平行四边形练习题

合集下载

平行四边形练习题(含答案)

平行四边形练习题(含答案)

第十八章平行四边形18.1 平行四边形1.在ABCD中,对角线AC,BD相交于点O,若△AOB的面积为3,则ABCD的面积为A.6 B.9 C.12 D.182.若平行四边形中两个内角的度数比为1∶2,则其中较小的内角是A.90°B.60°C.120°D.45°3.如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD周长的316,那么BC的长是A.6 B.8 C.10 D.164.如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是A.AD=BC B.OA=OCC.AB=CD D.∠ABC+∠BCD=180°5.如图,AB∥CD,AD不平行于BC,AC与BD相交于点O,写出三对面积相等的三角形是__________.6.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=22 m,则AB=__________m.7.如图,在△ABC中,AD⊥BC于点D,E,F,G分别是BC,AC,AB的中点.若AB=23BC=3DE=12,DG=12AB,求四边形DEFG的周长.8.如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P 从点A出发沿射线AD方向以每秒1个单位长度的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位长度的速度运动,在线段QC上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长;(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.9.已知ABCD的对角线AC,BD的长分别为10,6,则AB长的范围是A.AB>2 B.AB<8 C.2<AB<8 D.2≤AB≤810.平行四边形ABCD与等边三角形AEF按如图所示的方式摆放,如果∠B=45°,则∠BAE的大小是A.75°B.80°C.100°D.120°11.如图,已知四边形ABCD中,AD∥BC,∠A=∠BCD=∠ABD,DE平分∠ADB,下列说法:①AB∥CD;②ED⊥CD;③∠DFC=∠ADC–∠DCE;④S△EDF=S△BCF,其中正确的结论是A.①②③B.①②④C.①③④D.①②③④12.如图,点A,B为定点,定直线l∥AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PMN的面积;③△PAB的周长;④∠APB的大小;⑤直线MN,AB之间的距离.其中会随点P的移动而不改变的是A.①②③B.①②⑤C.②③④D.②④⑤13.如图,在△ABC中,∠ACB=90°,AC=3,BC=4,点D是边AB的中点,将△ABC沿着AB平移到△DEF 处,那么四边形ACFB的面积等于__________.14.如图,DE 是ABC △的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,:DMN CEM S S △△等于_________.15.如图,在ABCD 中,对角线AC ,BD 相交于点O ,OA =5cm ,E ,F 为直线BD 上的两个动点(点E ,F 始终在ABCD 的外面),且DE =12OD ,BF =12OB ,连接AE ,CE ,CF ,AF . (1)求证:四边形AFCE 为平行四边形. (2)若DE =13OD ,BF =13OB ,上述结论还成立吗?由此你能得出什么结论? (3)若CA 平分∠BCD ,∠AEC =60°,求四边形AECF 的周长.16.(2018·贵州黔东南、黔南、黔西南)如图在ABCD 中,已知AC =4 cm ,若△ACD 的周长为13 cm ,则ABCD 的周长为A .26 cmB .24 cmC .20 cmD .18 cm17.(2018·甘肃兰州)如图,将ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若48ABD ∠=︒,40CFD ∠=︒,则E ∠为A .102︒B .112︒C .122︒D .92︒18.(2018·黑龙江绥化)下列选项中,不能判定四边形ABCD 是平行四边形的是A .AD BC ∥,AB CD ∥ B .AB CD ∥,AB CD =C .AD BC ∥,AB DC =D .AB DC =,AD BC =19.(2018·内蒙古呼和浩特)顺次连接平面上A 、B 、C 、D 四点得到一个四边形,从①AB ∥CD ②BC =AD③∠A =∠C ④∠B =∠D 四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有 A .5种B .4种C .3种D .1种20.(2018·广西玉林)在四边形ABCD 中:①AB ∥CD ;②AD ∥BC ;③AB =CD ;④AD =BC ,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有 A .3种B .4种C .5种D .6种21.(2018·四川德阳)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使3FO OC =,连接AB 、AC 、BC ,则在ABC ∆中::ABO AOC BOC S S S △△△A .621∶∶B .321∶∶C .632∶∶D .432∶∶ 22.(2018·安徽)ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是 A .BE =DF B .AE =CF C .AF ∥CED .∠BAE =∠DCF23.(2018·广西梧州)如图,已知在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =6 cm ,则DE 的长度是__________cm .24.(2018·湖北十堰)如图,已知ABCD 的对角线AC ,BD 交于点O ,且AC =8,BD =10,AB =5,则△OCD的周长为__________.25.(2018·江苏泰州)如图,ABCD 中,AC 、BD 相交于点O ,若AD =6,AC +BD =16,则△BOC 的周长为__________.26.(2018·辽宁抚顺)如图,ABCD 中,AB =7,BC =3,连接AC ,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连接AE ,则△AED 的周长是__________.27.(2018·山东淄博)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于__________.28.(2018·福建)如图,ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.29.(2018·广西梧州)如图,在ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.30.(2018·辽宁大连)如图,ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE =DF .31.(2018·湖北孝感)如图,B ,E ,C ,F 在一条直线上,已知AB DE ∥,AC DF ∥,BE CF ,连接AD .求证:四边形ABED 是平行四边形.32.(2018·江苏无锡)如图,平行四边形ABCD 中,E 、F 分别是边BC 、AD 的中点,求证:∠ABF =∠CDE .33.(2018·湖北恩施州)如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AB ∥ED ,AC ∥FD ,AD 交BE于O .求证:AD 与BE 互相平分.34.(2018·浙江衢州)如图,在ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.35.(2018·江苏宿迁)如图,在ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.36.(2018·青海)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.;(1)求证:AD BF(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.37.(2018·云南曲靖)如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.38.(2018·黑龙江大庆)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.1.【答案】C【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△AOD=S△COD=S△BOC=S△AOB.∵△AOB的面积为3,∴ABCD的面积为4×3=12.故选C.2.【答案】B【解析】如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B∶∠C=1∶2,∴∠B=13×180°=60°,故选B.3.【答案】C【解析】∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵AB=6,且AB的长是四边形ABCD周长的316,∴四边形ABCD周长为:6÷316=32,∴AB+BC=12×32=16,∴BC=10.故选C.5.【答案】△ADC和△BDC;△ADO和△BCO;△DAB和△CAB【解析】根据AB∥CD可得:△ABC和△ABD的面积相等,△ACD和△BCD的面积相等,则△ACD的面积减去△OCD的面积等于△BCD的面积减去△OCD的面积,即△AOD和△BOC的面积相等.【解析】∵E、F是AC,CB的中点,∴EF是△ABC的中位线,∴EF=12AB,∵EF=22m,∴AB=44m,故答案为44.7.【解析】∵AB=23BC=3DE=12,∴BC=18,DE=4,∴DG=12AB=6,∵E,F,G分别是BC,AC,AB的中点,∴FG=12BC=9,EF=12AB=6,∴四边形DEFG的周长为4+6+9+6=25.8.【解析】(1)作AM⊥BC于M,如图所示:∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=12BC=5,∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,∴PN=AP=t,CE=NE=5–t,∵CE=CQ–QE=2t–2,∴5–t=2t–2,解得:t=73,BQ=BC–CQ=10–2×71633;(2)存在,t=4;理由如下:若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,∴t=10–2t+2,解得:t=4,∴存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=4.【解析】如图,在平行四边形ABCD中,AO=CO=5,BO=DO=3,∴2<AB<8.故选C.10.【答案】A【解析】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD=180°–∠B=180°–45°=135°,∵△AEF是等边三角形,∴∠EAF=60°,∴∠BAE=∠BAD–∠EAF=75°.故选A.11.【答案】D【解析】∵AD∥BC,∴∠A+∠ABC=180°,∠ADC+∠BCD=180°,∵∠A=∠BCD,∴∠ABC=∠ADC,∵∠A=∠BCD,∴四边形ABCD是平行四边形,∴AB∥CD.∴①正确;∵∠A=∠ABD,DE平分∠ADB,∴DE⊥AB,∴DE⊥CD,∴②正确;∵∠A=∠ABD,四边形ABCD是平行四边形,∴AD=BD=BC,∴∠BDC=∠BCD,∵AD∥BC,∴∠ADB=∠DBC,∵∠ADC=∠ADB+∠BDC,∴∠ADC=∠DBC+∠BCD,∴∠ADC–∠DCE=∠DBC+ ∠BCD–∠DCE=∠DBC+∠BCF,∵∠DFC=∠DBC+BCF,∴∠DFC=∠ADC–∠DCE;∴③正确;∵AB∥CD,∴△BED的边BE上的高和△EBC的边BE上的高相等,∴由三角形面积公式得:S△BED= S△EBC,都减去△EFB的面积得:S△EDF=S△BCF,∴④正确;综上得①②③④都正确,故选D.12.【答案】B【解析】∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=12 AB,即线段MN的长度不变,故①正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故②正确;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故③错误;∠APB的大小点P的移动而变化,故④错误.直线MN,AB之间的距离不随点P的移动而变化,故⑤正确;综上所述,随点P的移动而不变化的是①②⑤.故选B.13.【答案】9【解析】∵将△ABC沿AB方向向右平移到△DEF,∴四边形ADFC是平行四边形,四边形ACFB是是梯形.∵∠ACB =90°,AC =3,BC =4,∴22345AB =+=.∵点D 是边AB 的中点,∴AD =BD =15522⨯=,∴CF =AD =12AB 52=, 设AB 边上的高为x .∵AB =5,AC =3,BC =4,AB 边上的高为x ,∴12AC ·BC =12AB ·x ,∴125x =.∴S 梯形ACFB =1512(5)9225⨯+⨯=. 14.【答案】1∶3【解析】如图,作EF AD ∥,M 是DE 的中点,则△DMN ≌△EMF ,得MN =MF ,E 是AC 的中点,则FC =NF ,所以13MF MC =,得13FEM CEMS S =△△,得:DMN CEM S S △△=1∶3.16.【答案】D【解析】∵AC =4 cm ,若△ADC 的周长为13 cm ,∴AD +DC =13-4=9(cm ).又∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∴平行四边形的周长为2(AB +BC )=18 cm .故选D . 17.【答案】B【解析】∵AD BC ∥,∴ADB DBC ∠=∠,由折叠可得ADB BDF ∠=∠,∴DBC BDF ∠=∠,又∵40DFC ∠=︒,∴20DBC BDF ADB ∠=∠=∠=︒,又∵48ABD ∠=︒,∴ABD △中,1802048112A ︒︒-︒∠=-=︒,∴112E A ∠∠==︒,故选B .18.【答案】C【解析】A 、由AD BC ∥,AB CD ∥可以判断四边形ABCD 是平行四边形,故本选项不符合题意; B 、由AB CD ∥,AB CD =可以判断四边形ABCD 是平行四边形,故本选项不符合题意; C 、由AD BC ∥,AB DC =不能判断四边形ABCD 是平行四边形,故本选项符合题意;D 、由AB DC =,AD BC =可以判断四边形ABCD 是平行四边形,故本选项不符合题意,故选C . 19.【答案】C【解析】当①③时,四边形ABCD 为平行四边形;当①④时,四边形ABCD 为平行四边形;当③④时,四边形ABCD 为平行四边形,故选C . 20.【答案】B【解析】(1)①②,利用两组对边平行的四边形是平行四边形判定; (2)③④,利用两组对边相等的四边形是平行四边形判定;(3)①③或②④,利用一组对边平行且相等的四边形是平行四边形判定,共4种组合方法,故选B . 21.【答案】B【解析】如图,连接BF .设平行四边形AFEO 的面积为4m .∵FO :OC =3:1,BE =OB ,AF ∥OE ,∴S △OBF =S △AOB =m ,S △OBC =13m ,S △AOC =23m ,∴S △AOB ∶S △AOC ∶S △BOC =m ∶23m ∶13m =3∶2∶1,故选B . 22.【答案】B【解析】A 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵BE =DF ,∴OE =OF ,∴四边形AECF 是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF∥CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE∥CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.23.【答案】3【解析】∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=12BC=162=3 cm,故答案为:3.24.【答案】14【解析】∵四边形ABCD是平行四边形,∴AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD的周长=5+4+5=14,故答案为:14.25.【答案】14【解析】∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14,故答案为14.26.【答案】10【解析】∵四边形ABCD是平行四边形,AB=7,BC=3,∴AD=BC=3,CD=AB=7,∵由作图可知,MN 是线段AC的垂直平分线,∴AE=CE,∴△ADE的周长=AD+(DE+AE)=AD+CD=3+7=10,故答案为:10.27.【答案】10【解析】∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=2,由折叠,∠DAC=∠EAC,∵∠DAC=∠ACB,∴∠ACB=∠EAC,∴OA=OC,∵AE过BC的中点O,∴AO=12BC,∴∠BAC=90°,∴∠ACE=90°,由折叠,∠ACD=90°,∴E、C、D共线,则DE=4,∴△ADE的周长为:3+3+2+2=10,故答案为:10.28.【解析】∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴OE=OF.29.【解析】∵ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,EAO FCO AO OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴AE=CF.31.【解析】∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F.∵BE=CF,∴BE+CE=CF+CE,∴BC=EF.在△ABC和△DEF中,B DEF BC EFACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE.又∵AB∥DE,∴四边形ABED是平行四边形.32.【解析】在ABCD中,AD=BC,∠A=∠C,∵E、F分别是边BC、AD的中点,∴AF=CE,在△ABF与△CDE中,AB CDA C AF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△CDE(SAS),∴∠ABF=∠CDE.33.【解析】如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,ABC DEF BC EFACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.34.【解析】∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.在△ABE与△CDF中,AEB CFDBAE DCF AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴得△ABE≌△CDF(AAS),∴AE=CF.35.【解析】∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC ,∠A =∠C , ∴∠E =∠F , 又∵BE =DF , ∴AD +DF =CB +BE , 即AF =CE ,在△CEH 和△AFG 中,E F EC FA C A ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CEH ≌△AFG , ∴CH =AG .36.【解析】(1)∵E 是AB 边上的中点,∴AE BE =, ∵AD BC ∥, ∴ADE F ∠=∠,在ADE △和BFE △中,ADE F ∠=∠,DEA FEB ∠=∠,AE BE =, ∴ADE △≌BFE △, ∴AD BF =.(2)如图,过点D 作DM AB ⊥于点M ,∵AB ∥DC ,∴DM 同时也是平行四边形ABCD 的高, ∴11113282244AED S AB DM AB DM =⋅⋅=⋅=⨯=△, ∴32824EBCD S =-=四边形.37.【解析】(1)∵四边形ABCD 是平行四边形,∴CD∥AB,∴∠AFN=∠CEM,∵FN=EM,AF=CE,∴△AFN≌△CEM(SAS).(2)∵△AFN≌△CEM,∴∠NAF=∠ECM,∵∠CMF=∠CEM+∠ECM,∴107°=72°+∠ECM,∴∠ECM=35°,∴∠NAF=35°.38.【解析】(1)∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥F C.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形.(2)∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25 cm,AC的长5 cm,∴BC=25-AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得AB=13 cm.。

