数学概念,命题的教学

合集下载

高中数学命题与逻辑题教案

高中数学命题与逻辑题教案

高中数学命题与逻辑题教案
教案主题:数学命题与逻辑题
教学目标:
1.了解命题的概念和基本性质
2.掌握逻辑联结词的运用
3.学会使用数学语言描述命题与逻辑问题
教学内容:
1.命题的定义和基本性质
2.逻辑联结词的分类和运用
3.数学语言描述命题与逻辑问题
教学步骤:
一、导入(5分钟)
老师引导学生回顾自然语言中的命题及其特点,引出命题在数学中的应用。

二、讲解与示范(15分钟)
1.讲解命题的定义和基本性质,引导学生通过举例理解命题的概念。

2.介绍逻辑联结词的分类和运用,让学生了解与理解逻辑关系的表达方式。

三、练习与巩固(20分钟)
1.学生通过练习题巩固所学知识,包括判断命题的真假和逻辑关系的运用。

2.学生分组进行逻辑题讨论,通过解题方式提高逻辑思维能力。

四、拓展与延伸(10分钟)
老师布置拓展练习,让学生尝试更复杂的命题和逻辑问题,拓展思维边界。

五、总结与展望(5分钟)
1.老师对本节课内容进行小结,强调重点和易错处。

2.展望下节课的主题,激发学生学习兴趣。

教学辅助:
1.多媒体教学设备
2.教材与练习题册
3.小组讨论环节
教学反馈:
学生通过课后练习、小组讨论和课堂互动等方式进行自我巩固与反馈,老师及时纠正错误,并指导学生进一步提高逻辑思维能力。

教学延伸:
老师鼓励学生独立思考和解决问题,引导学生进行更深入的逻辑思考,培养学生的创新意
识和数学智力。

第五章 数学概念、命题与问题解决教学

第五章 数学概念、命题与问题解决教学

第五章 数学概念、命题与问题解决教学[教学目标] 了解数学概念的意义和结构,概念的定义和分类;理解数学概念之间的关系、定义方式、定义的规则以及分类的基本方法和规则,使学生明确数学概念教学的重要性、基本要求,并对概念教学进行若干教法探讨。

[学时] 8[教学方法] 课堂讲解;课外阅读[重点、难点] 数学概念的意义、定义方式和分类的基本方法;定义的规则,分类的规则,概念的限制与概括[教学过程]§5.1 数学概念及其教学一、数学概念(Mathematical Concept)的意义和结构概念是最基本的思维形式的一种,它与其他形式—判断、推理—是有密切联系的。

人们必须先具有关于某事物的概念。

然后才能作出关于某事物的判断、推理。

概念是判断推理的基础。

另一方面,人们通过判断、推理所获得的新认识,又要形成新的较深刻的概念,所以概念又是判断、推理的结晶。

科学史表明:“科学是与概念并肩成长起来的”。

概念具有如此重要的作用,我们在学习和数学过程中必须十分重视对概念的理解和掌握。

1、数学概念的意义[引题]师问:“等式12)1(22++=+x x x 是不是方程?”生答:“不是。

”“为什么?”“因为这个等式是个恒等式,不论x 取什么数,等式都成立,可以这个等式不是方程。

”师问:“什么叫方程?”生答:“含有未知数的等式叫做方程。

”师问:“等式12)1(22++=+x x x 含有未知数吗?”生答:“含有未知数x ,这是方程。

原来我认为含有未知数的恒等式不是方程,这是不对的。

”师问:“既然这个等式是方程,那么,这个方程有多少根?”生答:“有无穷多解。

”师问:“对。

有的方程有有限个解,例如:x +1=0只有一个解;有的方程无解,例如: 012=+x 在实数范围内无解;有的方程有无穷多解,方程12)1(22++=+x x x 就是一例。

”——以上对话是教师在引导学生明确“方程”这个概念的内涵与外延。

什么是概念的内涵和外延?先从“概念”谈起。

初中数学命题的试讲教案

初中数学命题的试讲教案

初中数学命题的试讲教案教学目标:1. 理解命题的概念和构成要素;2. 学会如何表述一个完整的命题;3. 掌握命题的逆否关系和真假判断;4. 能够运用命题的知识解决实际问题。

