两个平行平面的距离
暑假立体几何中的距离问题

立体几何中的距离问题【要点精讲】1.距离空间中的距离是立体几何的重要内容,其内容主要包括:点点距,点线距,点面距,线线距,线面距,面面距。
其中重点是点点距、点线距、点面距以及两异面直线间的距离.因此,掌握点、线、面之间距离的概念,理解距离的垂直性和最近性,理解距离都指相应线段的长度,懂得几种距离之间的转化关系,所有这些都是十分重要的求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。
两条异面直线的距离两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度点到平面的距离平面外一点P在该平面上的射影为P′,则线段PP′的长度就是点到平面的距离;求法:○1“一找二证三求”,三步都必须要清楚地写出来。
○2等体积法。
直线及平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离。
求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关距离的线段;②证明它符合定义;③归到解某个三角形.若表示距离的线段不容易找出或作出,可用体积等积法计算求之。
异面直线上两点间距离公式,如果两条异面直线a 、b 所成的角为 ,它们的公垂线AA ′的长度为d ,在a 上有线段A ′E =m ,b 上有线段AF =n ,那么EF =θcos 2222mn n m d ±++(“±”符号由实际情况选定)点到面的距离的做题过程中思考的几个方面: ①直接作面的垂线求解;②观察点在及面平行的直线上,转化点的位置求解; ③观察点在及面平行的平面上,转化点的位置求解; ④利用坐标向量法求解⑤点在面的斜线上,利用比例关系转化点的位置求解。
数学知识点归纳之平行线间距离

数学知识点归纳之平行线间距离数学知识点归纳之平行线间距离在我们平凡的学生生涯里,是不是经常追着老师要知识点?知识点也可以通俗的理解为重要的内容。
那么,都有哪些知识点呢?以下是店铺精心整理的数学知识点归纳之平行线间距离,供大家参考借鉴,希望可以帮助到有需要的朋友。
平行线间距离1、定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。
2、性质:⑴ 两条平行线间的距离处处相等;⑵ 两条平行线间的任何两条平行线段都是相等的。
希望上面对平行线间距离知识的总结学习,能很好的帮助同学们对此知识的巩固学习,相信同学们一定没问题的吧。
数学平行线知识点平行线:在同一平面内,永不相交的两条直线叫平行线(parallel lines),平行线具有传递性。
平行线的判定方法1.平行线的定义(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理推论:平行于同一直线的两条直线互相平行。
3.在同一平面内,垂直于同一直线的两条直线互相平行。
4.内错角相等,两直线平行。
5.同旁内角互补,两直线平行。
6.同位角相等,两直线平行平行线的性质1.两条平行线被第三条直线所截,同位角相等2.两条平行线被第三条直线所截,内错角相等3.两条平行线被第三条直线所截,同旁内角互补4. 两条平行线被第三条直线所截,外错角相等以上性质可简单说成:1.两条直线平行,同位角相等2.两条直线平行,内错角相等3.两条直线平行,同旁内角互补4.两条直线平行,外错角相等平行公理1.在同一平面内,经过直线外一点,有且只有一条直线与这条直线平行。
平行公理的推论:(平行传递性)1.如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
即平行于同一条直线的两条直线平行。
2.经过直线外一点,有且只有一条直线与这条直线平行。
《相交线与平行线》的知识点归纳一、目标与要求同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
高二数学线面距离和面面距离的求法