初中数学平行四边形练习题(含答案)

初中数学平行四边形练习题(含答案)

初中数学平行四边形练习题(含答案)一、选择题(共10小题,3*10=30)1.在下列条件中,能够判定一个四边形是平行四边形的是( )A .一组对边平行,另一组对边相等B .一组对边相等,一组对角相等C .一组对边平行,一条对角线平分另一条对角线D .一组对边相等,一条对角线平分另一条对角线2.在▱ABCD 中,若∠BAD 与∠CDA 的角平分线交于点E ,则△AED 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定3.下列不能判定一个四边形是平行四边形的条件是( )A .两组对角分别相等B .两组对边分别相等C .一组对边平行且相等D .一组对边平行,另一组对边相等4.只用下面的一种正多边形,不能进行平面镶嵌的是( )A .正三角形B .正方形C .正五边形D .正六边形5.如图,▱ABCD 的对角线AC ,BD 相交于点O ,EF 经过点O ,分别交AD ,BC 于点E ,F ,已知▱ABCD 的面积是20 cm 2,则图中阴影部分的面积是( )A .12 cm 2B .10 cm 2C .8 cm 2D .5 cm 26. 如图,在▱ABCD 中,AB =12,AD =8,∠ABC 的平分线交CD 于点F ,CG ⊥BF ,垂足为点G ,若BF =4,则线段CG 的长为( )A.152B .4 3C .215 D.557.顺次连接平面上A,B,C,D四点得到一个四边形,从①AB∥CD;②BC=AD;③∠A=∠C;④∠B=∠D四个条件中任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况共有()A.5种B.4种C.3种D.1种8.如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH的交点P在BD上,则图中面积相等的平行四边形有()A.3对B.2对C.1对D.0对9.如图,在四边形ABCD中,E,F,P,Q分别为AB,AD,BC,CD的中点.若∠ABC=90°,∠AEF=60°,则∠CPQ的度数为()A.15° B.30°C.45° D.60°10.如图,在▱ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD的对称点为E,连接BE交AD 于点F,点G为CD的中点,连接EG,BG.则△BEG的面积为()A.16 3 B.14 3C.8 3 D.73二.填空题(共8小题,3*8=24)11.一个多边形的内角和等于900°,则这个多边形是_________边形.12. 如图,五边形ABCDE是正五边形.若l1∥l2,则∠1-∠2=______.13.如图,▱ABCD的周长为36,对角线AC,BD相交于点O.E是CD的中点,BD=12,则△DOE 的周长为________.14.如图,在▱ABCD中,对角线AC,BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是____________.15.如图,面积为12 cm2的△ABC沿BC方向平移至△DEF的位置,平移的距离是BC的3倍,则四边形ACED的面积为_________.16.如图,在▱ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=22,则▱ABCD 的周长是________.17.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY 交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是___________.18.如图,点A,E,F,C在一条直线上,若将△DEC的边EC沿AC方向平移,平移过程中始终满足下列条件:AE=CF,DE⊥AC于点E,BF⊥AC于点F,且AB=CD,则当点E,F不重合时,BD与EF的关系是____________.三.解答题(共7小题,66分)19.(8分) 如图,在▱ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF ,连接EF 交BD 于点O.求证:OB =OD.20.(8分) 是否存在一个多边形,它的每一个内角都相等且等于相邻外角的14请说明理由.21.(8分) 如图,在平行四边形ABCD 中,E 为AB 边上的中点,连接DE 并延长,交CB 的延长线于点F.(1)求证:AD =BF ;(2)若平行四边形ABCD 的面积为32,试求四边形EBCD 的面积.22.(10分) 如图,▱ABCD 的对角线AC ,BD 相交于点O ,EF 经过点O 并且分别和AB ,CD 相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.23.(10分)如图,四边形ABCD为平行四边形,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:△ABE≌△FCE.(2)过点D作DG⊥AE于点G,H为DG的中点.判断CH与DG的位置关系,并说明理由.24.(10分)如图,在平行四边形ABCD中,∠ABC,∠BCD的平分线交于点E,且点E刚好落在AD上,分别延长BE,CD交于点F.(1)AB与AD之间有什么数量关系?并证明你的猜想;(2)CE与BF之间有什么位置关系?并证明你的猜想.25.(12分) 在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图2,当EF与CD相交,且∠EAB=90°时,请你写出线段EG,AG,BG之间的数量关系,并证明你的结论.参考答案1-5CBDCD 6-10CCABB11. 七 12. 72° 13.15 14.3<x <11 15. 60 cm 2 16.8 17. 2≤a +2b≤5 18.互相平分19. 证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC.∴∠ADB =∠CBD.又∵AE =CF ,∴AE +AD =CF +BC.∴ED =FB.又∵∠EOD =∠FOB ,∴△EOD ≌△FOB(AAS).∴OB =OD.20. 解:不存在,理由如下:假设存在这样的一个多边形,设其一个外角的度数度为x°,则相邻的内角度数为180°-x°,由题意,得14x =180-x , 解得x =144,即这个多边形的每一个外角的度数都是144°,由多边形的外角和为360°,得这个多边形的边数为360°÷144°=2.5,因为多边形的边数应为整数,所以不存在这样的多边形.21. 解:(1)∵E 是AB 边上的中点,∴AE =BE.∵AD ∥BC ,∴∠ADE =∠F.在△ADE 和△BFE 中,∠ADE =∠F ,∠DEA =∠FEB ,AE =BE ,∴△ADE ≌△BFE.∴AD =BF(2)过点D 作DM ⊥AB 与M ,则DM 同时也是平行四边形ABCD 的高.∴S △AED =12×12AB·DM =14AB·DM =14×32=8, ∴S 四边形EBCD =S ▱ABCD -S △ADE =32-8=2422. 证明:如图所示.∵点O 为▱ABCD 对角线AC ,BD 的交点,∴OA =OC ,OB =OD.∵G ,H 分别为OA ,OC 的中点,∴OG =12OA ,OH =12OC. ∴OG =OH.又∵AB ∥CD ,∴∠1=∠2.在△OEB 和△OFD 中,⎩⎪⎨⎪⎧∠1=∠2,OB =OD ,∠3=∠4,∴△OEB ≌△OFD(ASA).∴OE =OF.∴四边形EHFG 为平行四边形.23.(1)证明:∵四边形ABCD 为平行四边形,∴AB ∥CD ,AB =CD ,∴∠B =∠ECF.∵E 为BC 的中点,∴BE =CE.在△ABE 和△FCE 中,⎩⎪⎨⎪⎧∠B =∠ECF ,BE =CE ,∠AEB =∠FEC ,∴△ABE ≌△FCE.(2)解:CH ⊥DG.理由如下:由(1)知△ABE ≌△FCE ,∴AB =CF.∵AB =CD ,∴DC =CF ,即点C 为DF 的中点.∵H 为DG 的中点,∴CH ∥FG.∵DG ⊥AE ,∴CH ⊥DG.24. 解:(1)AD =2AB.证明如下:∵BF 平分∠ABC ,∴∠ABE =∠FBC.∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD ,∴∠FBC =∠AEB ,∴∠AEB =∠ABE ,∴AB =AE ,同理可证:CD =DE ,∴AD =AE +ED =AB +CD =2AB.(2)CE ⊥BF.证明如下:∵BF 平分∠ABC ,∴∠ABC =2∠EBC ,∵CE 平分∠BCD ,∴∠BCD =2∠BCE.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC +∠BCD =180°,∴2∠EBC +2∠BCE =180°,∴∠EBC +∠BCE =90°,∴∠BEC =90°,即CE ⊥BF.25. 解:(1)证明:如图①,作∠GAH =∠EAB 交GE 于点H ,设EF 与AB 相交于点P.则∠GAB =∠HAE.∵∠EAB =∠EGB ,∠APE =∠BPG ,∴∠ABG =∠AEH.在△ABG 和△AEH 中,⎩⎪⎨⎪⎧∠GAB =∠HAE ,AB =AE ,∠ABG =∠AEH ,∴△ABG ≌△AEH(ASA).∴BG =EH ,AG =AH.∵∠GAH =∠EAB =60°,∴△AGH 是等边三角形.∴AG =HG.∴EG =AG +BG.(2)EG =2AG -BG.证明如下:如图②,作∠GAH =∠EAB 交GE 的延长线于点H.∴∠GAB =∠HAE.∵∠EGB =∠EAB =90°,∴∠ABG +∠AEG =∠AEG +∠AEH =180°.∴∠ABG =∠AEH.又∵AB =AE ,∴△ABG ≌△AEH ,∴BG =EH ,AG =AH.∵∠GAH =∠EAB =90°,∴△AGH 是等腰直角三角形. ∴2AG =HG.∴EG =2AG -BG.。