教学重点:命题的概念和构成要素,命题的逆否关系和真假判断。

教学难点:命题的逆否关系和真假判断。

教学准备:黑板、粉笔、教学PPT。

教学过程:一、导入(5分钟)1. 引导学生回顾小学学过的数学知识,如加减乘除、几何图形等;2. 提问:这些知识都是通过什么方式来表达的?(答案:公式、定理、法则等);3. 引出本节课的主题:命题。

二、新课讲解(15分钟)1. 讲解命题的概念:命题是用来描述数学对象之间关系的语句;2. 讲解命题的构成要素:题设和结论。

题设是已知事项,结论是由已知事项推出的事项;3. 举例说明如何表述一个完整的命题;4. 讲解命题的逆否关系:逆否命题是将原命题的题设和结论都取反得到的命题;5. 讲解命题的真假判断:真命题是指命题的题设和结论都为真;假命题是指命题的题设和结论有假;6. 举例说明如何判断一个命题的真假。

三、课堂练习(15分钟)1. 让学生独立完成教材上的练习题;2. 引导学生互相讨论,共同解决问题;3. 教师选取部分学生的作业进行讲解和点评。

四、总结与拓展(5分钟)1. 总结本节课所学的内容,让学生明确命题的概念、构成要素、逆否关系和真假判断;2. 提问:命题的知识如何应用到实际问题中?引导学生思考和探讨;3. 拓展学习:让学生课后查阅相关资料,了解命题在其他学科中的应用。