练习
作业 ①课本P56练6、习1及补充题。
②优化P56-57 随1,4,强7,8;做在书上。
3.(补充)在长方体ABCD-A1B1C1D1中,AB=4, BC=3,CC1=2。 求证:(1)平面A1BC1∥平面ACD1。
(2)求(1)中两个平行平面间的距 离。
A1 D1 B1 C1
D
C
A
B
line营销 line营销软件 line营销 line营销软件 nqx93kop
双胞胎兄弟!”耿直擦去刚才为已经过世的姥娘流下来的眼泪,和李尚武勾肩搭背坐到一把椅子上。耿英也和秀儿挤着坐到一把椅子上。 耿兰烧的水响锅了,郭氏取出茶杯和大碗小碗的各抓一小撮茶叶。水开了,耿兰用大铜勺舀了一一泡上凉着。大家继续流着高兴的眼泪说 笑着,有的随便端来茶水喝一些看着悄悄儿地坐在妻弟身边的那个十四、五岁的男娃儿和七、八岁的女娃儿,以及妻弟妹怀里抱着的小男 娃,耿老爹对妻弟和妻弟妹说:“都三个娃娃了啊!俺们走的时候,栋儿才五岁。看看,他现在已经长成半大小伙儿了哇!”妻弟拍拍大 儿子的背,高兴地说:“姐夫你的名字起得好,咱们栋儿不错,挺有出息的娃儿!”耿老爹笑着说:“哪里啊,是你们做爹娘的教育得好 哇!这女娃儿和二小子叫什么名字啊?”妻弟妹说:“姐夫你不在家,俺们就胡乱给起啦!”说着,她笑着伸手摸摸身边女儿的头,说: “这妞儿小的时候模样挺好看,俺们就叫她美妞儿!”又看看怀里抱着的小男娃,说:“二小子的名字是他哥哥给起的。栋儿说,‘姑父 不是说希望俺能成为什么栋梁嘛!俺叫郭栋,弟弟就叫郭梁哇!’”耿老爹还没有开口呢,耿英就赞赏地开始叫好了,大声说:“这两个 名字起得忒好啦!美妞儿小时候的模样俺没有见过,但现在的模样实在是太好看了啊!”说着,探身摸摸小表弟可爱的小脑袋,说:“还 有啊,光是郭(国)栋怎么行啊,郭家(国家)有栋梁才完美哪!”耿正也说:“能给弟弟起这样的名字,足以看得出来,俺们这大表弟 确实是很有思想哩!”直到这时候,当爷爷的才终于擦把老泪露出了笑容。33第百零九回 五道庙前父子见|(归心似箭七八天,故乡日近 怯怯行;苍天不负耿家人,五道庙前父子见。)耿正兄妹三人归心似箭七八天后,离家越来越近了。然而,他们急于回家见到亲人的心情, 却随着家的日益接近而变得越来越沉重起来„„近乡情更怯,不敢问来人!这句脍炙人口的古老诗句,兄妹三人算是体会到骨子里了。当 然,他们此时此刻所体会到的,主要是前半句,因为爹爹没有和他们一起回来,他们不敢回家了,他们实在无法面对娘和妹妹„„日思夜 想的家一天比一天接近了,但兄妹三人归家的步伐却一天比一天慢下来。原本两天就可以轻松走完的路程,到后来竟然三天也走不完 了„„连着几日来,兄妹三人的话越来越少,情绪一天比一天低落;尤其是耿英,经常默默地独自掉眼泪。就这样,到兄妹三人得以归家 那日,已经楞是给磨蹭到农历的三月初三了。耿英今儿个一上车就没有坐车棚里边,而是挤坐在哥哥和弟弟的中间,默不做声地张着一双 好看而又显得异常忧郁的大眼睛向前望着„„兄妹三人就这样挤坐着,默默地踏上回家的最后一程。俗话说,三月三,柳条
1.4空间向量的应用-1.4.2用空间向量研究距离、夹角问题

用空间向量研究距离、夹角问题
第1课时
距离问题
核心素养
能用向量方法解决点到
直线、点到平面、互相
平行的直线、互相平行
的平面的距离问题.(直
观想象、数学运算)
思维脉络
激趣诱思
知识点拨
某人在一片丘陵上开垦了一块田地,在丘陵的上方架有一条直的水
渠,此人想从水渠上选择一个点,通过一条管道把水引到田地中的
·1 = 0,
取 z=1,则 x=y=2,所以 n=(2,2,1).
|·1 1 |
所以点 B1 到平面 AD1C 的距离 d=
||
8
= 3.
探究一
探究二
素养形成
当堂检测
利用空间向量求点线距
例1已知直三棱柱ABC-A1B1C1中,AA1=1,AB=4,BC=3,∠ABC=90°,求
点B到直线A1C1的距离.
)
3
A.
2
2
B.
2
C. 3
D.3 2
答案:B
解析:∵两平行平面 α,β 分别经过坐标原点 O 和点 A(2,1,1),
=(2,1,1),且两平面的一个法向量 n=(-1,0,1),
|· |
∴两平面间的距离 d=
||
=
|-2+0+1|
2
=
2
2
.故选 B.
探究一
探究二
素养形成
当堂检测
2.若三棱锥P-ABC的三条侧棱两两垂直,且满足PA=PB=PC=1,则点
所以点 B 到直线 A1C1 的距离
1 1
2
d= |1 | - 1 ·|
= 8-
-1+3+0
高二数学线面距离和面面距离的求法