平行四边形综合练习附答案

平行四边形综合练习附答案

平行四边形综合练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形【答案】D【解析】【分析】分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C、四条边都相等的四边形是菱形,符合菱形的判定,故本选项正确,不符合题意;D、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D.【点睛】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.2.如图,平行四边形ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE ,则AB的长为()6cm【答案】D【解析】【分析】根据平行四边形的性质,可得出点O 平分AC ,则OE 是三角形ABC 的中位线,则AB =2OE ,继而求出答案.【详解】解:∵四边形ABCD 为平行四边形,∴AO =CO ,∵点E 是CB 的中点,∴OE 为△ABC 的中位线,∴AB =2OE ,∵OE =6cm ,∴AB =12cm .故选:D .【点睛】本题考查了平行四边形的性质和三角形的中位线定理,关键是根据平行四边形的性质得出OE 为△ABC 的中位线.3.如图,点P 是矩形ABCD 的对角线上一点,过点P 作EF //BC ,分别交,AB CD 于,E F ,连接,PB PD ,若1,3AE PF ==,则图中阴影部分的面积为( )A .3B .6C .9D .12 【答案】A【解析】【分析】先根据矩形的性质证得DFP PBE SS =,然后求解即可.【详解】∴四边形AEPM 、四边形DFPM 、四边形CFPN 和四边形BEPN 都是矩形,∵ADC ABC S S =△△,AMP AEP S S =,PBE PBN S S =,PFD PDM S S =,PFC PCN S S =, ∴S 矩形DFPM =S 矩形BEPN ,∵PM =AE =1,PF =NC =3, ∴131322DFP PBE S S ==⨯⨯=△△, ∴S 阴=33+=322, 故选:A .【点睛】本题主要考查矩形的性质、三角形的面积等知识,证得DFP PBE S S =是解答本题的关键. 4.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( ) A .AC =BD ,AB ∥CD ,AB =CDB .AD ∥BC ,∠A =∠C C .AO =BO =CO =DO ,AC ⊥BDD .AO =CO ,BO =DO ,AB =BC【答案】C【解析】【详解】试题分析:根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.解:A ,不能,只能判定为矩形;B ,不能,只能判定为平行四边形;C ,能;D ,不能,只能判定为菱形.故选C .5.如图,ABC ∆中,DE BC ∥,EF AB ∥,要判定四边形DBFE 是菱形,还需要添加的条件是( )A .BE 平分ABC ∠B .AD BD =C .BE AC ⊥D .AB AC =【答案】A【解析】【分析】 当BE 平分∠ABC 时,四边形DBFE 是菱形,可知先证明四边形BDEF 是平行四边形,再证明BD=DE 即可解决问题.【详解】解:当BE 平分ABC ∠时,四边形DBFE 是菱形,理由:∵DE BC ∥,∴DEB EBC ∠=∠,∵EBC EBD ∠=∠,∴EBD DEB ∠=∠,∴BD DE =,∵DE BC ∥,EF AB ∥,∴四边形DBFE 是平行四边形,∵BD DE =,∴四边形DBFE 是菱形.其余选项均无法判断四边形DBFE 是菱形,故选A.【点睛】本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 6.若一个菱形的边长为2,则这个菱形两条对角线长的平方和为( )A .16B .8C .4D .1【答案】A根据菱形的对角线互相垂直平分,即菱形被对角线平分成四个全等的直角三角形,根据勾股定理,即可求解.【详解】解:设两对角线长分别是:a ,b . 则(12a )2+(12b )2=22,故有a 2+b 2=16.故选:A .【点睛】本题主要考查了菱形的性质和勾股定理,菱形被两个对角线平分成四个全等的直角三角形,因为菱形的这个性质,使得菱形的题目一般都会和勾股定理结合起来,同学们要注意掌握.7.如图,把一张矩形纸片ABCD 按所示方法进行两次折叠,得到等腰直角三角形BEF ,若BC =1,则AB 的长度为( )A 2B 21+C 51+D .43【答案】A【解析】 【分析】 先判断出∠ADE =45°,进而判断出AE =AD ,利用勾股定理即可得出结论.【详解】解:由折叠补全图形如图所示,∵四边形ABCD 是矩形,∴∠ADA '=∠B =∠C =∠A =90°,AD =BC =1,CD =AB ,由第一次折叠得:∠DAE =∠A =90°,∠ADE =12∠ADC =45°,∴∠AED =∠ADE =45°,∴AE =AD =1,在Rt △ADE 中,根据勾股定理得,DE 2AD 2,由第二次折叠可知,DC DE =【点睛】本题考查了图形的折叠和勾股定理,搞清楚折叠中线段的数量关系是解决此类题的关键.8.如图,矩形ABCD 的对角线相交于点O ,过点O 作OG AC ⊥,交AB 于点G ,连接CG ,若15BOG ∠=,则BCG ∠的度数是( )A .15B .15.5C .20D .37.5【答案】A【解析】【分析】 根据矩形的性质求出OCB ∠的度数,从而得到GAC ∠的度数,再根据垂直平分线的性质得到GCA GAC ∠=∠,最后求出BCG ∠的度数.【详解】解:∵OG AC ⊥,∴90COG ∠=︒,∵15BOG ∠=︒,∴901575COB COG BOG ∠=∠-∠=︒-︒=︒,∵四边形ABCD 是矩形,∴AC BD =,12OC OA AC ==,12OB OD BD ==,//AB DC ,90BCD ∠=︒, ∴OC OB =, ∴1801807552.522COB OCB OBC ︒-∠︒-︒∠=∠===︒, ∴37.5ACD BCD OCB ∠=∠-∠=︒,∵//AB CD ,∴37.5GAC ACD ∠=∠=︒,∴GO 是AC 的垂直平分线,∴AG CG =,∴37.5GCA GAC ∠=∠=︒,∴52.537.515BCG OCB GCA ∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查矩形的性质,垂直平分线的性质,解题的关键是熟练掌握这些性质定理,并结合题目条件进行证明.二、填空题9.正方形是有一组邻边_______,并且有一个角是_______的平行四边形,因此它既是______又是________.【答案】 相等 直角 矩形 菱形【解析】【分析】根据正方形的定义和性质填空即可.【详解】 正方形是有一组邻边相等,并且有一个角是直角的平行四边形,因此它既是矩形又是菱形.故答案为:相等,直角,矩形,菱形【点睛】本题考查了正方形的定义,解题关键是明确正方形的定义:正方形是有一组邻边相等,并且有一个角是直角的平行四边形,因此它既是矩形又是菱形.10.如图,在矩形ABCD 中,5AB =,4BC =,将矩形ABCD 翻折,使得点B 落在CD 边上的点E 处,折痕AF 交BC 于点F ,则FC =______【答案】32【分析】在Rt△ADE中,AD2+DE2=AE2,可得DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,可得(4-x)2=22+x2,解方程即可.【详解】解∵△ABF≌△AEF,∴AE=AB=5,在矩形ABCD中,AD=BC=4,在Rt△ADE中,AD2+DE2=AE2,∴DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,即(4-x)2=22+x2,8x=12,x=32,∴FC=32.故此答案为32.【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.11.如图所示,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_______.【答案】8【解析】【分析】形ABED 是平行四边形,最后根据平行四边形的面积公式即可得.【详解】由平移的性质得2AD BE ==,4DF AC ==,90C DFE ∠=∠=︒∴四边形ACFD 是矩形//AD CF ∴//AD BE ∴∴四边形ABED 是平行四边形(一组对边平行且相等的四边形是平行四边形) 则四边形ABED 的面积为428DF BE ⋅=⨯=故答案为:8.【点睛】本题考查了平移的性质、平行四边形的判定、矩形的判定与性质等知识点,掌握平移的性质是解题关键.12.如图,ACE ∆是以ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,33)-,则D 点的坐标是_____.【答案】(5,0)【解析】【分析】设CE 和x 轴交于H ,由对称性可知63CE =63AC CE ==根据勾股定理即可求出AH 的长,进而求出AO 和DH 的长,所以OD 可求,又因为D 在x 轴上,纵坐标为0,问题得解.【详解】解:点C 与点E 关于x 轴对称,E 点的坐标是(7,33)-, C ∴的坐标为(7,33),33CH ∴=3CE =63AC ∴=,9AH ∴=,7OH =,2AO DH ∴==,5OD ∴=,D ∴点的坐标是(5,0),故答案为:(5,0).【点睛】本题考查了平行四边形的性质、等边三角形的性质、点关于x 轴对称的特点以及勾股定理的运用,解题的关键是综合应用以上知识点.13.如图,在矩形ABCD 中,6AB =,8AD =,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足为E ,F ,则PE PF +的值为______.【答案】245【解析】【分析】连接OP ,利用勾股定理列式求出BD ,再根据矩形的对角线相等且互相平分求出OA 、OD ,然后根据S △AOD =S △AOP +S △DOP 列方程求解即可.【详解】解:如图,连接OP ,∵AB=6,AD=8,∴2222.6810BD AB AD ++=,∵四边形ABCD 是矩形,∵S△AOD=S△AOP+S△DOP,∴12×12×6×8=12×5•PE+12×5•PF,解得PE+PF=245.故答案为:245.【点睛】本题考查了矩形的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.14.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_____.【答案】(2,6)【解析】【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用.过点M作MF⊥CD于F,过C作CE⊥OA于E,在Rt△CMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C的坐标.【详解】∵四边形OCDB是平行四边形,点B的坐标为(16,0),CD∥OA,CD=OB=16,过点M作MF⊥CD于F,则182CF CD,==过C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM−ME=OM−CF=10−8=2,连接MC,110,2MC OA==∴在Rt△CMF中,2222108 6.MF MC CF=-=-=∴点C的坐标为(2,6).故答案为(2,6).【点睛】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键.三、解答题15.如图是某区部分街道示意图,其中AB AF⊥,E、D分别是FA和FG的中点,点C、D、E在一条直线上,点A、G、B在一条直线上,//BC FG.从B站乘车到E站只有两条路线有直接到达的公交车,路线1是B D A E⇒⇒⇒,且长度为5公里,路线2是B C F E⇒⇒⇒,求路线2的长度.【答案】5公里【解析】【分析】证明四边形BCDG是平行四边形,得到DG=CB,再证四边形BCFD是平行四边形,根据平行四边形的性质计算,得到答案.【详解】解:∵E、D分别是FA和FG的中点,∴AB∥DE,∵BC∥GF,∴四边形BCDG是平行四边形,∴DG=CB.∵FD=DG,∴CB=FD.又∵BC ∥DF ,∴四边形BCFD 是平行四边形,∴CF =BD ,∵AB ∥DE ,AB AF ⊥,FE =AE ,∴CE 垂直平分AF ,∴AE =FE ,FD =DA ,∴BC =DA ,∴路线2的长度:BC +CF +FE =AD +BD +AE =5(公里).【点睛】本题考查的是平行四边形的判定和性质、线段垂直平分线的性质,掌握平行四边形的判定定理和性质定理是解题的关键.16.已知:如图,ABCD 中,5AB =,3BC =.(1)作DAB ∠的角平分线,交CD 于点E (用直尺和圆规作图,不写作法,保留作图痕迹);(2)求CE 的长.【答案】(1)见解析;(2)CE 的长为2【解析】【分析】(1)根据尺规作图作DAB ∠的平分线即可;(2)根据平行四边形的性质和角平分线的定义,求出DE =DA =BC =3,再求出CE 即可.【详解】解:如图,(1)AE 即为∠DAB 的角平分线;(2)∵AE 为∠DAB 的角平分线,∴∠DAE =∠BAE ,在▱ABCD中,CD∥AB,∴∠BAE=∠DEA,∴∠DAE=∠DEA,∴DE=DA=BC=3,∵DC=AB=5,∴CE=CD﹣DE=2.答:CE的长为2.【点睛】当平行线遇上角平分线时,通过角的转化,可以得到等腰三角形,这是初中几何一个很重要的数学模型,要深刻领会.17.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF =BD .∴AF =DC .(2)四边形ADCF 是菱形,证明如下:∵AF ∥BC ,AF =DC ,∴四边形ADCF 是平行四边形.∵AC ⊥AB ,AD 是斜边BC 的中线,∴AD =DC .∴平行四边形ADCF 是菱形.18.如图,四边形ABCD 是边长为13cm 的菱形,其中对角线BD 长10cm .求:(1)对角线AC 的长度;(2)菱形ABCD 的面积.【答案】(1)24cm AC =;(2)2120cm【解析】【分析】(1)根据菱形的对角线互相垂直平分,可利用勾股定理求出AE 的长,从而求出AC 的长;(2)根据菱形的面积公式:两条对角线乘积的一半即可求得面积.【详解】解:(1)∵四边形ABCD 是菱形,AC 与BD 相交于点E ,∴90AED ∠=︒(菱形的对角线互相垂直),11105(cm)22DE BD ==⨯=(菱形的对角线互相平分). ∴222213512(cm)AE AD DE =--=.∴221224(cm)AC AE ==⨯=(菱形的对角线互相平分);(2)ABD BDC ABCD S S S =+菱形1122BD AE BD CE =⋅+⋅ 1()2BD AE CE =⋅+ 12BD AC =⋅ 110242=⨯⨯ 2120(cm )=.【点睛】本题主要考查了菱形的性质、菱形的面积公式、勾股定理,熟知菱形的性质是解本题的关键.19.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F .(1)求证:△ADE ≌△FCE .(2)若∠BAF =90°,BC =5,EF =3,求CD 的长.【答案】(1)证明过程见解析;(2)8【解析】【分析】(1)由平行四边形的性质得出AD ∥BC ,AB ∥CD ,证出∠DAE =∠F ,∠D =∠ECF ,由AAS 证明△ADE ≌△FCE 即可;(2)由全等三角形的性质得出AE =EF =3,由平行线的性质证出∠AED =∠BAF =90°,由勾股定理求出DE ,即可得出CD 的长.【详解】(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAE =∠F ,∠D =∠ECF ,∵E 是▱ABCD 的边CD 的中点, ∴DE =CE ,在△ADE 和△FCE 中,DAE F D ECF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△FCE (AAS );(2)∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE=2222-=-=4,AD AE53∴CD=2DE=8【点睛】考点:(1)平行四边形的性质;(2)全等三角形的判定与性质20.(1)如图,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为() A.平行四边形B.菱形C.矩形D.正方形(2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1图2【答案】(1)C;(2)①证明见解析;1010【解析】【详解】试题分析:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AE E′D的形状为矩形,故选C;(2)①证明:∵纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=3.如图2:∵△AEF ,将它平移至△DE′F′,∴AF ∥DF′,AF=DF′,∴四边形AFF′D 是平行四边形.在Rt △AEF 中,由勾股定理,得AF=2222=34++AE EF =5,∴AF=AD=5,∴四边形AFF′D 是菱形;②连接AF′,DF ,如图3:在Rt △DE′F 中E′F=FF′﹣E′F′=5﹣4=1,DE′=3,∴DF=2222=13=10''++E D E F ,在Rt △AEF′中EF′=EF+FF′=4+5=9,AE=3,∴AF′=2222=39'++AE F E =310. 考点:①图形的剪拼;②平行四边形的性质;③菱形的判定与性质;④矩形的判定;⑤平移的性质.21.如图,在正方形ABCD 中,E 、F 分别为边AD 和CD 上的点,且AE=CF ,连接AF 、CE 交于点G .求证:AG=CG .【答案】证明见解析.【解析】【分析】先用SAS 证明△ADF ≌△CDE ,得∠DAF=∠DCE ,再用AAS 证明△AGE ≌△CGF 即可.【详解】∵四边形ABCD 是正方形,∴∠ADF=∠CDE=90°,AD=CD .∵AE=CF ,∴DE=DF ,在△ADF 和△CDE 中,AD AD ADF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△CDE (SAS ),∴∠DAF=∠DCE ,在△AGE 和△CGF 中,GAE GCF AGE CGF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AGE ≌△CGF (AAS ),∴AG=CG .22.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB ,AF=AC ,∠EAF=∠BAC ,则∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,利用AB=AC 可得AE=AF ,得出△ACF ≌△ABE ,从而得出BE=CF ;(2)由菱形的性质得到DE=AE=AC=AB=1,AC ∥DE ,根据等腰三角形的性质得∠AEB=∠ABE ,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE 为等腰直角三角形,所以22BD=BE ﹣DE 求解.【详解】(1)∵△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,∴AE=AB ,AF=AC ,∠EAF=∠BAC ,∴∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,在△ACF 和△ABE 中,AC AB CAF BAE AF AE =⎧⎪∠=∠⎨⎪=⎩∴△ACF ≌△ABE∴BE=CF.(2)∵四边形ACDE 为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC ∥DE ,∴∠AEB=∠ABE ,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE 为等腰直角三角形,∴BE=2AC=2,∴BD=BE ﹣DE=21-.考点:1.旋转的性质;2.勾股定理;3.菱形的性质. 23.如图,AD 是ABC 的中线,//AE BC ,且12AE BC =,连接DE ,CE .(1)求证:AB DE =;(2)当ABC 满足条件__________时,四边形ADCE 是矩形.【答案】(1)见解析;(2)AB =AC 或 ABC ACB ∠=∠【解析】【分析】(1)根据三角形中位线定理和平行四边形的判定和性质解答即可; (2)根据矩形的判定解答即可.【详解】(1)∵AD 是ABC 的中线,∴12BD BC =, ∵12AE BC =, ∴AE BD =,∵//AE BC ,∴四边形ABDE 是平行四边形,∴AB DE =(2)当△ABC 满足AB =AC 或ABC ACB ∠=∠时,四边形ADCE 是矩形, 11,,22BC BD AE CD BC =∴== ∴AE =CD ,∵AE ∥BC ,∴四边形ADCE 是平行四边形,∵AB =DE ,∴当AB =AC 或ABC ACB ∠=∠时,AC =DE ,∴四边形ADCE 是矩形.【点睛】此题考查了平行四边形的判定与性质、等腰三角形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用.24.在边长为5的正方形ABCD 中,点E 在边CD 所在直线上,连接BE ,以BE 为边,在BE 的下方作正方形BEFG ,并连接AG .(1)如图1,当点E 与点D 重合时,AG = ;(2)如图2,当点E 在线段CD 上时,DE =2,求AG 的长;(3)若AG =5172,请直接写出此时DE 的长.【答案】(1)5(2109(3)52或152. 【解析】【分析】 (1)如图1,连接CG ,证明△CBD ≌△CBG (SAS ),可得G ,C ,D 三点共线,利用勾股定理可得AG 的长;(2)如图2,作辅助线,构建全等三角形,证明△BCE ≌△BKG ,可得AK 和KG 的长,利用勾股定理计算AG 的长;(3)分三种情况:①当点E在边CD的延长线上时,如图3,同(2)知△BCE≌△BKG (AAS),BC=BK=5,根据勾股定理可得KG的长,即可CE的长,此种情况不成立;②当点E在边CD上;③当点E在DC的延长线上时,同理可得结论.【详解】(1)如图1,连接CG,∵四边形ABCD和四边形EBGF是正方形,∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,∴∠CBG=45°,∴∠CBG=∠CBD,∵BC=BC,∴△CBD≌△CBG(SAS),∴∠DCB=∠BCG=90°,DC=CG=5,∴G,C,D三点共线,∴AG=22+=22AD DG+=55,510故答案为:55;(2)如图2,过点G作GK⊥AB,交AB的延长线于K,∵DE=2,DC=5,∴CE=3,∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,∵BE=BG,∠K=∠BCE=90°,∴△BCE≌△BKG(AAS),∴CE=KG=3,BC=BK=5,∴AK=10,由勾股定理得:AG=22103+=109;(3)分三种情况:①当点E在CD的延长线上时,如图3,由(2)知△BCE≌△BKG(AAS),∴BC=BK=5,∵AG=5172,由勾股定理得:KG=22517102⎛⎫-⎪⎪⎝⎭=52,∴CE=KG=52,此种情况不成立;②当点E在边CD上时,如图4,由(2)知△BCE≌△BKG(AAS),∵AG=5172,由勾股定理得:KG=22517102⎛⎫-⎪⎪⎝⎭=52,∴CE=KG=52,∴DE=CD-CE=52;③当点E在DC的延长线上时,如图5,同理得CE=KG=52,∴DE=5+52=152;综上,DE的长是52或152.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。