教学反思:本节课通过讲解和练习,使学生掌握了命题的概念、构成要素、逆否关系和真假判断。

在教学过程中,要注意引导学生积极参与课堂活动,提高学生的动手能力和思维能力。

同时,要关注学生的学习情况,及时发现和解决学生遇到的问题。

在课后,要鼓励学生进行拓展学习,提高学生的自主学习能力。

数学命题的教学设计案例

数学命题的教学设计案例

教学设计案例:数学命题的教学学习目标:学生能够理解和解答数学命题,包括判断命题的真假和证明命题的方法。

教学步骤:引入:通过一个具体的例子引入数学命题的概念。

例如,假设有命题:“如果一个数是偶数,则它的平方也是偶数。

”让学生思考这个命题的真假以及如何判断它的真假。

讨论命题的特点:与学生一起讨论数学命题的特点,包括命题的组成、命题的真假和命题的证明。

解释什么是真命题、假命题和无法判断的命题。

判断命题的真假:给学生一些简单的命题,让他们使用自己的数学知识和推理能力判断命题的真假。

鼓励学生提供解释和推理的过程。

证明命题的方法:介绍一些常见的数学证明方法,如直接证明、间接证明、数学归纳法等。

通过具体的例子演示这些证明方法的应用,引导学生理解证明的过程和思维方式。

练习:提供一系列的练习题,让学生应用所学的知识和方法判断命题的真假并进行证明。

可以根据学生的程度和年级设置适当难度的练习。

总结:总结本节课的学习内容,强调数学命题的重要性和应用价值。

鼓励学生思考数学命题背后的逻辑和推理,培养他们的数学思维能力。

扩展活动:鼓励学生设计自己的数学命题并进行判断和证明。

提供更复杂的命题和证明问题,挑战学生的思维和解决问题的能力。

探讨数学命题在实际生活中的应用,如数学推理在科学研究中的作用等。

评估方法:教师观察学生在课堂上的参与和回答问题的能力。

批改学生的练习题和作业,评估他们对数学命题的理解和应用能力。

进行小组或个人项目展示,评估学生在设计和解答数学命题方面的表现。

通过这样的教学设计,学生将能够理解数学命题的概念,学会判断命题的真假和运用证明方法解决问题。

同时,培养了学生的逻辑思维、推理能力和问题解决能力,提高他们的数学素养和学习能力。

数学概念,命题的教学方案.ppt

数学概念,命题的教学方案.ppt
外延是指 A、B、C三点的集合。 注:(1)数学概念的内涵和外延是在一定的数学科学
体系中来认识的。例如,角的概念在平面几何中和 在平面三角中的内涵和外延均不同。 (2)概念的内涵和外延是发展的
课件
➢ 概念间的关系(概念外延间的同异关系) ➢ 1、相容关系
(1)同一关系(全同关系或重合关系) A(B)
念融会贯通,组成一个整体。
课件
如“一次函数”的概念 给出名称、定义、符号:函数 y kx b,其中k,b R 特例:y kx, y x, y b, y 0 等 把一次函数与函数概念、一次多项式概念等作 比较 用肯定、否定例证让学生辨认:
y x 1, y x, y x b, y x2, y 0, y 1 ay x 3(a 0)
一般采用描述法和抽象化法或用直观说明或指 明对象的方法来明确。 “针尖刺木板”的痕迹引入“点”、用“拉紧 的绳”或“小孔中射入的光线”来引入“直线” 的方法是直观说明法,“1,2,3,···叫做自 然数”是指明对象法。
课件
(2)对于用概念的形成来学习的概念
一般可通过观察实例,启发学生抽象出本质属性, 师生共同进行讨论,最后再准确定义。
中学数学基础知识的教学
一 数学概念及其教学 二 数学命题及其教学 三 数学推理、证明及其教学
Байду номын сангаас课件
一 数学概念及其教学
数学概念概述 数学概念学习的心理分析 数学概念教学的基本要求和教法 探讨
课件
数学概念概述
➢数学概念的意义
数量关系和空 间形式
反映数学对象本质属性的思维形式叫做“数 学概念”。
“属性”与“本质属性” ;概念及其名称 和符号
外延完全重合,内涵可以不同。 例如:数0是扩大的自然数集中最小的数,又是正数 与负数的分界数,在数的运算中它又是两个相等数 的差等; 等腰三角形底边上的高线、中线以及顶角的平分线 的外延都是同一条线段,而内涵也各不相同。 注:研究概念间的同一关系,可以对概念所反映的对 象得到较深刻、较全面的认识。另外,在推理证明中 具有全同关系的概念可以互相代换,使得论证简明。

