥α,m ∥β,且l ∥mA 1个B 2个C 3个D 0个2. 已知:命题:P :α内存在着不共线的三点到平面β的距离均相等;命题:Q :α∥β,则下面成立的是( )A P ⇒Q ,P ⇐QB P ⇐Q ,P ⇒QC P ⇔Q ,D P ⇒Q , P ⇐Q3.下列命题中,可以判断平面α∥β的是( )①α,β分别过两条平行直线;②a ,b 为异面直线,α过a 平行b ,β过b 平行a ;A ①B ②C ①②D 无4.下列命题中为真命题的是( )A 平行于同一条直线的两个平面平行B 垂直于同一条直线的两个平面平行C 若—个平面内至少有三个不共线的点到另—个平面的距离相等,则这两个平面平行.D若三条直线a、b、c两两平行,则过直线a的平面中,有且只有—个平面与b,c都平行.5.下列命题中正确的是( )①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③垂直于同一直线的两个平面平行;④与同一直线成等角的两个平面平行A ①②B ②③C ③④D ②③④二、填空题;6.下列命题中正确的是(填序号);①一个平面内两条直线都平行于另一个平面,那么这两个平面平行;②如果一个平面内任何一条直线都平行于另一个平面,那么这两个平面平行;③平行于同一直线的两个平面一定相互平行;④如果一个平面内的无数多条直线都平行于另一个平面,那么这两个平面平行;7.若夹在两个平面间的三条平行线段相等,那么这两个平面的位置关系是;8.如右图,点P是光源,将投影片放在平面α内,问投影幕所在平面β与平面α______时,投影图象的形状不发生变化.三、解答题;9.平面α∥平面β,AB,CD是异面直线,M,N分别是AB,CD的中点,且A1∈α,BD∈β,求证:MN∥α.10.已知四面体ABCD中,M,N分别是△ABC和△ACD的重心,P为AC上一点,且AP:PC=2:1,求证:(1)BD∥面CMN;(2)平面MNP//平面BCD.11.在棱长为a的正方体ABCD—A1B1C1D1中,求证:平面A1BD∥平面CB1D1;。