平行四边形的初步认识专项练习

平行四边形的初步认识专项练习

核心考点专项评价3.平行四边形的初步认识一、仔细审题,填一填。

(每空5分,共35分)1.按图中的虚线折一折,折后的图形分别是几边形?填一填。

()边形()边形()边形2.【临汾市尧都区】右图看起来像(),它是由()个三角形、()个正方形和()个平行四边形组成的。

二、仔细推敲,选一选。

(每小题6分,共30分)1.用5根同样长的小棒不可以摆出()。

①三角形②平行四边形③五边形2.把一张正方形的纸对折一次,不可能得到两个()。

①长方形②平行四边形③三角形3.左图中一共有()个长方形。

①3 ②4 ③54.将剪一刀,最多可以剪出()个三角形。

①1 ②2 ③35.下图中,可以拼成平行四边形的两个三角形是()。

(1)(2)(3)(4)①(1)和(4)②(2)和(4)③(1)和(3)三、操作题。

(共35分)1.下面的方格纸上已经画出了平行四边形的两条边,请你分别画出平行四边形的另外两条边。

(14分)2.【新考法】下图是东山街街心花园的示意图,请你先将四边形建筑涂成红色,五边形建筑涂成蓝色,六边形建筑涂成黄色,再在花坛右边的圆形处设计一个五边形的售报亭。

(21分)答案一、1. 四四五2. 鱼 5 1 1二、1. ②2. ②3. ③【点拨】基本图形有3个,由2个基本图形组成的长方形有1个,由3个基本图形组成的长方形有1个,共5个。