练习
作业 ①课本P56练6、习1及补充题。
②优化P56-57 随1,4,强7,8;做在书上。
3.(补充)在长方体ABCD-A1B1C1D1中,AB=4, BC=3,CC1=2。 求证:(1)平面A1BC1∥平面ACD1。
(2)求(1)中两个平行平面间的距 离。
A1 D1 B1 C1
D
C
A
B
九州娱乐网 www.jiuzhouyule.me 九州娱乐网
D E A B
C
13
例1.在棱长为1的正方体ABCD-A1B1C1D1中,M、 N分别是线段BB1、B1C1的中点,求直线MN到平 面ACD1的距离。
D1 一、转化为点面距离 二、利用法向量法求 点到面的距离 A1 B1
M
C1
N
3 d 2
D A B
C
ห้องสมุดไป่ตู้
二.两个平行平面的距离
⑴和两个平面同时垂直的直线,叫做这两个平面的公垂线。公 垂线夹在平行平面之间的部分,叫做这两个平面的公垂线段。 ⑵两个平行平面的公垂 线段都相等。 ⑶两个平行平面的公垂 线段的长度,叫做两个 平行平面的距离。
A B
A
B
体现了最短,垂直。
求面面距离
求点面距离 此点为面上的一 任意(特殊)点。
例2 若正方体AC1的各棱长均为1,则面 D1 3 。 AB1C与面DA1C1之间的距离是
3
B1
D1
C1
D
B
A1
D A
B1
A
C
C B
B
D
练习: 已知面α∥面β, 线段AB、CD夹在α、β之间, AB=13, CD=5 5, 且它们在β内的射影之差为2,则α和β之间的距离 是 5 。
高二数学线面距离和面面距离的求法

一、直线到与它平行平面的距离:
1.定义:
一条直线上的任一点到与它 平行的平面的距离叫做这条直线 到平面的距离。
体现了最短,垂直。Fra bibliotek2.直线到与它平行平面的距离
一条直线上任一点到与它平行 的平面的距离,叫做这条直线到平 面的距离。
l
l∥ α
求线面距离
此点为线上的 一任意(特殊)点
例3 如图所示, 已知四棱锥P-ABCD的底面为菱形, ∠BAD=120°, PA⊥面ABCD, 点E是棱PC的中点, 且AB=PA=a, 求点E到面PAB P 的距离。 解:连结AC、BD交于O,连结OE,作 OM⊥AB于M; .E A D 易证:OE∥AP,从而得OE∥面APB, M ∴点E到面PAB的距离等于点O到面PAB O 的距离, 又易证:OM⊥面PAB, B A C ∴点O到面PAB的距离就是OM的长, M 即点E到面PAB的距离等于OM。 在菱形ABCD中,AB=a,∠BAC=60°, C 3 3 a a ∴OA=0.5a,OM= ∴点 E 到面 PAB 的距离等于 4 4
A B
A
B
体现了最短,垂直。
求面面距离
求点面距离 此点为面上的一 任意(特殊)点。
例2 若正方体AC1的各棱长均为1,则面 D1 3 。 AB1C与面DA1C1之间的距离是
3
B1
D1
C1
D
B
A1
D A
B1
A
C
C B
B
D
练习: 已知面α∥面β, 线段AB、CD夹在α、β之间, AB=13, CD=5 5, 且它们在β内的射影之差为2,则α和β之间的距离 是 5 。
高中数学 平面方程式

所以点 P 到平面 E2的距离为
ax0 by0 cz0 d2 d1 d2 d1 d2 。
a2 b2 c2
a2 b2 c2 a2 b2 c2
7 p.83
设平面 E 通过点 P 1 ,2 ,3,且平面 E 与平面 3x 2 y z 5 0
平行,试求平面 E 的方程式。
平面 3x 2 y z 5 0 的一个法矢量为3 ,2 ,1
因为平面 E 与平面 3x 2 y z 5 0 平行 所以它们的法矢量亦平行
平面方程式
平面方程式 两平面的夹角 点到平面的距离 两平行平面的距离
平面方程式 p.72~p.78
平面的法矢量: 坐标空间中,如果一个以非零矢量 n 为方向矢量的直线 L 与平面 E 垂直, 则称 n 是平面 E 的一个法矢量。此时 也称 n 与平面 E 垂直,记为 n E。如上图所示。 平面方程式:
(2) 设平面 PQR 与平面 CDHG 的夹角为 ,
试求 cos 。
又两平面夹角 = 或 180 故 cos = cos 或 cos = cos 180 = cos
即 cos = 2 或 2
77
6 , 2 , 3 0 , 6 , 0
=2
(6)2 (2)2 (3)2 02 62 02 7
8 p.84
如右图所示,已知长方体 ABCD-EFGH 的
长、宽、高分别为 AB 2、AD 6、AE 4, 令 P、Q、R 分别为GF、GH、GC 的中点,则:
= =3
12 22 22
9
线面平行知识点

