平面向量基础知识
高中平面向量知识点详细归纳总结(附带练习)

向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。
高中数学的向量知识

高中数学的平面向量知识向量的概念既有方向又有大小的量叫做向量(物理学中叫做矢量),向量可以用a,b,c,.......表示,也可以用表示向量的有向线段的起点和终点字母表示。
只有大小没有方向的量叫做数量(物理学中叫做标量)。
在自然界中,有许多量既有大小又有方向,如力、速度等。
我们为了研究这些量的这个共性,在它们的基础上提取出了向量这个概念。
这样,研究清楚了向量的性质,当然用它来研究其它量,就会方便许多。
向量的几何表示具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。
(AB是印刷体,也就是粗体字母,书写体是上面加个→)有向线段AB的长度叫做向量的模,记作|AB|。
有向线段包含3个因素:起点、方向、长度。
相等向量、平行向量、共线向量、零向量、单位向量:长度相等且方向相同的向量叫做相等向量。
两个方向相同或相反的非零向量叫做平行向量或共线向量,向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量共线就是指两条是平行向量)长度等于0的向量叫做零向量,记作0。
(注意粗体格式,实数“0”和向量“0”是有区别的)零向量的方向是任意的;且零向量与任何向量都平行,垂直。
模等于1个单位长度的向量叫做单位向量。
平面向量的坐标表示在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。
任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得a=x i+y j我们把(x,y)叫做向量a的(直角)坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。
在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。
注意:平面向量的坐标与点的坐标不一样,平面向量的坐标是相对的。
而点的坐标是绝对的。
若一向量的起点在原点,例如该向量为(1,2)那么该向量上的所有点都可以用(a,2a)表示。
平面向量基础知识

平面向量一、平面向量的基本概念㈠、向量的概念:我们把既有大小又有方向的量叫向量1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母AB 表示.(AB 的大小──长度称为向量的模,记作|AB|. )3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.4.向量与有向线段的区别:⑴向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;⑵有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.5、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.6、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:⑴综合①、②才是平行向量的完整定义;⑵向量a、b、c平行,记作a∥b∥c.7、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:⑴向量a与b相等,记作a=b;⑵零向量与零向量相等;⑶任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关........... 8、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关..........). 说明:⑴平行向量可以在同一直线上,要区别于两平行线的位置关系;⑵共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.二、 向量的加法与减法1、位移问题:①某人从A 到B ,再从B 按原方向到C ,则两次的位移和:AB BC AC +=②某人从A 到B ,再从B 按反方向到C ,则两次的位移和:AB BC AC +=③某车从A 到B ,再从B 改变方向到C ,则两次的位移和:AB BC AC +=④船速为AB,水速为BC ,则船单位时间内的位移:AB BC AC +=2、向量的加法:求两个向量的和的运算,叫做向量的加法。
平面向量与解三角形基础知识

04
平面向量与解三角形的结合应用
向量在解三角形中的应用
力的合成与分解
在物理和工程中,向量可以表示 力和速度,通过向量的合成与分 解可以解决与力相关的问题,如 力的平衡、加速度等。
速度和加速度分析
01 02
答案解析1
首先计算向量$overset{longrightarrow}{a}$和 $overset{longrightarrow}{b}$的模长,然后利用向量的夹角公式计算 夹角。
答案解析2
利用向量的坐标运算求出边AB上的高所在的直线斜率,然后利用点斜 式求出直线方程。
03
答案解析3
利用向量的夹角公式计算夹角的余弦值。
平面向量与解三角形基础知识
目
CONTENCT
录
• 平面向量基本概念 • 平面向量的数量积和向量积 • 解三角形基础知识 • 平面向量与解三角形的结合应用 • 练习题与答案解析
01
平面向量基本概念
向量的表示与定义
总结词
平面向量通常用有向线段表示,包括 起点、方向和长度。
详细描述
平面向量是一种既有大小又有方向的 量,通常用有向线段表示,包括起点 、方向和长度。向量的大小称为模, 表示为向量的长度。
解三角形的步骤和注意事项
01
02
03
04
确定解的类型
根据题目条件和要求,确定解 的类型是角度、边长还是角度 和边长都需要求解。
选择合适的公式
根据解的类型,选择合适的公 式进行计算,如正弦定理、余 弦定理等。
计算过程需谨慎
在计算过程中,需要注意单位 的统一和计算的准确性,避免 出现误差。
平面向量知识点归纳