4. ②5. ①三、1.2. 休闲区、喷泉涂红色,开心屋、厕所、健身器械活动区涂蓝色,花坛涂黄色。

设计略。

平行四边形练习题及答案

平行四边形练习题及答案

20.1 平行四边形的判定一、选择题1.四边形ABCD,从(1)AB∥CD;(2)AB=CD;(3)BC∥AD;(4)BC=AD这四个条件中任选两个,其中能使四边形ABCD是平行四边形的选法有()A.3种 B.4种 C.5种 D.6种2.四边形的四条边长分别是a,b,c,d,其中a,b为一组对边边长,c,d•为另一组对边边长且满足a2+b2+c2+d2=2ab+2cd,则这个四边形是()A.任意四边形 B.平行四边形C.对角线相等的四边形 D.对角线垂直的四边形3.下列说法正确的是()A.若一个四边形的一条对角线平分另一条对角线,则这个四边形是平行四边形B.对角线互相平分的四边形一定是平行四边形C.一组对边相等的四边形是平行四边形D.有两个角相等的四边形是平行四边形二、填空题4.在□ABCD中,点E,F分别是线段AD,BC上的两动点,点E从点A向D运动,点F 从C•向B运动,点E的速度m与点F的速度n满足_______关系时,四边形BFDE为平行四边形.5.如图1所示,平行四边形ABCD中,E,F分别为AD,BC边上的一点,连结EF,若再增加一个条件_______,就可以推出BE=DF.图1 图26.如图2所示,AO=OC,BD=16cm,则当OB=_____cm时,四边形ABCD是平行四边形.三、解答题7.如图所示,四边形ABCD中,对角线BD=4,一边长AB=5,其余各边长用含有未知数x的代数式表示,且AD⊥BD于点D,BD⊥BC于点B.问:四边形ABCD•是平行四边形吗?为什么?四、思考题8.如图所示,在□ABCD中,E,F是对角线AC上的两点,且AF=CE,•则线段DE•与BF的长度相等吗?参考答案一、1.B 点拨:可选择条件(1)(3)或(2)(4)或(1)(2)或(3)(4).故有4种选法.2.B 点拨:a2+b2+c2+d2=2ab+2cd即(a-b)2+(c-d)2=0,即(a-b)2=0且(c-d)2=0.所以a=b,c=d,即两组对边分别相等,所以四边形为平行四边形.3.B 点拨:熟练掌握平行四边形的判定定理是解答这类题目的关键.二、4.相等点拨:利用“一组对边平行且相等的四边形是平行四边形”来确定. 5.AE=CF 点拨:本题答案不惟一,只要增加的条件能使四边形EBFD•是平行四边形即可.6.8 点拨:根据对角线互相平分的四边形为平行四边形来进行判别.三、7.解:如图所示,四边形ABCD是平行四边形.理由如下:在Rt △BCD中,根据勾股定理,得BC2+BD2=DC2,即(x-5)2+42=(x-3)2,解得x=8.所以AD=11-8=3,BC=x-5=3,DC=x-3=8-3=5,所以AD=BC,AB=DC.所以四边形ABCD是平行四边形.点拨:本题主要告诉的是线段的长度,故只要说明AD=BC,AB=DC即可,本题也可在Rt△ABD中求x的值.四、8.解:线段DE与BF的长度相等;连结BD交AC于O点,连结DF,BE,如图所示.在ABCD中,DO=OB,AO=OC,又因为AF=EC,所以AF-AO=CE-OC,即OF=OE,所以四边形DEBF是平行四边形,所以DE=BF.D A CF O E B点拨:本题若用三角形全等,也可以解答,但过程复杂,学了平行四边形性质后,要学会应用.20.2 矩形的判定一、选择题1.矩形具有而一般平行四边形不具有的性质是( )A .对角相等B .对边相等C .对角线相等D .对角线互相垂直2.下列叙述中能判定四边形是矩形的个数是( )①对角线互相平分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形.A .1B .2C .3D .43.下列命题中,正确的是( )A .有一个角是直角的四边形是矩形B .三个角是直角的多边形是矩形C .两条对角线互相垂直且相等的四边形是矩形D .有三个角是直角的四边形是矩形二、填空题4.如图1所示,矩形ABCD 中的两条对角线相交于点O ,∠AOD=120°,AB=4cm ,则矩形的对角线的长为_____.图1 图25.若四边形ABCD 的对角线AC ,BD 相等,且互相平分于点O ,则四边形ABCD•是_____形,若∠AOB=60°,那么AB :AC=______.6.如图2所示,已知矩形ABCD 周长为24cm ,对角线交于点O ,OE⊥DC 于点E , OF⊥AD 于点F ,OF-OE=2cm ,则AB=______,BC=______.三、解答题7.如图所示,□ABCD的四个内角的平分线分别相交于E,F,G,H两点,试说明四边形EFGH是矩形.四、思考题8.如图所示,△ABC中,CE,CF分别平分∠ACB和它的邻补角∠ACD.AE ⊥CE于E,AF⊥CF于F,直线EF分别交AB,AC于M,N两点,则四边形AECF是矩形吗?为什么?参考答案一、1.C 点拨:A与B都是平行四边形的性质,而D是一般矩形与平行四边形都不具有的性质.2.B 点拨:③是矩形的判定定理;④中对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故④能判定矩形,应选B.3.D 点拨:选项D是矩形的判定定理.二、4.8cm5.矩;1:2 点拨:利用对角线互相平分来判定此四边形是平行四边形,再根据对角线相等来判定此平行四边形是矩形.由矩形的对角线相等且互相平分,•可知△AOB是等腰三角形,又因为∠AOB=60°,所以AB=AO=12 AC.6.8cm;4cm三、7.解:在□ABCD中,因为AD∥BC,所以∠DAB+∠CBA=180°,又因为∠HAB=12∠DAB,∠HBA=12∠CBA.所以∠HAB+∠HBA=90°,所以∠H=90°.同理可求得∠HEF= ∠F= ∠FGH=90°,所以四边形EFGH是矩形.点拨:由于“两直线平行,同旁内角的平分线互相垂直”,所以很容易求出四边形EFGH 的四个角都是直角,从而求得四边形EFGH是矩形.四、8.解:四边形AECF是矩形.理由:因为CE平分∠ACB,•CF•平分∠ACD,•所以∠ACE=12∠ACB,∠ACF=12∠ACD.所以∠ECF=12(∠ACB+∠ACD)=90°.又因为AE⊥CE,AF⊥CF,•所以∠AEC=∠AFC=90°,所以四边形AECF是矩形.点拨:•本题是通过证四边形中三个角为直角得出结论.还可以通过证其为平行四边形,再证有一个角为直角得出结论.20.3 菱形的判定一、选择题1.下列四边形中不一定为菱形的是()A.对角线相等的平行四边形 B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形2.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD= BC;⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有().A.1种 B.2种 C.3种 D.4种3.菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和43cm B.4cm和83cm C.8cm和83cm D.4cm和43cm二、填空题4.如图1所示,已知□ABCD,AC,BD相交于点O,•添加一个条件使平行四边形为菱形,添加的条件为________.(只写出符合要求的一个即可)图1 图25.如图2所示,D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,且DE∥AB,DF∥CA,要使四边形AFDE 是菱形,则要增加的条件是________.(只写出符合要求的一个即可)6.菱形ABCD 的周长为48cm ,∠BAD: ∠ABC= 1:•2,•则BD=•_____,•菱形的面积是______.7.在菱形ABCD 中,AB=4,AB 边上的高DE 垂直平分边AB ,则BD=_____,AC=_____.三、解答题8.如图所示,在四边形ABCD 中,AB∥CD,AB=CD=BC ,四边形ABCD 是菱形吗?•说明理由.四、思考题9.如图,矩形ABCD 的对角线相交于点O ,PD∥AC,PC∥BD,PD ,PC 相交于点P ,四边形PCOD 是菱形吗?试说明理由.参考答案一、1.A 点拨:本题用排除法作答.2.D 点拨:根据菱形的判定方法判断,注意不要漏解.3.C 点拨:如图所示,若∠ABC=60°,则△ABC 为等边三角形,•所以AC=AB=14×32=8(cm ),AO=12AC=4cm . 因为AC⊥BD,在Rt△AOB 中,由勾股定理,得OB=222284AB OA -=-=43(cm ),• 所以BD=2OB=83cm .二、4.AB=BC 点拨:还可添加AC⊥BD 或∠ABD=∠CBD 等.5.点D 在∠BAC 的平分线上(或AE=AF )6.12cm ;723cm 2点拨:如图所示,过D 作DE⊥AB 于E ,因为AD∥BC,•所以∠BAD+∠ABC=180°.又因为∠BAD:∠ABC=1:2,所以∠BAD=60°,因为AB=AD ,所以△ABD 是等边三角形,所以BD=AD=12cm .所以AE=6cm .在Rt △AED 中,由勾股定理,得AE 2+ED 2=AD 2,62+ED 2=122,所以ED 2=108, 所以ED=63cm ,所以S 菱形ABCD =12×63=723(cm 2).7.4;43 点拨:如图所示,因为DE 垂直平分AB ,又因为DA=AB ,所以DA=DB=4.所以△ABD 是等边三角形,所以∠BAD=60°,由已知可得AE=2.在Rt△AED 中,•AE 2+DE 2=AD 2,即22+DE 2=42,所以DE 2=12,所以DE=23,因为12AC ·BD=AB ·DE ,即12AC ·4=4×23,所以AC=43.三、8.解:四边形ABCD 是菱形,因为四边形ABCD 中,AB∥CD,且AB=CD ,所以四边形ABCD 是平行四边形,又因为AB=BC ,所以ABCD 是菱形.点拨:根据已知条件,不难得出四边形ABCD 为平行四边形,又AB=BC ,即一组邻边相等,由菱形的定义可以判别该四边形为菱形.四、9.解:四边形PCOD是菱形.理由如下:因为PD∥OC,PC∥OD,•所以四边形PCOD是平行四边形.又因为四边形ABCD是矩形,所以OC=OD,所以平行四边形PCOD是菱形.20.4 正方形的判定一、选择题1.下列命题正确的是()A.两条对角线互相平分且相等的四边形是菱形B.两条对角线互相平分且垂直的四边形是矩形C.两条对角线互相垂直,平分且相等的四边形是正方形D.一组邻边相等的平行四边形是正方形2.矩形四条内角平分线能围成一个()A.平行四边形 B.矩形 C.菱形 D.正方形二、填空题3.已知点D,E,F分别是△ABC的边AB,BC,CA的中点,连结DE,EF,•要使四边形ADEF是正方形,还需要添加条件_______.4.如图1所示,直线L过正方形ABCD的顶点B,点A,C到直线L•的距离分别是1和2,则正方形ABCD的边长是_______.图1 图2 图3D AC F E B5.如图2所示,四边形ABCD 是正方形,点E 在BC 的延长线上,BE=BD 且AB=2cm ,则∠E 的度数是______,BE 的长度为____.6.