高中数学命题形式分析教案

高中数学命题形式分析教案

高中数学命题形式分析教案
教学目标:
1.理解数学命题的概念和分类。

2.掌握数学命题的逻辑联结词和逻辑运算。

3.能够准确分析和解决数学问题中的命题形式。

教学重点:
1.数学命题的定义和分类。

2.逻辑联结词的使用和理解。

3.逻辑运算的应用和分析。

教学难点:
1.命题形式分析的推理过程。

2.命题逻辑运算的综合运用。

教学过程:
一、导入(5分钟)
介绍数学命题的概念和重要性,引导学生思考数学问题中的命题形式。

二、讲解(15分钟)
1.数学命题的定义和分类。

2.逻辑联结词的种类及含义。

3.逻辑运算的常见形式和规则。

三、练习(20分钟)
1.学生进行命题分析练习,理解命题形式的逻辑关系。

2.学生尝试推理和解答具体数学问题中的命题形式。

四、讨论(10分钟)
学生就练习中遇到的问题进行讨论和交流,互相学习和分享解题思路。

五、总结(5分钟)
复习本节课的知识点,强化学生对数学命题的理解和应用能力。

六、作业布置(5分钟)
布置相关练习作业,巩固学生对数学命题的掌握和应用。

教学评价:
通过学生的课堂表现和作业成绩,评价学生对数学命题形式分析的理解和应用水平,及时调整教学方式和提高教学效果。

命题教学设计方案(二)_七年级数学教案

命题教学设计方案(二)_七年级数学教案教学目标1.使学生了解命题、真命题和假命题等概念.2.使学生了解几何命题是由“题设”和“结论”两部分组成.能够初步区分命题的题设和结论,或把命题改写成“如果……,那么……”的形式重点和难点分清命题的题设和结论,既是教学的重点又是教学的难点.教学过程一、引入请大家随意说出一些语句,教师把它们写在黑板上.如:(1)对顶角相等吗?(2)作一条线段AB=2cm;(3)我爱初二(1)班;(4)两直线平行,同位角相等;(5)相等的两个角,一定是对顶角.二、新课问:上述语句中,哪些是判断一件事情的句子?答:(3)、(4)、(5)是判断一件事情的句子.教师指出:判断是对事物进行肯定或否定的一种思维形式,判断一件事情的句子,叫做命题.数学课堂里,只研究数学命题,如(4)、(5).例1 请大家说出若干个(数学)命题,再分析一下,每一个命题由几部分组成?(1)等角的补角相等;(2)有理数一定是自然数;(3)内错角相等两直线平行;(4)如果a是有理数,那么a2>a;(5)每一个大于4的偶数都可以表示成两个质数之和(即著名的哥德巴赫猜想).教师启发学生得出:一个命题,由题设和结论两部分组成,都可以写成“如果……,那么……”的形式,也可以简称为“若A则B”.练习:把上述(1)至(5),都按“如果……,那么……”的形式,表述一遍.例2 在例1的(1)至(5)个命题中,所作的判断是否都正确?怎么检验各个命题的真伪?如果两个角是等角的补角,那么这两个角相等.”是正确的命题,已经由补角的定义(l)“得到证明.(2)“如果是有理数,那么它一定是自然数”。

是不正确的命题(判断),反例如是有理数但不是自然数。

(3)“如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.”是正确的命题,已证.(4)“如果a是有理数,那么a2>a.”是不正确的命题,反例如a=1,a2=a.(5)“如果是一个大于4的偶数,那么它可以表示成两个质数之和.”这个命题,至今没人举出一个反例,说明它不正确;也没有人完全证明它正确.我国著名数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”,即已经证明了1+2”,离“ 1+1”这颗数学王冠上的珍珠,只差“一步之遥”.这是目前世界上对这个命题的“ 真伪的判定,所能达到的最好结果.教师帮助学生归纳:命题既然是一个判断,就有判断是否正确的区别.真命题---如果题设成立那么结论一定成立,这样的命题叫做真命题.假命题---如果题设成立,不能保证结论总是成立,也就是说结论不成立,这样的命题叫做假命题.注意:不是命题与假命题的区别!怎样判断一个命题的真假?检验真理的唯一标准是实践.数学中,判断一个命题是真命题,要经过证明(或以公理形式,即由实践证明的形式出现);判断一个命题是假命题,只需举出一个反例即可.例 3 试将下列各个命题的题设和结论相互颠倒或变为否定式,得到新的命题,并判断这些命题的真假.(1)对顶角相等;(2)两直线平行,同位角相等;(3)若a=0,则ab=0;(4)两条直线不平行,则一定相交;(5)凡相等的角都是直角.解:(l)对顶角相等(真);相等的角是对顶角(假);不是对顶角不相等(假);不相等的角不是对顶角(真).(2)两直线平行,同位角相等(真);同位角相等,两直线平行(真);两直线不平行,同位角不相等(真);同位角不相等,两直线不平行(真).(3)若a=0,则ab=0(真);若ab=0,则a=0(假);若a≠0,则ab≠0(假);若ab≠0,则a≠0(真).(4)两条直线不平行,则一定相交(假);两条直线相交,则一定不平行(真);两条直线平行,则一定不相交(真);两条直线不相交,则一定平行(假).(注)本小题如果添上“在同一平面内”的大前提条件,那么假命题将变为真命题.(5)凡相等的角都是直角(假);凡直角都相等(真);凡不相等的角不都是直角(真);凡不都是直角的角不相等(假).说明:本例,尤其是第(5)小题,视学生接受情况,教师灵活掌握.讲还是不讲,讲到什么程度,介不介绍四种命题(原、逆、否、逆否),都有较大的伸缩性.小结:命题---判断一件事情的句子;命题的结构---;如果(题设)……,那么(结论)……;命题的真假---正确或错误的判断;四种命题---原、逆、否、逆否.(用投影片显示或挂小黑板)三、作业1.在下列语句中,指出哪些是命题,哪些不是命题.如果是命题,指出命题的真假,并仿照例3说出一些新的命题来.(l)如果AB⊥CD于O,那么∠AOC=90°;(2)取线段AB的中点C;(3)两条直线相交,有且只有一个交点;(4)一个平角的度数是180°;(5)若a=b,则a2=b2;(6)如果一个数的末位数字是0,那么它一定能够被5整除;(7)同角的余角相等;(8)周角的一半等于直角.2.选作题判断命题“如果n是自然数,那么n2+n+17是质数”的真假.在这节课的前一部分学习了名数、单名数、复名数的概念。

