工程材料力学第四章轴向拉压杆的应力与变形

合集下载

工程力学C 第4章 材料力学的基本假设和基本概念

工程力学C 第4章 材料力学的基本假设和基本概念

拉-弯组合变形
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
静载荷 交变载荷 即: 外力 动载荷 冲击载荷
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
材料力学
应力 强度 外力 内力 应变 刚度
4.3.2 内力与截面法
F1
M1 F3
为什么?
Fn
答:它们的应力不同,细杆的应力大。
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
材料力学
4.4
应力的概念
4.4.1 应力: 分布内力的集度或单位面积上的内力。 4.4.2 应力的定义 1. 截面上任一点C的全应力
DEPARTMENT OF ENGINEERING MECHANICS KUST
第二篇
Mechanics of Materials
材料力学
DEPARTMENT OF ENGINEERING MECHANICS KUST
第四章 材料力学的基本假设 和基本概念
Basic Assumptions and Concepts of Material Mechanics
FS FN M
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
材料力学
2. 截面法: 显示并求内力的方法。 步骤:P97 • 分二留一; • 内力代弃; • 内外平衡。 例4.1 :P97 注意: 内力与截面的形状和大 小无关,只与外力有关。

1.3轴向拉压杆横截面上的变形

1.3轴向拉压杆横截面上的变形

目录引言 (2)一杆件受拉压的内力、应力、变形 (2)1.1轴向拉压的内力、轴力图 (2)1.2 轴向拉压杆横截面上的应力 (5)1.3 轴向拉压杆横截面上的变形 (7)1.4 圣维南原理 (9)1.5 工程结构实例分析 (11)二圆轴扭转 (15)2.1、扭转的力学模型及ANSYS建模 (15)2.2、圆轴扭转时,横截面上的内力偶矩------扭矩 (15)2.3、圆轴扭转时,横截面上的应力、强度条件 (15)(1) 横截面上的切应力 (15)(2) 极惯性矩与抗扭截面系数 (15)三、梁弯曲的内力、变形、应力 (20)3.1 梁的弯曲内力、变形 (20)3.2 弯曲应力 (27)3.3 工程实例: (31)四、压杆稳定 (35)4.1、压杆稳定的概念 (35)4.2、临界压力 (35)4.3、三类压杆的临界载荷 (36)4.4、压杆稳定性计算 (36)4.5 工程实例4 (38)引 言《材料力学》是机械、土木类工科学生重要的技术基础课,其计算方法和思想在工程计算中应用非常广泛。

为了使学生对课内知识体系有一个比较清晰的感性认识,锻炼学生的求真精神和实践动手能力,进一步培养学生的综合创造力,兴趣小组的学生们在教师的指导下基于ANSYS 有限元分析软件对《材料力学》的某些知识点进行数值计算与模拟,得到相关的数据、云图或动画,从而对理论公式进行形象验证,更开阔了学生的视野,提高了学生的CAE 水平。

本研究内容包括三部分:(1)对《材料力学》课程中的基本内容,包括拉压、剪切、扭转、弯曲的内力、应力、变形、压杆稳定、动载荷、疲劳强度、圣维南原理等重要理论知识点情况通过ANSYS 进行分析,得到内力、变形、应力、应变相关的数据、云图或动画;(2)对重要知识点的典型例题通过ANSYS 进行计算,并与理论计算结果进行对比验证。

(3)对《材料力学》理论知识能够解决的典型工程实际问题进行建模、分析与计算。

一 杆件受拉压的内力、应力、变形1.1轴向拉压的内力、轴力图在工程结构和机械中,发生轴向拉伸或压缩的构件是很常见的。

04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)

04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)

04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)同学们学习下面内容后,一定要向老师回信(****************),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。

回信请注明班级和学号的后面三位数。

1 * 问题的提出 ........................................................................................................................... 1 2 下面就用统一的步骤,研究轴向拉压和扭转的应力公式和变形公式。

........................... 2 3 1.1 轴向拉压杆的应力公式推导 ............................................................................................ 2 4 1.2 轴向拉压杆的变形公式推导 ............................................................................................ 4 5 1.3 轴向拉压杆应力公式和变形公式的简要推导 ................................................................ 4 6 1.4 轴向拉压杆的强度条件、刚度条件的建立 .................................................................... 4 7 2.1 扭转轴的应力公式推导 .................................................................................................... 5 8 2.2 扭转轴的变形公式推导 .................................................................................................... 7 9 2.3 扭转轴应力公式和变形公式的简要推导 ........................................................................ 7 10 2.4 扭转的强度条件、刚度条件的建立 ............................................................................ 8 11 3. 轴向拉压、扭转、梁的弯曲剪切,应力公式和变形公式推导汇总表 .. (9)1* 问题的提出在材料力学里,分析杆件的强度和刚度是十分重要的,它们是材料力学的核心内容。