如图3所示,正方形ABCD 的边长为4,E 为BC 上一点,BE=1,F•为AB•上一点,AF=2,P 为AC 上一动点,则当PF+PE 取最小值时,PF+PE=______.三、解答题7.如图所示,在Rt△ABC 中,CF 为∠ACB 的平分线,FD⊥AC 于D ,FE⊥BC 于点E ,试说明四边形CDFE 是正方形.四、思考题 8.已知如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 边上的点,且AE=BF ,•请问:(1)AF 与DE 相等吗?为什么?(2)AF 与DE 是否垂直?说明你的理由.参考答案一、1.C 点拨:对角线互相平分的四边形是平行四边形,•对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形一定是正方形,故选C .2.D 点拨:由题意画出图形后,利用“一组邻边相等的矩形是正方形”来判定.二、3.△ABC 是等腰直角三角形且∠BAC=90°点拨:还可添加△ABC 是等腰三角形且四边形ADEF 是矩形或∠BAC=90°且四边形ADEF 是菱形等条件.4.5 点拨:观察图形易得两直角三角形全等,由全等三角形的性质和勾股定理得正方形的边长为2221+=5.5.67.5°;22cm点拨:因为BD 是正方形ABCD 的对角线,所以∠DBC=45°,AD=•AB=2cm .在Rt△BAD 中,由勾股定理得AD 2+AB 2=BD 2,即22+22=BD 2,所以BD=22cm ,所以BE=BD=22(cm ),又因为BE=BD ,所以∠E=∠EDB=12(180°-45°)=67.5°. 6.17 点拨:如图所示,作F 关于AC 的对称点G .连结EG 交AC 于P ,则PF+•PE=PG+PE=GE 为最短.过E 作EH⊥AD.在Rt △GHE 中,HE=4,HG=AG-AH=AF-BE=1,所以GE=2241+=17,•即PF+PE=17.三、7.解:因为∠FDC=∠FEC=∠BCD=90°,所以四边形CDFE 是矩形,因为CF•平分∠ACB,FE⊥BC,FD⊥AC,所以FE=FD ,所以矩形CDFE 是正方形.点拨:本题先说明四边形是矩形,再求出有一组邻边相等,•还可以先说明其为菱形,再求其一个内角为90°.四、8.解:(1)相等.理由:在△ADE 与△BAF 中,AD=AB ,∠DAE=∠ABF=90°,AE=BF , 所以△ADE≌△BAF(S .A .S .),所以DE=AF .(2)AF 与DE 垂直.理由:如图,设DE 与AF 相交于点O .因为△ADE≌△BAF,•所以∠AED=∠BFA.又因为∠BFA+∠EAF=90°,所以∠AEO+∠EAO=90°,所以∠EOA= 90°,所以DE⊥AF.20.5 等腰梯形的判定一、选择题1.下列结论中,正确的是()A.等腰梯形的两个底角相等 B.两个底角相等的梯形是等腰梯形C.一组对边平行的四边形是梯形 D.两条腰相等的梯形是等腰梯形2.如图所示,等腰梯形ABCD的对角线AC,BD相交于点O,则图中全等三角形有()A.2对 B.3对 C.4对 D.5对3.课外活动课上,•老师让同学们制作了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm,则两条对角线所用的竹条长度之和至少为()A.302cm B.30cm C.60cm D.602cm二、填空题4.等腰梯形上底,下底和腰分别为4,•10,•5,•则梯形的高为_____,•对角线为______. 5.一个等腰梯形的上底长为5cm,下底长为12cm,一个底角为60°,则它的腰长为____cm,周长为______cm.6.在四边形ABCD中,AD∥BC,但AD≠BC,若使它成为等腰梯形,则需要添加的条件是__________(填一个正确的条件即可).三、解答题7.如图所示,AD是∠BAC的平分线,DE∥AB,DE=AC,AD≠EC.求证:•四边形ADCE是等腰梯形.四、思考题8.如图所示,四边形ABCD中,有AB=DC,∠B=∠C,且AD<BC,四边形ABCD是等腰梯形吗?为什么?参考答案一、1.D 点拨:梯形的底角分为上底上的角和下底上的角,•因此在等腰梯形的性质和判别方法中必须强调同一底上的两个内角(•指上底上的两个内角或下底上的两个内角),否则就会出现错误,因此A,B选项都不正确,而C选项中漏掉了限制条件另外一组对边不平行,若平行该四边形就形成了平行四边形了,因此应选D.2.B 点拨:因为△ABC≌△DCB,△BAD≌△CDA,△AOB≌△DOC,所以共有3对全等的三角形.3.C 点拨:设该等腰梯形对角线长为Lcm,因为两条对角线互相垂直,•所以梯形面积为12L2=450,解得L=30,所以所用竹条长度之和至少为2L=2×30=60(cm).二、4.4:65点拨:如图所示,连结BD,过A,D分别作AE⊥BC,DF⊥BC,垂足分别为E,F.易知△BAE≌△CDF,在四边形AEFD为矩形,所以BE=CF=3,AD=EF=4.在Rt△CDF中,FC2+DF2=CD2,即32+DF2=52,所以DF=4,在Rt△BFD中,BF2+DF2=BD2,即72+42=BD2,所以BD=65.5.7;31点拨:如图所示,过点D作DE∥AB交BC于E.因为AD∥BC,AB ∥DE,所以四边形ABED是平行四边形.所以BE=AD=5(cm),AB=DE.又因为AB=CD,所以DE=•DC,又因为∠C=60°,所以△DEC是等边三角形,所以DE=DC=EC=7(cm),所以周长为5+•12+7+7=31(cm).6.AB=CD(或∠A=∠D,或∠B=∠C,或AC=BD,或∠A+∠C=180°,或∠B+∠D=180°)三、7.证明:因为AB∥ED,所以∠BAD=∠ADE.又因为AD是∠BAC的平分线,所以∠BAD=∠CAD,所以∠CAD=∠ADE,所以OA=OD.又因为AC=DE,所以AC-OA=DE-OD即OC=OE,•所以∠OCE=∠OEC,又因为∠AOD=∠COE,所以∠CAD=∠OCE.所以AD∥CE,而AD≠CE,故四边形ADCE是梯形.又因为∠CAD=∠ADE,AD=DA,AC=DE,所以△DAC≌△ADE,所以DC=•AE,所以四边形ADCE是等腰梯形.点拨:证明一个四边形是等腰梯形时,应先证其是梯形而后再证两腰相等或同一底上的FBE D CA HF ED CBA两个角相等.四、8.解:四边形ABCD 是等腰梯形.理由:延长BA ,CD ,相交于点E ,如图所示,由∠B=∠C,可得EB=EC . 又AB=DC ,所以EB-AB=EC-DC ,即AE=DE ,所以∠EAD= ∠EDA. 因为∠E+∠EAD+∠EDA=180°,∠E+∠B+∠C=180°,所以∠EAD=∠B. 故AD∥BC.•又AD<BC ,所以四边形ABCD 是梯形. 又AB=DC ,所以四边形ABCD 是等腰梯形.点拨:由题意可知,只要推出AD∥BC,再由AD<BC 就可知四边形ABCD 为梯形,再由AB=DC ,即可求得此四边形是等腰梯形,由∠B=∠C 联想到延长BA ,CD ,即可得到等腰三角形,从而使AD∥BC.华东师大版数学八年级(下)第20章 平行四边形的判定测试(答卷时间:90分钟,全卷满分:100分)姓名 得分____________一、认认真真选,沉着应战!(每小题3分,共30分) 1. 正方形具有菱形不一定具有的性质是 ( )(A )对角线互相垂直 (B )对角线互相平分 (C )对角线相等 (D )对角线平分一组对角2. 如图(1),EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( ) (A )51 (B )41 (C )31 (D )103)1CBA(1) (2) (3) 3.在梯形ABCD 中,AD ∥BC ,那么:::A B C D ∠∠∠∠可以等于( )(A )4:5:6:3 (B )6:5:4:3 (C )6:4:5:3 (D )3:4:5:6 4.如图(2),平行四边形ABCD 中,DE ⊥AB 于E ,DF ⊥BC 于F ,若A B C D 的周长为48,DE =5,DF =10,则ABCD 的面积等于( )(A )87.5 (B )80 (C )75 (D )72.55. A 、B 、C 、D 在同一平面内,从①AB ∥CD; ②AB=CD; ③BC ∥AD; ④BC=AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( )(A )3种 (B )4种 (C )5种 (D )6种6.如图(3),D 、E 、F 分别是ABC 各边的中点,AH 是高,如果5ED cm =,那么HF 的长为( )(A )5cm (B )6cm (C )4cm (D )不能确定 7. 如图(4):E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值是( ) (A )22 (B )21 (C )32 (D )238.如图(5),在梯形ABCD 中,AD ∥BC ,AB CD =,60C ∠=︒,BD 平分ABC ∠,如果这个梯形的周长为30,则AB 的长 ( )(A )4 (B )5 (C )6 (D )79.右图是一个利用四边形的不稳定性制作的菱形晾衣架. 已知其中每个菱形的边长为20cm ,墙上悬挂晾衣架的两 个铁钉A 、B 之间的距离为203cm ,则∠1等于( )(A )90° (B)60° (C)45° (D)30° 10.某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a 、b , 都有a+b ≥2ab 成立.某同学在做一个面积为3 600cm 2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来做对角线用的竹条至少需要准备x cm . 则x 的值是( )(A) 1202 (B) 602 (C) 120 (D) 60ED CB A R QP(4) DCB A (5)A B C Dl N M D C BA 二、仔仔细细填,记录自信!(每小题2分,共20分)11.一个四边形四条边顺次是a 、b 、c 、d ,且bd ac d c b a 222222+=+++,则这个四边形是_______________.12.在四边形ABCD 中,对角线AC 、BD 交于点O ,从(1)AB CD =;(2)AB CD ∥;(3)OA OC =;(4)OB OD =;(5)AC BD ⊥;(6)AC 平分BAD ∠这六个条件中,选取三个推出四边形ABCD 是菱形.如(1)(2)(5)⇒ABCD 是菱形,再写出符合要求的两个: ⇒A B C D 是菱形; ⇒A B C D是菱形. 13. 如图,已知直线l 把ABCD 分成两部分,要使这两部分的面积相等,直线l 所在位置需满足的条件是____________________.(只需填上一个你认为合适的条件)(第13题) (第16题)14. 梯形的上底长为6cm ,过上底的一顶点引一腰的平行线,与下底相交,所构成的三角形周长为21cm ,那么梯形的周长为_________cm 。