高中数学常用逻辑用语教案

由此会引起我们的思考:
一个命题的逆命题、否命题与逆否命题之间是否还存在着一定的关系呢.
让学生结合所做练习分析原命题与它的逆命题、否命题与逆否命题四种命题间的关系.
学生通过分析,将发现四种命题间的关系如以下图所示:
8.总结归纳
假设P,则q.
假设q,则P.
原命题
互 逆
逆命题












否命题
3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
二、教学重点与难点
重点:命题的概念、命题的构成
难点:分清命题的条件、结论和判断命题的真假
教具准备:与教材容相关的资料。
教学设想:通过学生的参与,激发学生学习数学的兴趣。
三、教学过程
学生探究过程:
1.复习回忆
初中已学过命题的知识,请同学们回忆:什么叫做命题.
让学生结合所举例子,思考:
假设原命题为“假设P,则q〞的形式,则它的逆命题、否命题、逆否命题应分别写成什么形式.
学生通过思考、分析、比拟,总结如下:
原命题:假设P,则q.则:
逆命题:假设q,则P.
否命题:假设¬P,则¬q.〔说明符号“¬〞的含义:符号“¬〞叫做否认符号.“¬p〞表示p的否认;即不是p;非p〕
〔2〕两个命题互为逆否命题,他们有一样的真假性;
〔3〕两个命题为互逆命题或互否命题,他们的真假性没有关系;
〔4〕原命题与它的逆否命题等价;否命题与逆命题等价.
12:作业P8:习题1.1A组第2、3、4题
四、板书设计
教学反思:
1.2充分条件与必要条件
一、教学目标
1.知识与技能:正确理解充分不必要条件、必要不充分条件的概念;会判断命题的充分条件、必要条件.

定义、命题、定理等概念

定义、命题、证明(1)教学目标1、知识与技能:了解命题、定义的含义;对命题的概念有准确的理解。

会区分命题的条件和结论。

重点与难点 1、重点:找出命题的条件(题设)和结论。

2、难点:命题概念的理解。

教学过程一、复习引入教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等。

根据我们已学过的图形特性,试判断下列句子是否准确。

1、如果两个角是对顶角,那么这两个角相等;2、两直线平行,同位角相等;3、同旁内角相等,两直线平行;4、平行四边形的对角线相等;5、直角都相等。

二、探究新知(一)命题、真命题与假命题学生回答后,教师给出答案:根据已有的知识能够判断出句子1、2、5是准确的,句子3、4水错误的。

像这样能够判断出它是准确的还是错误的句子叫做命题。

教师:在数学中,很多命题是由题设(或已知条件)、结论两部分组成的。

题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果.......,那么.......”的形式。

用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论。

例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论。

有的命题的题设与结论不十分明显,能够将它写成“如果.........,那么...........”的形式,就能够分清它的题设和结论了。

例如,命题5可写成“如果两个角是直角,那么这两个角相等。

”(二)实例讲解1、教师提出问题1(例1):把命题“三个角都相等的三角形是等边三角形”改写成“如果.......,那么.......”的形式,并分别指出命题的题设和结论。