工程材料力学第四章轴向拉压杆的变形

工程材料力学第四章轴向拉压杆的变形
§4-5 轴向拉(压)杆的变形·胡克定律
拉(压)杆的纵向变形 (轴向变形) 基本情况下(等直杆,两端受轴向力):
纵向总变形Δl = l1-l (反映绝对变形量)
l 纵向线应变 (反映变形程度) l
1
fl
f ( x x)
x
f
l
x
x
沿杆长均匀分布 的荷载集度为 f 轴力图
fx
微段的分离体
y
pbd 2b 0
pd 2
13
所以
pd (2 10 Pa)(0.2m) -3 2 2(510 m)
6
4010 Pa 40 MPa
6
14
2.
如果在计算变形时忽略内压力的影响,则可认为
薄壁圆环沿圆环切向的线应变e(周向应变)与径向截面上
的正应力s 的关系符合单轴应力状态下的胡克定律,即
ν
亦即
- n
低碳钢(Q235):n = 0.24~0.28。
7
思考:等直杆受力如图,已知杆的横截面面积A和材料的 弹性模量E。
1.列出各段杆的纵向总变形ΔlAB,ΔlBC,ΔlCD以及整个 杆纵向变形的表达式。
2.横截面B, C及端面D的纵向位移与各段杆的纵向总变
形是什么关系?
uB L1
22
作业:4-7,4-91 Pa ~ 2.101011 Pa 200GPa ~ 210GPa
l 1 FN 胡克定律的另一表达形式: l E A




E
←单轴应力状态下的胡克定律
6
横向变形因数(泊松比)(Poisson’s ratio)
单轴应力状态下,当应力不超过材料的比例极限时,

拉压杆的变形

拉压杆的变形

EA称为杆的拉压刚度,它是单位长度的杆产生单位长度的变形 所需的力。所以拉压刚度EA代表了杆件抵抗拉伸(压缩)变形 的能力。
因σ=FN/A、ε=Δl/l,故式(2-5)变为 σ=Eε (2-6
上式是胡克定律的另一表达式。它表明:在弹性限度内,正应力 与线应变成正比。
1.2横向变形
设图2-12所示拉、压杆在变形前、后的横向尺寸分别为d与d1, 则其横向变形Δd为
【例2-6】如图2-14(a)所示等截面直杆,已知 其原长l、横截 面积A、材料的容重γ、弹性模量E、受杆件自重和下端处集中力 F作用。求该杆下端面的位移ΔB。
【解】如图2-14(b)所示。距B端为x的横截面上的轴力为 FN(x)=F+γAx
微段dx如图2-14(c)所示。 略去两端内力的微小差值,则微段的变形为
=-0.975×10-3m=-0.975mm
各段柱的纵向线应变为
εBC=ΔlBC/lBC=-0.5mm/2000mm=2.5×10-4
εAB=ΔlAB/lAB=-0.975mm/1500mm=-6.5×10-4 全柱的总变形为两段柱的变形之和,即
Δl=ΔlBC+ΔlAB=-0.5mm-0.975mm=-1.475 mm
【解】由于上下两段柱的轴力不等,故两段柱 的变形要分别计算。各段柱的轴力为
FNBC=-100 kN 各段柱的纵向变形为
FNAB=-260 kN
ΔlBC=FNBC/EA = -100×103N×2m/10×109Pa× (0.2m)2 =-0.5×10-3m=-0.5mm
图2-13
ΔlAB=FNAB/EA= 260×103N×1.5m/10×109Pa×(0.2m)2
大量的实验表明,当杆的变形为弹性变形时,杆的纵向变形Δl与 外力F及杆的原长l成正比,而与杆的横截面面积A成反比,即