平行四边形练习题

平行四边形练习题

平行四边形练习题1..已知平行四边形的周长是100cm,AB:BC=4 : 1,则AB的长是_____.2.平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为_______ 3.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______.4.在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为.5.平行四边形ABCD的周长为22,两条对角线相交于O,△AOB的周长比△BOC的周长大5,则AD的边长为.6.在平行四边形ABCD中,∠A : ∠B=3:2,则∠C=_____ 度,∠D=___度.7.在平行四边形ABCD中,∠B-∠A=20°,则∠D的度数是_______8.由等腰三角形底边上任一点(端点除外)作两腰的平行线,则所成的平行四边形的周长等于等腰三角形的( )A.周长B.一腰的长C.周长的一半D.两腰的和9.以长为5cm,4cm,7cm的三条线段中的的两条为边,另一条为对角线画平行四边形,可以画出形状不同的平行四边形的个数是( )A. 1 B.2 C.3 D.410.如图,平行四边形ABCD中,AE=CG,DH=BF,连结E,F,G,H,E,则四边形EFGH是_____.FD C11.如图,平行四边形ABCD中,E,F是对角线AC上的两点,且AE=CF,连结B,F,D,E,B则四边形BEDF是___________.D C12.有公共顶点的两个全等三角形,其中一个三角形绕公共顶点旋转180°后与另一个重合,那么不共点的四个顶点的连线构成__________形.练习题:1. 在平行四边形ABCD 中,∠A +∠C =270°,则∠B =___,∠C =____.2. 平行四边形的周长等于56 cm ,两邻边长的比为3∶1,那么这个平行四边形较长的边长为____.3. 平行四边形的两条对角线把它分成全等三角形的对数是( )A .2B .4C .6D .84. 如图,平行四边形ABCD 中,对角线AC 、BD 交于点O ,过点O 的直线分别交AD 、BC于E 、F ,则图中的全等三角形共有___对.5. 关于四边形ABCD :①两组对边分别平行②两组对边分别相等③有两组角相等④对角线AC 和BD 相等.以上四个条件中,可以判定四边形ABCD 是平行四边形的有______个一、单选题1.平行四边行的两条对角线把它分成全等三角形的对数是( )A.2B.4C.6D.82.以长为5cm , 4cm , 7cm的三条线段中的的两条为边,另一条为对角线画平行四边形,可以画出形状不同的平行四边形的个数是()A.1B.2C.3D.43.由等腰三角形底边上任一点(端点除外)作两腰的平行线,则所成的平行四边形的周长等于等腰三角形的()A.周长B.一腰的长C.周长的一半D.两腰的和二、填空题1.平行四边形ABCD的周长为22,两条对角线相交于O,△AOB的周长比△BOC的周长大5,则AD的边长为______.2.在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为______.3.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______.4.平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为______.5.已知平行四边形的周长是100cm,AB:BC=4 : 1,则AB的长是______.6.在平行四边形ABCD中,∠A : ∠B=3:2,则∠C=___度,∠D=___度.7.在平行四边形ABCD中,∠B-∠A=20°,则∠D的度数是______.8.如图,平行四边形ABCD中,AE=CG,DH=BF,连结E,F,G,H,E,则四边形EFGH是______.9.如图,平行四边形ABCD中,E,F是对角线AC上的两点,且AE=CF,连结B,F,D,E,B则四边形BEDF是______.10.有公共顶点的两个全等三角形,其中一个三角形绕公共顶点旋转180°后与另一个重合,那么不共点的四个顶点的连线构成_________形.11.在平行四边形ABCD中,∠A+∠C=270°,则∠B=___,∠C=____.12.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为______.13.如图,平行四边形ABCD中,对角线AC、BD交于点O,过点O的直线分别交AD、BC于E、F,则图中的全等三角形共有______对.14.关于四边形ABCD:①两组对边分别平行②两组对边分别相等③有两组角相等④对角线AC和BD相等.以上四个条件中,可以判定四边形ABCD是平行四边形的有______个.。