【立体几何】两个平面平行

【立体几何】两个平面平行

平面与平面平行1.两个平面的位置关系:2.两个平面平行的判定定理如果一个平面内有两条直线分别平行于另一个平面,那么这两个平面平行.(记忆口诀:线面平行,则面面平行)3、两个平面平行的性质定理如果两个平行平面同时与第三个平面相交,那么它所有的平行.(记忆口诀:面面平行,则线线平行)4.两个平行平面距离和两个平行平面同时的直线,叫做两个平面的公垂线,公垂线夹在平行平面间的部分叫做两个平面的,两个平行面的公垂线段的,叫做两个平行平面的距离.1.两个平面平行的判定定理:如果一个平面的两条相交直线都与另一个平面平行,那么这两个平面平行.2.两个平面平行的性质定理:如果两个平行平面都与第三个平面相交,那么交线平行.●点击双基1.下列命题中,正确的是A.经过不同的三点有且只有一个平面B.分别在两个平面内的两条直线一定是异面直线C.垂直于同一个平面的两条直线是平行直线D.垂直于同一个平面的两个平面平行答案:C2.设a、b是两条互不垂直的异面直线,过a、b分别作平面α、β,对于下面四种情况:①b∥α,②b⊥α,③α∥β,④α⊥β.其中可能的情况有A.1种B.2种C.3种D.4种解析:①③④都有可能,②不可能,否则有b⊥a与已知矛盾.答案:C3.α、β是两个不重合的平面,a、b是两条不同直线,在下列条件下,可判定α∥β的是A.α、β都平行于直线a、bB.α内有三个不共线点到β的距离相等C.a、b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线且a∥α,b∥α,a∥β,b∥β解析:A错,若a∥b,则不能断定α∥β;B错,若A、B、C三点不在β的同一侧,则不能断定α∥β;C错,若a∥b,则不能断定α∥β;D正确.答案:D4.a 、b 、c为三条不重合的直线,α、β、γ为三个不重合的平面,直线均不在平面内,给出六个命题:.⇒⎭⎬⎫;⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥①a a a c a c c c b a b a b a c b c a ;;;;其中正确的命题是________________.(将正确的序号都填上) 答案:①④⑤⑥例1.如图,正方体ABCD -A 1B 1C 1D 1中,M 、N 、E 、F 分别是棱A 1B 1、A 1D 1、B 1C 1、C 1D 1中点.(1) 求证:平面AMN ∥平面EFDB ; (2) 求异面直线AM 、BD 所成角的余弦值. 解:(1) 易证EF ∥B 1D 1 MN ∥B 1D 1 ∴EF ∥MN AN ∥BE 又MN∩AN =N EF∩BE =E ∴面AMN ∥面EFDB(2) 易证MN ∥BD ∴∠AMN 为AM 与BD 所成角 易求得 cos ∠AMN =1010变式训练1:如图,α∥β,AB 交α、β于A 、B , CD 交α、β 于C 、D ,AB ⋂CD =O ,O 在两平面之间, AO =5,BO =8,CO =6.求CD . 解:依题意有AC ∥DBODCOOB AO = 即OD685=∴OD =548 ∴CD =548+6=578例2 . 已知平面α∥平面β,AB 、CD 是夹在平面α和平面β间的两条线段,点E 、F 分别在AB 、CD 上,且nm FDCF EBAE ==.求证:EF ∥α∥β.证明:1°若AB 与CD 共面,设AB 与CD 确定平面γ,则α∩γ=AC β∩γ=BD ∵α∥β ∴AC ∥BD 又∵FDCFEB AE =∴EF ∥AC ∥BD ∴EF ∥α∥β2°若AB 与CD 异面,过A 作AA'∥CDA 1ABC B 1 C EFM ND 1 DB Dβ αACO在AA'截点O ,使nmFD CF EB AE OA AO ===1' ∴EO ∥BA' OF ∥A'D∴平面EOF ∥α∥β ∴EF 与α、β无公共点 ∴EF ∥α∥β变式训练2:在正方体ABCD -A 1B 1C 1D 1中,M 、N 、P 分别是CC 1、B 1C 1、C 1D 1的中点. 求证:(1) AP ⊥MN ; (2) 平面MNP ∥平面A 1BD .证明:(1) 连BC 1 易知AP 在BCC 1B 1内射影是BC 1 BC 1⊥MN ∴AP ⊥MN (2) ∵⇒⎭⎬⎫PM B A BD PN ////1面MNP ∥面A 1BD例3.已知a 和b 是两条异面直线.(1) 求证:过a 和b 分别存在平面α和β,使α∥β; (2) 求证:a 、b 间的距离等于平面α与β的距离.