工程力学(材料力学)6拉压杆件的强度与变形问题

工程力学(材料力学)6拉压杆件的强度与变形问题

机械制造中的拉压杆件
机械制造中的拉压杆件主要用于 实现运动传递、力的传递和变形 等,如连杆、活塞杆、传动轴等。
这些杆件需要在高速、高温、重 载等极端条件下工作,因此需要 具备优异的力学性能和耐久性。
在机械制造中,拉压杆件的设计 和制造需要精确控制尺寸、形状 和材料,以确保其工作性能和可
靠பைடு நூலகம்。
其他工程领域中的拉压杆件
总结词
新型材料如碳纤维复合材料、钛合金等具有高强度、轻质等优点,在拉压杆件中得到广 泛应用。
详细描述
随着科技的不断发展,新型材料如碳纤维复合材料、钛合金等逐渐应用于拉压杆件的制 作。这些新型材料具有高强度、轻质、耐腐蚀等优点,能够提高杆件的力学性能和使用
寿命。
高性能的拉压杆件设计
总结词
通过优化设计,可以显著提高拉压杆件的性能。
刚度分析
对杆件的刚度进行分析, 可以确定其变形程度和承 载能力,为结构设计提供 依据。
拉压杆件的稳定性问题
稳定性定义
01
稳定性是指杆件在受到载荷作用时,保持其平衡状态的能力。
稳定性分析
02
通过稳定性分析,可以确定杆件在受到载荷作用时是否会发生
失稳现象,以及失稳的临界载荷。
稳定性要求
03
在工程应用中,杆件的稳定性需要满足一定的要求,以保证结
强度失效准则
当拉压杆件内部的应力达到或超过材料的屈服极限时,杆件会发生屈服失效, 丧失承载能力。
拉压杆件的强度计算
静力分析
根据外力的大小和方向,以及杆件的几何尺寸和材料属性,计算杆件内部的应力 分布。
动力分析
考虑动载荷的影响,分析杆件在振动、冲击等动态过程中的应力变化。
拉压杆件的强度校核

工程力学 第四章 轴向拉伸与压缩讲诉


拉压杆的强度条件:杆件的最大工作应力不能超过材料的许用应力。即
FN max [ ]
max
A
式中: max ——横截面上的最大工作应力;
FN max ——产生最大工作应力界面的轴力,这个截面称为危险截面;
A——危险截面的横截面积;
[σ]——材料的许用应力。
对于等直杆,轴力最大的截面为危险截面;对于变截面直杆,若轴力不变, 横截面积最小的截面为危险截面;若杆件为变截面杆,且轴力也是变化的, [FN/A]max 所在的截面为危险截面。
第 9 页 共 17 页
二、胡克定律
杆件受轴向力作用时,沿杆件轴线方向会伸长或缩短,同时杆件的横向尺 寸将缩小或增大。我们把杆件沿轴线方向伸长或缩短称为纵向变形;横截面方 向尺寸的改变量称为横向变形。
F
F
l l1
杆件在拉伸或压缩时长度发生改变,其改变量称为绝对变形,用 L 表示。 设杆件变形前的长度为 L ,变形后的长度为 L1 ,则其绝对变形
结合书 P83-84 例 3-5、例 3-6 对强度计算进行详细讲解。
2、例题
例 1:一直径 d=14mm 的圆杆,许用应力[σ]=170MPa,受轴向拉力 P=2.5kN 作用,试校核此杆是否满足强度条件。
解:
max
N max A
2.5 103 142 106
162MPa <留段 A 的 m — m 截面
轴向拉伸的内力计算
上,各处作用着内力,设这些内力的合力为 N ,它是弃去部分 B 对保留部分 A
的作用力。
(3)由于整个杆件原来处于平衡状态,所以截开后的任意一部分仍应保
第 2 页 共 17 页
持平衡,故可对保留部分 A 建立平衡方程。

拉压杆应力、变形分析


通过这些数学模型,可以计算出在给定外力作用下物体的应 力和变形,从而对物体的力学性能进行评估。
应力与变形的实验验证
为了验证应力与变形的数学模型的正确性和可靠性,需要 进行实验验证。
实验中,可以通过测量物体的应力和变形数据,与数学模 型计算结果进行对比,以评估模型的准确性和适用范围。
05 拉压杆的优化设计
实验结果表明,拉压杆的应力分布不均匀,呈现 中间大、两端小的趋势。变形则表现为杆件中部 向下弯曲,两端向上翘起。
本研究采用有限元分析方法对拉压杆进行应力、 变形分析,得到了与实验结果较为一致的分析结 果,验证了有限元方法的可行性和有效性。
研究展望
虽然本研究取得了一定的成 果,但仍有许多问题需要进 一步探讨。例如,可以考虑 研究不同材料属性、不同截 面形状和不同边界条件等因 素对拉压杆应力、变形的影 响。
基于应力的优化设计
总结词
在基于应力的优化设计中,主要目标 是减小拉压杆的最大应力值,使其不 超过材料的许用应力。
详细描述
通过调整拉压杆的截面尺寸、长度、 材料等参数,可以改变其应力分布和 大小。常用的方法包括有限元分析和 数学优化算法。
基于变形的优化设计
总结词
基于变形的优化设计旨在减小拉压杆 的最大变形量,以确保其在工作过程 中具有良好的性能和精度。
根据应力的性质,可分为 拉应力和压应力;根据应 力的分布,可分为均匀应 力和非均匀应力。
应力状态
描述杆件内部各点的应力 状态,包括正应力和剪应 力。
拉压杆应力计算
轴向拉压杆
通过材料力学中的胡克定律计算拉压 杆的应力。
弯曲梁
扭转变形
利用扭矩和剪切模量计算扭转变形的 应力。
利用弯矩和剪力计算弯曲梁的应力。