学生回答后,教师总结:这个命题能够写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”。

这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”。

2、教师提出问题2:把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论。

人教版七年级数学下册5.3.2命题、定理、证明教学设计

2.从以下题目中选择两题进行深入探讨,要求写出详细的解题过程和证明步骤:
a.证明:三角形的内角和等于180度。
b.证明:对角线相等的平行四边形是矩形。
c.证明:圆的任意直径垂直于圆的切线。
3.结合生活实际,自行设计一个包含命题、定理和证明的数学问题,并用所学的知识进行解答。要求问题具有一定的挑战性,能够体现学生对几何知识的综合运用。
4.强调证明过程中需要注意的问题,如逻辑严密、步骤清晰等。
(三)学生小组讨论
1.将学生分成若干小组,每组分配一个几何问题,要求学生运用所学的定理和证明方法解决问题。
2.学生在小组内展开讨论,共同探讨解决问题的方法,教师巡回指导,给予提示和帮助。
3.各小组汇报讨论成果,分享解题过程和经验,其他小组进行评价和补充。
(三)情感态度与价值观
1.培养学生严谨、细致的学习态度,使学生认识到数学的严密性和逻辑性。
2.增强学生对数学美的感知,激发学生对数学学科的兴趣和热爱。
3.培养学生勇于探索、善于思考的品质,使学生体验到数学探究的乐趣。
4.引导学生将所学知识应用于实际生活,认识到数学在现实生活中的重要性,增强学生的社会责任感。
5.创设轻松愉快的学习氛围,鼓励学生提问、表达,激发学生的学习兴趣和积极性。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握命题的概念,能够正确判断命题的真假。
2.熟悉基本的几何定理,并能运用定理解决实际问题。
3.学会运用逻辑推理进行证明,提高学生的逻辑思维能力。
4.能够将所学知识综合运用,解决复杂的几何问题。
(二)教学设想
1.创设情境,引入命题概念
-利用生活实例,如“两点之间线段最短”,引导学生理解命题的概念,并学会判断命题的真假。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9
(3)揭示外延的定义方式
整数和分数统称为有理数。
(4)约定式定义 我们规定“ a0 1(a0)” 。
(5)关系定义:有的种差是被定义概念所反 映的对象与另一对象之间关系,或它与另 一对象对第三者的关系。如:偶数就是被 2整除的整数。
ppt课件
10
➢下定义的基本要求
(1)定义应当相称 无理数:有理数开不尽的方根。× 平行线:两条不相交的直线。 ×
正方形外延矩形外延 平行四边形外延
四边形外延
ppt课件
6
(3)交叉关系
如果两个概念的外延有且只有部分重合, 那么这两个概念具有交叉关系或者叫做部分 重合关系,如下图。用集合符号表示概念的 交叉关系,可设两个概念的外延分别是集合 和集合A ,如B果 是A非B 空集合而且不 是 A或,B 那么这两个概念具有交叉关系。
ppt课件
13
数学概念学习的心理分析
➢ 概念学习的基本形式
1.概念的形成 概念形成就是让学生从大量同类事物的不同例证中 独立发现同类事物的本质属性,从而形成概念。因 此,数学概念的形成实质上是抽象出数学对象的共 同本质特征的过程。可概括如下:
(1)辨别各种刺激模式,通过比较,在知觉水平上 进行分析、辨认,根据事物的外部特征进行概括。
“属性”与“本质属性” ;概念及其名称 和符号
➢数学概念产生和发展的途径
(1)从现实模型直接得来; (2)经过多级抽象概括得来; (3)从数学内部需要产生出来;
ppt课件
3
➢ 概念的内涵和外延
概念的内涵亦称内包,指概念所反映的对象的特有 属性、本质属性。 概念的外延亦称外包,指概念所反映的对象的总和。 例:“△ABC的顶点”
由奥苏伯尔的有意义接受学习理论可知,要使学生 有意义地同化新概念,必须:
第一,新概念具有逻辑意义;第二,学生的认知结 构中具备同化新概念的适当知识;第三,学生积极 主动地使这种具有潜在意义的新概念与他认知结构 中的有关观念发生相互作用,改造旧知识,使新概 念与已有认知结构中的相关知识进一步分化和融会 贯通。