(1) 在直线a 上任取一点P ,过P 作b'∥b ,在直线b 上取一点Q 过Q 作a'∥a 设a, b'确定一个平面α a', b 确定平面β a'∥a a ⊂α ∴a'∥α 同理b ∥α 又a'、b ⊂β ∴α∥β 因此,过a 和b 分别存在两个平面α、β(2) 设AB 是a 和b 的公垂线,则AB ⊥b ,AB ⊥a ∴AB ⊥a' a'和b 是β内的相交直线,∴AB ⊥β 同理AB ⊥α 因此,a, b 间的距离等于α与β间的距离.变式训练3:如图,已知平面α∥平面β,线段PQ 、PF 、QC 分别交平面α于A 、B 、C 、点,交平面β于D 、F 、E 点,PA =9,AD =12,DQ =16,△ABC 的面积是72,试求△DEF 的面积.解:平面α∥平面β,∴AB ∥DF ,AC ∥DE ,∴∠CAB =∠EDF .在△PDF 中,AB ∥DF ,DF =ADPA PA+AB=37AB ,同理DE =74AC .S △DEF =21DF·DE sin ∠EDF =34S △ABC =96.例4.如图,平面α∥平面β,∆ABC .∆A 1B 1C 1分别在α、βQFDECABα βP内,线段AA 1、BB 1、CC 1交于点O ,O 在α、β之间,若AB =2AC =2,∠BAC =60°,OA :OA 1=3:2. 求∆A 1B 1C 1的面积.解:∵α∥β AA 1∩BB 1=O ∴AB ∥A 1B 1 同理AC ∥A 1C 1 BC ∥B 1C 1∴△ABC ∽△A 1B 1C 1 S △ABC =21AB·AC·sin60°=2323111==OA OA B A AB ∴49111=∆∆C B A ABC S S∴111C B A S ∆=932 变式训练4:如图,在底面是菱形的四棱锥P -ABCD 中,∠ABC =60°,PA =AC =a ,PB =PD =2a ,点E 是PD 的中点.(1)证明:PA ⊥平面ABCD ,PB ∥平面EAC ;(2)求以AC 为棱,EAC 与DAC 为面的二面角θ的正切值. (1)证:因为底面ABCD 是菱形,∠ABC =60°, 所以AB =AD =AC =a ,在△PAB 中,由PA 2+AB 2=2a 2=PB 2知PA ⊥AB , 同理,PA ⊥AD ,所以PA ⊥平面ABCD . 因为=++=2++ =(+)+(+)=+ ∴ 、、共面.PB ⊄平面EAC ,所以PB ∥平面EAC .(2) 解:作EG ∥PA 交AD 于G ,由PA ∥平面ABCD ,知EG ⊥平面ABCD .作GH ⊥AC 于H ,连结EH ,则EH ⊥AC ,∠EHG 即为二面角θ的平面角.又E 是PD 的中点,从而G 是AD 的中点,EG =21a ,AG =21a ,GH =AG sin 60°=43a ,332. 1.判定两个平面平行的方法:(1)定义法;(2)判定定理. 2.正确运用两平面平行的性质.3.注意线线平行,线面平行,面面平行的相互转化:线∥线⇔线∥面⇔面∥面.●闯关训练夯实基础B 1A 1C 1 βα BCAODEACBP1.在下列条件中,可判断平面α与β平行的是 A.α、β都垂直于平面γB.α内存在不共线的三点到β的距离相等C.l 、m 是α内两条直线,且l ∥β,m ∥βD.l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β 答案:D2.设平面α∥β,A 、C ∈α,B 、D ∈β,直线AB 与CD 交于S ,若AS =18,BS =9,CD =34,则CS =_____________.解析:如图(1),由α∥β可知BD ∥AC ,∴SA SB =SC SD ,即189=SCSC 34-,∴SC =68.(1)(2)如图(2),由α∥β知AC ∥BD ,∴SB SA =SD SC =SC CD SC -,即918=SCSC -34. ∴SC =368.答案:68或3683.如图甲,在透明塑料制成的长方体ABCD —A 1B 1C 1D 1容器内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个命题:11甲乙①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱A 1D 1始终与水面EFGH 平行;④当容器倾斜如图乙时,EF ·BF 是定值. 其中正确命题的序号是_____________.解析:对于命题①,由于BC 固定,所以在倾斜的过程中,始终有AD ∥EH ∥FG ∥BC ,且平面AEFB ∥平面DHGC ,故水的部分始终呈棱柱状(四棱柱或三棱柱、五棱柱),且BC 为棱柱的一条侧棱,命题①正确.对于命题②,当水是四棱柱或五棱柱时,水面面积与上下底面面积相等;当水是三棱柱时,则水面面积可能变大,也可能变小,故②不正确.