材料力学(强度计算)


轴向拉压杆件的变形、应变、胡克定律
轴向拉(压)杆的变形及其计算
杆件在受到轴向拉(压)力作用时,将主要产生沿轴线 方向的伸长(缩短)变形,这种沿纵向的变形称为纵向 变形。同时,与杆轴线相垂直的方向(横向)也随之 产生缩小(增大)的变形,将与杆轴线相垂直方向的变 形称为横向变形。 设直杆原长为l,直径为d。在轴向拉力(或压力)P作 用下,变形后的长度为l1,直径为d1,如图所示。
材料屈服时,在光滑 试样表面可以观察到 与轴线成的纹线,称 为45°滑移线。
材料在拉伸与压缩时的力学性能
3、强化阶段( cd 段)
材料晶格重组后,又增 加了抵抗变形的能力, 要使试件继续伸长就必 须再增加拉,这阶段称 为强化阶段。
曲线最高点d处的应力,称为强度极限( b )
冷作硬化现象,在强化阶段某一点f处,缓慢卸载,则 试样的应力–应变曲线会沿着fo1回到o1,冷作硬化使 材料的弹性强度提高,而塑性降低。
时,可以采取较高的值(优先采用11.3值)。
材料在拉伸与压缩时的力学性能
采用圆形试样,换算后
试样按照GB/T2975的要求切取样坯和制 备试样。
r
d
l
r
a b
l
材料在拉伸与压缩时的力学性能
低碳钢为典型的塑性材料。 在应力–应变图中呈现如下四个阶段:
材料在拉伸与压缩时的力学性能
1、弹性阶段(oa ’段) oa段为直线段,点a对应的应
称为名义屈服极限,用 0.2 表示。
材料在拉伸与压缩时的力学性能
(2002年的标准称为规定残余延伸强度,用 Rf 表示, 例如,Rf0.2表示规定残余延伸率为0.2%时的应力。)
材料在拉伸与压缩时的力学性能
材料压缩时的力学性能

直杆轴向拉伸与压缩时的变形与应力分析和拉伸与压缩时材料的力学性能——教案

直杆轴向拉伸与压缩时的变形与应力分析和拉伸与压缩时材料的力学性能——教案第一章:直杆轴向拉伸与压缩的基本概念1.1 学习目标1. 了解直杆轴向拉伸与压缩的基本概念;2. 掌握直杆轴向拉伸与压缩的变形与应力分析方法。

1.2 教学内容1. 直杆轴向拉伸与压缩的定义;2. 直杆轴向拉伸与压缩的变形与应力分析方法。

1.3 教学活动1. 讲解直杆轴向拉伸与压缩的基本概念;2. 分析直杆轴向拉伸与压缩的变形与应力分析方法。

第二章:直杆轴向拉伸与压缩的变形分析2.1 学习目标1. 了解直杆轴向拉伸与压缩的变形规律;2. 掌握直杆轴向拉伸与压缩的变形分析方法。

2.2 教学内容1. 直杆轴向拉伸与压缩的变形规律;2. 直杆轴向拉伸与压缩的变形分析方法。

2.3 教学活动1. 讲解直杆轴向拉伸与压缩的变形规律;2. 分析直杆轴向拉伸与压缩的变形分析方法。

3.1 学习目标1. 了解直杆轴向拉伸与压缩的应力分布;2. 掌握直杆轴向拉伸与压缩的应力分析方法。

3.2 教学内容1. 直杆轴向拉伸与压缩的应力分布;2. 直杆轴向拉伸与压缩的应力分析方法。

3.3 教学活动1. 讲解直杆轴向拉伸与压缩的应力分布;2. 分析直杆轴向拉伸与压缩的应力分析方法。

第四章:拉伸与压缩时材料的力学性能4.1 学习目标1. 了解拉伸与压缩时材料的力学性能指标;2. 掌握拉伸与压缩时材料的力学性能分析方法。

4.2 教学内容1. 拉伸与压缩时材料的力学性能指标;2. 拉伸与压缩时材料的力学性能分析方法。

4.3 教学活动1. 讲解拉伸与压缩时材料的力学性能指标;2. 分析拉伸与压缩时材料的力学性能分析方法。

第五章:实例分析与应用5.1 学习目标2. 能够应用所学知识解决实际问题。

5.2 教学内容1. 直杆轴向拉伸与压缩的实例分析;2. 应用所学知识解决实际问题。

5.3 教学活动1. 分析直杆轴向拉伸与压缩的实例;2. 解决实际问题,巩固所学知识。

第六章:弹性模量的概念与应用6.1 学习目标1. 理解弹性模量的定义及其物理意义;2. 掌握弹性模量在材料力学中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档