(2)定义不能恶性循环(直线垂直和直角) (3)定义一般不用否定形式
不是有理数的数是无理数。 × (4)定义应当简明
两组对边平行的平面四边形是平行四边形。 四个角都是直角的平行四边形叫做矩形。 (5)定义一般不用比喻说法
ppt课件
11
概念的划分和分类
把一个属概念分为若干个不相容种概念的逻辑 方法叫做概念的划分。
中学数学基础知识的教学
一 数学概念及其教学 二 数学命题及其教学 三 数学推理、证明及其教学
ppt课件
1
一 数学概念及其教学
数学概念概述
数学概念学习的心理分析
数学概念教学的基本要求和教法 探讨
ppt课件
2
数学概念概述
➢数学概念的意义
数量关系和空 间形式
反映数学对象本质属性的思维形式叫做“数 学概念”。
ppt课件
14
(2)分化出各种刺激模式的属性。 (3)抽象出各个刺激模式的共同属性。 (4)在特定的情境中检验假设,确认关键属性。 (5)概括,形成概念。 (6)把新概念的共同关键属性推广到同类事物中
去。 (7)用习惯的形式符号表示新概念。
ppt课件
15
“函数”概念的形成过程:
1、观察实例,写出变量间的关系表达式: (1)以每小时80千米的速度匀速行使的汽车,所驶
ppt课件
5
(2)从属关系
如果甲概念的外延 A真包含乙概念的外延B,如
下图所示,那么,这两个概念具有从属关系。 其中,外延较大的那个概念叫做属概念,外延 较小的那个概念叫做种概念。这两个概念的外
延 A和 B的关系可以写成 AB
B
注:内涵和外延的反比关系
A
正方形内涵 矩形内涵平行四边形内涵 四边形内涵
概念的分类是划分的特殊形式,是根据概念所反 映对象的本质属性或特征所进行的划分。 概念分类的要求: i)所分成的种概念之间应是全异关系, ii)分类应是相称的. iii)每次分类都应按照同一个根据进行念的划分和分类
(3)二分法
二分法是一种常用的分类方法,是把一个概 念的外延中具有某个属性的对象作为一类, 把不具有这个属性的对象作为另一类.换言 之,是把属概念分成两个矛盾的种概念.
矛盾关系
ppt课件
8
概念的定义和原始概念
把概念的内涵用语言表达出来,就是给概念下定义。
➢ 原始概念
点、线、面、空间、集合、元素、对应等。
➢ 数学中常用的几种定义方式
(1)属概念加种差的定义方式 四边形+两组对边分别平行=平行四边形
(2)发生定义方式 在平面上,射线绕它的端点旋转所成的图形叫做
角。
ppt课件
内涵是指点的性质和其中任一点同在这个三角形 两边之上这个性质;
外延是指 A、B、C三点的集合。 注:(1)数学概念的内涵和外延是在一定的数学科学
体系中来认识的。例如,角的概念在平面几何中和 在平面三角中的内涵和外延均不同。 (2)概念的内涵和外延是发展的
ppt课件
4
➢ 概念间的关系(概念外延间的同异关系) ➢ 1、相容关系
(1)同一关系(全同关系或重合关系) A(B)
外延完全重合,内涵可以不同。 例如:数0是扩大的自然数集中最小的数,又是正数 与负数的分界数,在数的运算中它又是两个相等数 的差等; 等腰三角形底边上的高线、中线以及顶角的平分线 的外延都是同一条线段,而内涵也各不相同。 注:研究概念间的同一关系,可以对概念所反映的对 象得到较深刻、较全面的认识。另外,在推理证明中 具有全同关系的概念可以互相代换,使得论证简明。
过的路程和时间 (2)由某一天气温变化的曲线所揭示的气温和时刻 (3)用表格给出的某水库的贮水量与水深。 2、找出上例中两变量之间关系的共同本质 3、辨别正反例,找出本质属性(一一对应) 4、概括出函数定义 5、练习巩固成形
ppt课件
16
2.概念的同化
概念同化的学习形式是利用学生认知结构中的原有 概念,以定义的方式直接向学生揭示概念的本质属 性。
例:
A B (1)整数和整数
(2)等腰三角形和直角三角形
ppt课件
7
(4)不相容关系(全异关系)
如果两个概念的外延间没有任何一部分重合 的关系,那么这两个概念具有全异关系,这 种关系又叫做“拳异关系”或“排斥关系”。
全异关系又分为反对关系和矛盾关系。
AB
A B AB C
反对关系
AB
A B AB C
相关文档
最新文档