③是正确的(请给出证明).④是正确的,由水的体积的不变性可证得.综上所述,正确命题的序号是①③④.答案:①③④4.如下图,两条线段AB 、CD 所在的直线是异面直线,CD ⊂平面α,AB ∥α,M 、N 分别是AC 、BD 的中点,且AC 是AB 、CD 的公垂线段.(1)求证:MN ∥α;(2)若AB =CD =a ,AC =b ,BD =c ,求线段MN 的长.(1)证明:过B 作BB ′⊥α,垂足为B ′,连结CB ′、DB ′,设E 为B ′D 的中点, 连结NE 、CE ,则NE ∥BB ′且NE =21BB ′,又AC =BB ′, ∴MCNE ,即四边形MCEN 为平行四边形(矩形).∴MN ∥CE .又CE ⊂α,MN ⊄α,∴MN ∥α.(2)解:由(1)知MN =CE ,AB =CB ′=a =CD ,B ′D =22B B BD '-=22b c -, ∴CE =)(41222b c a --=2224141c b a -+, 即线段MN 的长为2224141c b a -+. 5.如下图,在正方体ABCD —A 1B 1C 1D 1中,AB =a .A1(1)求证:平面AD 1B 1∥平面C 1DB ;(2)求证:A 1C ⊥平面AD 1B 1;(3)求平面AB 1D 1与平面BC 1D 之间的距离. (1)证明:∵D 1B 1∥DB ,∴D 1B 1∥平面C 1DB . 同理,AB 1∥平面C 1DB . 又D 1B 1∩AB 1=B 1,∴平面AD 1B 1∥平面C 1DB .(2)证明:∵A 1C 1⊥D 1B 1,而A 1C 1为A 1C 在平面A 1B 1C 1D 1上的射影,∴A 1C 1⊥D 1B 1. 同理,A 1C ⊥AB 1,D 1B 1∩AB 1=B 1. ∴A 1C ⊥平面AD 1B 1.(3)解:设A 1C ∩平面AB 1D 1=M ,A 1C ∩平面BC 1D =N ,O 1、O 分别为上底面A 1B 1C 1D 1、下底面ABCD 的中心. 则M ∈AO 1,N ∈C 1O ,且AO 1∥C 1O ,MN 的长等于平面AD 1B 1与平面C 1DB 的距离,即MN =A 1M =NC =31A 1C =33a .培养能力6.如下图,直线a ∥直线b ,a ⊂平面α,b ⊂平面β,α⊥平面γ,β⊥平面γ,a 与b 所确定的平面不与γ垂直.如果a 、b 不是γ的垂线,则必有α∥β.证明:令α∩γ=直线a ′,β∩γ=直线b ′.分别过a 、b 上任一点在α内、β内作a ′、b ′的垂线m 、n .根据两平面垂直的性质定理,∵α⊥γ,β⊥γ,∴m ⊥γ,n ⊥γ.∴m ∥n . ∵a 不垂直于γ,m ⊥γ,且a 、m 在α内,∴a 与m 必是相交直线.又b 与n 在β内,且有a ∥b ,m ∥n ,∴a ∥β,m ∥β.∴α∥β. 点评:根据a ∥b ,在α、β内另找一对平行线.由α⊥γ、β⊥γ,联想到平面垂直的性质定理.本例沟通了平行与垂直、线线与线面及面面之间的联系.7.如下图,已知平面α∥平面β∥平面γ,且β位于α与γ之间.点A 、D ∈α,C 、F ∈γ, AC ∩β=B ,DF ∩β=E .(1)求证:BC AB =EFDE; (2)设AF 交β于M ,AC DF ,α与β间距离为h ′,α与γ间距离为h ,当hh '的值是多少时,△BEM 的面积最大?(1)证明:连结BM 、EM 、BE .∵β∥γ,平面ACF 分别交β、γ于BM 、CF ,∴BM ∥CF .∴BC AB =MF AM. 同理,MF AM =EF DE .∴BC AB =EFDE.(2)解:由(1)知BM ∥CF ,∴CF BM =AC AB =h h '.同理,AD ME =hh h '-.∴S BEM ∆=21CF ·AD h h '(1-hh ')sin ∠BME .据题意知,AD 与CF 是异面直线,只是β在α与γ间变化位置.故CF 、AD 是常量,sin ∠BME 是AD 与CF 所成角的正弦值,也是常量,令h ′∶h =x .只要考查函数y =x (1-x )的最值即可,显然当x =21,即hh '= 21时,y =-x 2+x 有最大值. ∴当hh '= 21,即β在α、γ两平面的中间时,S BEM ∆最大. 8.如下图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、E 、F 分别是棱A 1B 1、A 1D 1、B 1C 1、C 1D 1的中点,AB =a .A1(1)求证:平面AMN ∥平面EFDB ; (2)求异面直线BE 与MN 之间的距离.