线面平行知识点线面平行是几何学中的一个重要概念,指的是两个平面在三维空间中没有交点,且两个平面的法线向量相互平行。
线面平行的性质与应用在现实生活和工程领域中都有着广泛的应用。
下面将介绍线面平行的概念、性质以及其在几何学和工程领域中的应用。
一、线面平行的概念线面平行是指两个平面在三维空间中没有交点,且两个平面的法线向量相互平行。
具体来说,如果两个平面P1和P2的法线向量分别为n1和n2,那么线面平行的条件可以表示为n1∥n2。
二、线面平行的性质1.平行平面的法线向量相互平行:对于线面平行的两个平面P1和P2,它们的法线向量n1和n2相互平行,即n1∥n2。
这是线面平行的基本性质。
2.平行平面之间的距离相等:对于线面平行的两个平面P1和P2,它们之间的距离是恒定的。
这是因为两个平面之间的距离可以通过一个垂直于这两个平面的向量来定义,而这个向量的大小是恒定的。
3.平行平面的投影关系:对于线面平行的两个平面P1和P2,它们在一个垂直于它们的共同法线上的投影长度是相等的。
这意味着如果我们从一个平面上垂直投影到另一个平面上,投影的长度是保持不变的。
三、线面平行的应用1.几何学中的应用:线面平行的概念和性质在几何学中有广泛的应用。
例如,在计算两个平面之间的距离时,可以利用线面平行的性质来简化计算。
此外,在计算两个平面的夹角时,线面平行的概念也可以起到辅助的作用。
2.工程领域中的应用:线面平行的概念和性质在工程领域中也有重要的应用。
例如,在建筑设计中,如果希望两个墙面之间保持平行,可以利用线面平行的性质来进行构造。
此外,在机械设计中,线面平行的概念可以应用于零件的安装和对位,保证机械零件之间的平行关系。
四、总结线面平行是几何学中一个重要的概念,指的是两个平面在三维空间中没有交点,且两个平面的法线向量相互平行。
线面平行的性质包括平行平面的法线向量相互平行、平行平面之间的距离相等以及平行平面的投影关系。
线面平行的概念和性质在几何学和工程领域中都有广泛的应用,可以用于简化计算、辅助设计和保证零件之间的平行关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两个平行平面的距离
备课时间
一、教学重点、难点、疑点及解决方法
1.教学重点:掌握两平行平面间的距离的概念,会求两个平行平面间的距离.
2.教学难点:两个平行平面间的距离的求法
二、教与学的过程设计
(一)两个平行平面间的距离
例1 一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.
已知:α∥β,l⊥α,l∩α=A.
求证:l⊥β.
问题5:证明直线与平面垂直的方法有几种?
方法一,证明直线与平面内的任何一条直线都垂直;方法二,证明直线与平面内两条相交的直线垂直;方法三,证明直线的一条平行线与平面垂直.
比较几种方法,我们可以试着用第一种方法来证明.
证明:在平面β内任取一条直线b,平面γ是经过点A与直线b的平面,设γ∩α=a.
因为直线b是平面β内的任意一条直线,所以l⊥β.
点评:这个例题的结论可与定理“一个平面垂直于两条平行直线中的一条直线,它也垂直于另一条直线.”联系起来记忆,它也可作为性
质3:若α∥β,l⊥α,则l⊥β.
2.两个平行平面的公垂线、公垂线段和距离
师:象例2这样的,和两个平行平面α,β同时垂直的直线l,叫做这两个平行平面α,β的公垂线,它夹在这两个平行平面间的部分叫做这两个平行平面的公垂线段.
如图1—113,α∥β.如果AA'、BB'都是它们的公垂线段,那么AA'∥BB',根据两个平面平行的性质定理有A'B'∥AB,所以四边形ABB'A'是平行四边形,AA'=BB'.
由此,我们得到,两个平行平面的公垂线段都相等,公垂线段的长度具有唯一性.与两平行线间的距离定义相类似,我们把公垂线段的长度叫做两个平行平面的距离.两个平行平面间距离实质上也是点到面或两点间的距离,求值最后也是通过解三角形求得
(三)总结
本节课我们学习了两个平行平面的公垂线、公垂线段和距离的定义,懂得将其转化为平面几何问题来解决.
三、作业
见高考调研
四、课后反思。