平面向量知识点归纳平面向量是高中数学中的重要内容,也是大学数学中的基础知识,它是向量的一种。
向量是数学中的一个概念,它有方向和大小,用有向线段表示。
平面向量是指在平面中的向量,以下是平面向量的知识点归纳。
一、平面向量的定义平面向量是表示平面上有大小和方向的箭头的数学概念。
平面向量AB用符号→AB表示,它的长度表示向量大小,而方向则由方向角表示。
二、平面向量的加减法1. 平面向量的加法平面向量加法是指将一条平面向量按照另一条向量的方向和大小来平移,并合成为一条新的向量。
记作→AB+→BC=→AC。
向量加法满足交换律、结合律、分配律。
2. 平面向量的减法平面向量减法是将另一向量的方向翻转,依次相加,得到一个新向量。
记作→AB-→AC=→CB。
三、平面向量的数量积平面向量的数量积是指两个向量之间相乘得到的标量。
记作→a⋅→b=a·b·cosθ,其中a、b是两个向量,θ是它们之间的夹角。
四、平面向量的叉积平面向量的叉积是在二维平面内的两个向量所形成的向量垂直于平面,大小等于两个向量所组成的平行四边形的面积。
记作→a×→b,其中a、b是两个向量。
五、平面向量的共线、垂直及夹角1. 平面向量的共线两个向量共线的充要条件是它们的数量积等于它们的模的乘积,即→a//→b,当且仅当a·b=|a||b|。
2. 平面向量的垂直两个向量垂直的充要条件是它们的数量积等于0,即→a⊥→b当且仅当a·b=0。
3. 平面向量的夹角两个向量的夹角是指它们之间的夹角,记作θ,其中θ的范围是0≤θ≤π。
六、平面向量的投影与单位向量1. 平面向量的投影平面向量投影是指一个向量在另一个向量上的投影,也是向量的一个重要应用。
投影的值等于向量的模与夹角的余弦的乘积。
记作pr→a。
2. 平面向量的单位向量单位向量是模等于1的向量,它表示的方向与原向量相同。
单位向量是向量的一种特殊情况,用符号→e表示。
高中数学平面向量知识点与典型例题总结(师)

高中数学平面向量知识点与典型例题总结(师)《数学》必会基础题型——《平面向量》【基本概念与公式】【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。
记作:AB 或a 。
2.向量的模:向量的大小(或长度),记作:||AB 或||a 。
3.单位向量:长度为1的向量。
若e 是单位向量,则||1e =。
4.零向量:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
7.相反向量:长度相等,方向相反的向量。
AB BA =-。
8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。
10.共线定理://a b a b λ=?。
当0λ>时,a b 与同向;当0λ<时,a b 与反向。
11.基底:任意不共线的两个向量称为一组基底。
12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a ba b +=+13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?=? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+=题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
(3)与已知向量共线的单位向量是唯一的。
(4)四边形ABCD 是平行四边形的条件是AB CD =。
(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。
(6)因为向量就是有向线段,所以数轴是向量。
(7)若a 与b 共线, b 与c 共线,则a 与c 共线。
平面向量坐标运算知识点