(1)证明:∵MN ∥EF ,∴MN ∥平面EFDB . 又AM ∥DF ,∴AM ∥平面EFDB .而MN ∩AM =M , ∴平面AMN ∥平面EFDB .(2)解:∵BE ⊂平面EFDB ,MN ⊂平面AMN ,且平面AMN ∥平面EFDB , ∴BE 与MN 之间的距离等于两平行平面之间的距离.作出这两个平面与平面A 1ACC 1的交线AP 、OQ ,作OH ⊥AP 于H . ∵DB ⊥平面A 1ACC 1,∴DB ⊥OH .而MN ∥DB ,∴OH ⊥MN . 则OH ⊥平面AMN . ∵A 1P =42a ,AP =423 a , 设∠A 1AP =θ,则cos θ=a a 423=322, ∴OH =AO ·sin θ=22a ·322 a =32a . ∴异面直线BE 与MN 的距离是32a .探究创新9.科学植树的一个重要因素就是要考虑阳光对树生长的作用.现在准备在一个朝正南方向倾角为α的斜坡上种树,假设树高为h m ,当太阳在北偏东β而仰角为γ时,该树在坡面上的影长为多少米?分析:如下图,DE 是高度为h 的树,斜坡AD 朝正南方向,AB 为东西方向,BC 为南北方向.∠CBD =α,∠ACB =β,∠EAC =γ,∠AED =90°-γ,影长AD =x 为未知量.但x 难以直接与上述诸已知量发生联系,故设∠DAC =θ为辅助未知量,以揭示x 与诸已知量之间的数量关系,作为沟通桥梁.解:在△ADE 中,)sin(θγ-h =)90sin(γ-x,即γcos x =)sin(θγ-h .①在△ACD 中,CD =x sin θ,AC =x cos θ. 在△ABC 中,BC =AC cos β=x cos θcos β. 在△BCD 中,tan α=BC CD =βθcos tan . ②由①推得x =)sin(cos θγγ-h .③由②推得tan θ=tan αcos β, 即θ=arctan (tan αcos β).代入③,即得树在坡面上的影长. ●思悟小结证明两平面平行的方法: (1)利用定义证; (2)利用判定定理证;(3)利用“垂直于同一直线的两个平面平行”来证.面面平行常常转化为线面平行,而线面平行又可转化为线线平行.所以注意转化思想的应用,在处理两异面直线有关的问题中,通常采用过其中一直线上的一点作另一条直线的平行线或直接连结的方法,即搭桥的方法,把异面问题转化为平面问题,从而应用平面几何知识加以解决.两平面平行的性质定理是证明空间两直线平行的重要依据,故应切实掌握好.教学点睛1.结合图形使学生熟练地掌握两个平面平行的判定定理及性质定理.2.判定两个平面平行是本节的重点,除了依据定义、判定定理外,还可用垂直于同一条直线的两个平面平行;法向量平行的两个平面也平行等.3.为了应用两平面平行的条件,往往作第三个平面与它们相交. 拓展题例【例1】 下列命题中,错误的是A.三角形的两条边平行于一个平面,则第三边也平行于这个平面B.平面α∥平面β,a ⊂α,过β内的一点B 有唯一的一条直线b ,使b ∥aC.α∥β,γ∥δ,α、β、γ、δ的交线为a 、b 、c 、d ,则a ∥b ∥c ∥dD.一条直线与两个平面成等角是这两个平面平行的充要条件解析:D 错误.当两平面平行时,则该直线与两个平面成等角;反之,如果一条直线与两个平面成等角,这两个平面可能是相交平面.如下图,α⊥β,直线AB 与α、β都成45°角,但α∩β=l .答案:D【例2】 在四棱锥P —ABCD 中,ABCD 是矩形,P A ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点.(1)求证:MN ∥平面P AD ;(2)当MN ⊥平面PCD 时,求二面角P —CD —B 的大小. (1)证明:取CD 的中点E ,连结ME 、NE . ∵M 、N 分别是AB 、PC 的中点,∴NE ∥PD ,ME ∥AD .于是NE ∥平面P AD , ME ∥平面P AD .∴平面MNE ∥平面P AD ,MN ⊂平面MNE . ∴MN ∥平面P AD .(2)解:设MA =MB =a ,BC =b ,则MC =22b a +. ∵N 是PC 的中点,MN ⊥平面PCD , ∴MN ⊥PC .于是MP =MC =22b a +. ∵P A ⊥平面ABCD ,∴P A ⊥AM ,P A =22AM PM -=b .于是PD =2 b ,EN 是△PDC 的中位线,EN =21PD =22b .∵ME ⊥CD ,MN ⊥平面PCD ,∴EN ⊥CD ,∠MEN 即为二面角P —CD —B 的平面角. 设为α,于是cos α=EMEN =22,α=45°,即二面角P —CD —B 的大小为45°.。

平面和平面平行的判定和性质

平面和平面平行的判定和性质

根据两个平面平行及直线和平面平行的定义, 容易得出下面的结论:
// , a a //
即:如果两个平面平行,那么其中一个平面 内的直线平行于另一个平面.
(2)两个平面平行的性质定理 性质定理:如果两个平行平面同时和第三 个平面相交,那么它们的交线平行.
即: a a // b b
证明:(用反证法)
c 假设 .
a // , a
a // c
同理 b // c 这与题设a 和 b 是相交直线矛盾. //
推论:如果一个平面内有两条相交 直线分别平行与另一个平面内的两条直
线,那么这两个平面平行。
a ,b ,a b A
M G N E P
D
转 化
〖演练反馈〗
(1)与两个相交平面的交线平行的直线和这两个平面的位置 关系是( D ) (A)都平行 (B) 都相交 (C)在这两个平面内 (D) 至少与其中一个平面平行 (2) a α,b β且α∥β,则直线a、b的关系为( (A)a∥b (B)a与b异面 (C) a与b平行或异面 (D) a与b相交 )C
//
例2:已知有公共边AB的两个全等的矩形ABCD 和ABEF不在同一个平面内,P,Q分别是对角 线AE,BD的中点. D C 求证:PQ∥平面BCE。 Q A P R B
F
E
例3:求证: 夹在两个平行平面间的两条平行线 段相等. 已知:平面 //平面 ,AB和DC为夹在 、 间的平行线段。 求证:AB=DC D A 证明: AB // DC ∴AB,DC确定平面AC 又因为AD,BC分别是平面AC B 与平面 、 的交线. ∴AD//BC,四边形ABCD是平行四边形