平面向量坐标运算知识点一、知识概述《平面向量坐标运算知识点》①基本定义:平面向量坐标运算,简单说就是用坐标来表示平面向量,然后做各种运算。
就像给向量这个抽象的东西在平面上找好了“住址”(坐标),方便计算向量的和、差、数乘等。
比如向量A在平面直角坐标系里,有个坐标(x,y),这就是它在这个“数学小区”里的具体位置信息。
②重要程度:在数学学科里,平面向量坐标运算就像是一把魔力钥匙,能打开很多难题的大门。
它在几何图形的平移、伸缩,力的合成与分解等问题里都占着相当重要的分量。
要是不掌握这个,很多跟向量相关的稍微复杂点的题都搞不定。
③前置知识:要学这个,得先把平面直角坐标系、向量的基本概念(比如向量的大小和方向是啥)、向量的加法、减法这些基础知识掌握得妥妥的。
就像盖房子,前面那些知识是地基,平面向量坐标运算这楼才能盖起来。
④应用价值:实际应用场景超多。
比如说在物理里计算力的分解与合成,把力当成向量,用坐标运算就能轻松算出各个方向的分力或者合力。
在计算机图形学里,图形的平移、旋转、缩放都可以用向量坐标运算来描述,这样才能让图形在屏幕上“乖乖听话”,准确地实现各种效果。
二、知识体系①知识图谱:在整个向量知识体系里,平面向量坐标运算像是一条主线。
它跟向量的基本运算(向量加法等)、向量的性质(如平行、垂直的判定)都有千丝万缕的联系。
就像一张复杂的人际关系网里的关键角色,联系着很多其他相关概念的。
②关联知识:跟三角函数有点联系呢,有时候在计算向量夹角的时候会用到三角函数的知识。
还有跟解析几何也相关,有时候在解析几何里表示直线的方向或者图形在平面上的位置关系时,平面向量坐标运算就派上大用场了。
③重难点分析:- 掌握难度:这个知识点理解起来不算太难,但是要熟练运用还是有一定难度的。
刚开始接触时,让向量和坐标对应起来,建立这种思维转换有点挑战。
- 关键点:坐标的正确选取和运算规则的准确应用是关键。
一个坐标错误,后面的计算统统白搭。
高中数学基础知识大筛查(5)-平面向量

基础知识大筛查-平面向量概念与定理1、有关概念(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示 (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是||AB AB ±); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0 );④三点A B C 、、共线⇔ AB AC、共线;(6)相反向量:长度相等方向相反的向量叫做相反向量。
的相反向量是-。
2.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。
3、实数与向量的积:实数λ与向量的积是一个向量,记作λ,它的长度和方向规定如下:()()1,2a a λλ= 当λ>0时,λ的方向与的方向相同,当λ<0时,λ的方向与的方向相反,当λ=0时,0a λ=,注意:λ≠0。
4、平面向量的数量积:(1)两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量,的夹角,当θ=0时,,同向,当θ=π时,,反向,当θ=2π时,,垂直。
(2)平面向量的数量积:如果两个非零向量,,它们的夹角为θ,我们把数量||||cos a b θ叫做与的数量积(或内积或点积),记作:a ∙b ,即a ∙b =cos a b θ。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量基础知识
一、向量的基本概念
1.向量定义中的两个要素:
2、向量的表示方法:几何表示、代数表示
3.向量AB的大小,也就是向量AB的长度(或称模),记作,a的模为a.
4.特殊向量:零向量、单位向量、平行(共线)向量、相等向量、相反向量.
规定:零向量与任一向量平行.
二、平面向量的线性运算
1.加法:平行四边形法则
三角形法则
2.减法:
→
→
-b
a=
-
3.数乘:
(1)定义:规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,它的长度与方向规定如下:
①|λa|=;
②当λ>0时,λa的方向与a的方向;当λ<0时,λa的方向与a的方向.
(2)运算律:设λ、μ为实数,那么
①λ(μa)=
②(λ+μ)a=
③λ(a+b)=.
(3)向量共线条件:a,b共线(a≠0)⇔
(4)A、B、C三点共线⇔
⇔
三、平面向量基本定理及表示
1.平面向量基本定理:基底的概念
2.平面向量的坐标运算
(1)平面向量的坐标
设i,j是与方向相同的两个向量,对于平面上任一向量a,,使得a=,有序数对叫做向量a的坐标,记作a=.
(2)平面向量的坐标运算
①设a=(x1,y1),b=(x2,y2),则有
a+b=
a-b=
λa=
②设A(x1,y1),B(x2,y2),则有AB=
③向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),则a,b共线⇔
四.平面向量数量积
1.定义:已知两个非零向量a,b,我们把数量叫做a与b的数量积(或内积).
叫做a在b方向上的投影,叫做b在a方向上的投影.
2.a·b的几何意义:
数量积a·b等于a的长度|a|与b在a方向上的投影|b|cosθ的乘积.
3.数量积的运算律:已知向量a,b和实数λ,则
①a·b=
②(λa)·b==
③(a+b)·c=
4.坐标表示:设a=(x1,y1),b=(x2,y2),则
a·b=
5.模长公式:设a=(x,y),则
|a|==.
6.垂直条件:设a,b为非零向量,则
a⊥b⇔⇔
7.夹角公式:设a=(x1,y1),b=(x2,y2),夹角为θ,则
θ
cos= =。