面面平行的性质定理

面面平行的性质定理

面面平行的性质定理
面面平行的性质定理:
1、如果两个平面垂直于同一条直线,那么这两个平面平行。

2、如果一个平面内有两条相交直线与另一个平面平行,那么这两个平面平行。

3、如果一个平面内有两条相交直线分别与另一个平面内的两条相交直线平行,那么这两个平面平行。

定理1
两个平面平行,在一个平面内的任意一条直线平行于另外一个平面。

证明:设α∥β,a⊂α,则a∥β
∵α∥β
∴α与β无交点
又∵a⊂α
∴a与β无交点
即a∥β
定理2
两个平行平面,分别和第三个平面相交,交线平行。

如果交线不平行的话,设交线交点为P,那么P属于两条交线,即P属于两个平行平面,这是不可能的事情。

所以交线必定平行。

面面平行的判定定理:
1、如果两个平面垂直于同一条直线,那么这两个平面平行。

2、如果一个平面内有两条相交直线与另一个平面平行,那么这两个平面平行。

3、如果一个平面内有两条相交直线分别与另一个平面内的两条相交直线平行,那么这两个平面平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A C
M
N
E
D B
2020/7/20
【典例剖析】
【例3书】 如下图,在空间六边形(即六个顶点没有任
何五点共面)ABCC1D1A1中,每相邻的两边互相垂直, 边长均等于a,并且AA1∥CC1.求证:平面A1BC1∥平面
ACD1.
A
B
C
2020/7/20
A1
D1
C1
【典例剖析】
【例4书】 如下图,在正方体ABCD—A1B1C1D1中,M、 N、P分别是C1C、B1C1、C1D1的中点,求证: (1)AP⊥MN;
9.4两个平面平行
2020/7/20
【教学目标】
掌握两平面平行的判定和性质,并用以解决 有关问题
2020/7/20
2020/7/20
2020/7/20
2020/7/20
【点击双基】
1.(2019年春季北京,3)下列命题中,正确的是 C A.经过不同的三点有且只有一个平面 B.分别在两个平面内的两条直线一定是异面直线 C.垂直于同一个平面的两条直线是平行直线 D.垂直于同一个平面的两个平面平行
2020/7/20
(2)平面MNP∥平面A1BD.
D
C
A
B
M
2020/7/20
D1 A1
P
C1
N
B1
【知识方法总结】 1. 证明面面平行的主要方法: ①利用定义; ②利用判定 定理. 另外证面面平行还可利用“垂直于同一条直线 的两个平面互相平行”来证. 2. 面面平行关系, 通常转化为线面关系, 而线面关系又 可转化为线线关系.
其中202正0/7/20确的命题是_①__④__⑤__⑥___(将正确的序号都填上)
【典例剖析】 例1.已知a和b是两条异面直线,求证:过a且平行于
b的平面必平行于过b且平行于a的平面.
2020/7/20
【典例剖析】
【例2书】 设平面α∥平面β,AB、CD是两条异面直线, M、N分别是AB、CD的中点,且A、C∈α,B、D∈β, 求证:MN∥平面α.
2.设a、b是两条互不垂直的异面直线,过a、b分别作平面
α、β,对于下面四种情况:①b∥α,②b⊥α,
ቤተ መጻሕፍቲ ባይዱ
③α∥β,④α⊥β.其中可能的情况有
C
A.1种 B.2种 C.3种
D.4种
2020/7/20
【点击双基】
3.α、β是两个不重合的平面,a、b是两条不同直线,在
下列条件下,可判定α∥β的是
D
A.α、β都平行于直线a、b
B.α内有三个不共线点到β的距离相等
C.a、b是α内两条直线,且a∥β,b∥β
D.a、b是两条异面直线且a∥α,b∥α,a∥β,b∥β
4.a、b、c为三条不重合的直线,α、β、γ为三个不重 合的平面,直线均不在平面内,给出六个命题:
① b a∥ ∥ cc a∥ b;② b a∥ ∥ a∥ b;③ ∥ ∥ cc ∥ ; ④ a∥ ∥ cc a∥ ;⑤ ∥ ∥ ∥ ⑥ a∥ ∥ a∥
相关文档
最新文档