小学数学平行四边形和梯形练习题

小学数学平行四边形和梯形练习题

小学数学平行四边形和梯形练习题一、平行四边形练习题1. 完成下列数学计算:(1) 已知平行四边形ABCD中,AB = 4cm,BC = 6cm,求AC的长度。

(2) 平行四边形ABCD中,AB = 7cm,AD = 5cm,BD = 9cm,求AC的长度。

(3) 平行四边形WXYZ中,WX = 8cm,WY = 5cm,YZ = 6cm,XZ = 9cm,求XY的长度。

2. 判断下列命题的真假:(1) 平行四边形的对角线相互垂直。

(2) 平行四边形的对角线相等。

(3) 平行四边形的一个内角是直角,则它是正方形。

(4) 平行四边形的对角线平分彼此。

3. 选择正确的选项填空:(1) 平行四边形的对角线共有____条。

A. 1B. 2C. 3D. 4(2) 平行四边形的相邻内角相加的度数和为____度。

A. 90B. 180C. 360D. 720(3) 平行四边形的两组对边____。

A. 相等B. 平行C. 相等且平行D. 都不对4. 解决下列平行四边形相关问题:(1) 已知平行四边形ABCD中,AB = 5cm,AD = 8cm,BD = 7cm,求BC的长度。

(2) 平行四边形ABCD中,已知AD = 9cm,AB = 6cm,BC = 5cm,求BD的长度。

二、梯形练习题1. 完成下列数学计算:(1) 已知ABCD为梯形,AB // CD,AD ⊥ DC,AB = 7cm,AD =4cm,BC = 5cm,求CD的长度。

(2) 梯形ABCD的上底长为9cm,下底长为13cm,高为6cm,求面积。

(3) 在梯形ABCD中,AB = 8cm,CD = 12cm,左斜边AC = 10cm,右斜边BD = 14cm,求高的长度。

2. 判断下列命题的真假:(1) 梯形的两个底边相等。

(2) 梯形的两个底边平行。

(3) 梯形的一对对边相等。

(4) 梯形的一对对边平行。

3. 选择正确的选项填空:(1) 梯形的边共有____条。

(完整)二年级数学-平行四边形的认识练习题

(完整)二年级数学-平行四边形的认识练习题

(完整)二年级数学-平行四边形的认识练习

二年级数学-平行四边形的认识练题
1. 已知一组平行线段的长度分别为8cm和12cm,它们之间的距离为6cm,求两条平行线段的夹角大小。

2. 一张平行四边形的底边长为10cm,高为4cm,求该平行四边形的面积。

3. 已知平行四边形的底边长为6cm,高为3cm,求该平行四边形的周长。

4. 一条边长为8cm的正方形上,以边长为4cm的正方形为边从外部剪掉一个正方形,剩下的图形是什么形状?
5. 在一个平行四边形中,两对相对边分别为7cm和9cm,求这个平行四边形的面积。

6. 已知一个平行四边形的周长为24cm,其中一条边长为6cm,求这个平行四边形的高和底边长。

7. 一个平行四边形的一条边长为8cm,高为5cm,求该平行四
边形的面积。

8. 如果一张长方形是一个平行四边形,那么这个长方形的两组
对边是否相等?
9. 在一个平行四边形中,两组对边分别为6cm和8cm,求这个平行四边形的周长。

10. 如果一个四边形的对边互相平行并且长度相等,那么这个
四边形一定是什么几何图形?
以上是二年级数学的平行四边形的认识练习题,希望能够帮助
你加深对平行四边形的理解和掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图,分别以普通△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF.证明:四边形AFED是平行四边形
如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.
(1)求证:①DE=DG;②DE⊥DG;
(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);
(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想;
(4)当时,请直接写出的值.
(1)证明:∵四边形ABCD是正方形,∴DC=DA,
∠DCE=∠DAG=90°.又∵CE=AG,∴△DCE≌△DAG,∴DE=DG,
∠EDC=∠GDA,又∵∠ADE+∠EDC=90°,
∴∠ADE+∠GDA=90°∴DE⊥DG.
(2)略
(3)四边形CEFK为平行四边形.证明:设CK、DE相交于
M点,∵四边形ABCD和四边形DEFG都是正方形,∴AB∥CD,AB=CD,EF=DG,EF∥DG,∵BK=AG,∴KG=AB=CD,∴四边形CKGD是平行四边形,∴CK=DG=EF,CK∥DG,∴∠KME=∠GDE=∠DEF=90°,∴∠KME+∠DEF=180°,∴CK∥EF,∴四边形CEFK为平行四边形.
(4)∵,∴设CE=x,CB=nx,∴CD=nx,∴DE2=CE2+CD2=n2x2+x2=(n2+1)x2,
∵BC2=n2x2,∴.
(2011浙江)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连结这四个点,得四边形EFGH.
(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),
①试用含α的代数式表示∠HAE;
②求证:HE=HG;
③四边形EFGH是什么四边形?并说明理由
(1)答:四边形EFGH的形状是正方形.
(2)解:①∠HAE=90°+a,
在平行四边形ABCD中AB∥CD,
∴∠BAD=180°-∠ADC=180°-a,
∵△HAD和△EAB是等腰直角三角形,
∴∠HAD=∠EAB=45°,
∴∠HAE=360°-∠HAD-∠EAB-∠BAD=360°-45°-45°-(180°-a)=90°+a,
答:用含α的代数式表示∠HAE是90°+a.
②证明:∵△AEB和△DGC是等腰直角三角形,
∴AE= BE,DG= CG,
在平行四边形ABCD中,AB=CD,
∴AE=DG,
∵△HAD和△GDC是等腰直角三角形,
∴∠HDA=∠CDG=45°,
∴∠HDG=∠HDA+∠ADC+∠CDG=90°+a=∠HAE,
∵△HAD是等腰直角三角形,
∴HA=HD,
∴△HAE≌△HDG,
∴HE=HG.
③答:四边形EFGH是正方形,
理由是:由②同理可得:GH=GF,FG=FE,
∵HE=HG,
∴GH=GF=EF=HE,
∴四边形EFGH是菱形,
∵△HAE≌△HDG,
∴∠DHG=∠AHE,
∵∠AHD=∠AHG+∠DHG=90°,
∴∠EHG=∠AHG+∠AHE=90°,
∴四边形EFGH是正方形.
在直角三角形ABC中,∠C=90°,AB=5,AC=4,分别以△ABC三边为边作等边三角形(如图所示),求四边形DCEF的面积.
∵BC=BE=3,BA=BF=5,且∠ABC+∠CBF=60°,∠CBF+∠FBE=60°,∴∠ABC =∠FBE,∴△ABC≌△FBE(SAS),∴∠BEF=90°,EF=4,同理可证△AFD≌△ABC,∴DF=3,∵∠FDA=90°,∠CDA=60°,∴∠FDC=30°,由两次三角形的全等能够知道,△AFD≌△FBE,∴∠DFA+∠EFB=90°,∴∠DFE=150°,∴∠DFE与∠FDC 是互补的,∴四边形DCEF为平行四边形,又
∵DF=3,∠FDC=30°,∴四边形DCEF的边
DC 上的高为,∴四边形DCEF的面
积S =4×=6.
(2011四川改编)如图,点E、F、G、H分
别是任意四边形ABCD中AD、BD、BC、CA的
中点.
(1)当四边形ABCD的边至少满足_____条件时,四边形EFGH是菱形.
(2)当四边形ABCD的边至少满足_____条件时,四边形EFGH是矩形.
(3)当四边形ABCD的边至少满足_____条件时,四边形EFGH是正方形.
证明:∵E、F为AD、BD中点
∴EF∥AB,EF= AB,
同理:HG∥AB,HG= AB,
∴EF∥HG,EF=HG
∴四边形EFGH是平行四边形
(1)当AB=CD时,四边形EFGH是菱形
又∵EF=BA FG= CD
∴EF=FG
∵四边形EFGH是平行四边形
∴四边形EFGH是菱形
(2)当AB⊥CD时,四边形EFGH是矩形
又∵EF∥AB HE∥CD
∴EF⊥EH
∵四边形EFGH是平行四边形
∴四边形EFGH是矩形
(3)由(1)(2)的证明我们能够知道,当AB⊥CD且AB=CD时,四边形EFGH 是
正方形
(2011湖南改编)如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,顺次连接EF、FG、GH、HE.
(1)请判断四边形EFGH的形状,并给予证明;
(2)四边形EFGH可能是菱形,请给出判断依据;
(3)四边形EFGH可能是矩形,请给出判断依据;
(4)四边形EFGH可能是正方形,请给出判断依据;
(1)四边形EFGH的形状是平行四边形.
证明:连接AC、BD,
∵E、F、G、H分别是AB、BC、CD、DA的中点,
∴EF∥AC,EF= AC,HG∥AC,HG= AC,GF= BD,
∴EF=HG,EF∥HG,
∴四边形EFGH是平行四边形.
(2)添加的条件是AC=BD.
∵EF=AC ,GF= BD , AC=BD
∴EF =GF
又∵四边形EFGH是平行四边形.
∴四边形EFGH是菱形
(3)添加的条件是AC⊥BD.
∵四边形EFGH是平行四边形.AC⊥BD
∴EF⊥GF
又∵四边形EFGH是平行四边形.
∴四边形EFGH是矩形
(4)添加的条件是AC⊥BD且AC=BD
由(2)(3)我们能够知道四边形EFGH是正方形
如图,菱形ABCD中,E是AD中点,EF⊥AC交CB的延长线与点F.
①DE和BF相等吗?请说明理由.
②连结AF、BE,四边形AFBE是平行四边形吗?说明理由.
如图,AD平分∠A,DE∥AC,DF∥AB.(1)四边形AEDF是菱形吗?请说明理由;(2)四边形AEDF是正方形吗?若不是,则当∠BAC符合什么条件时,AEDF才是正方形?
∵DE‖AC,DF‖AB
∴四边形AEDF是平行四边形
∴∠EAD=∠ADF
∵∠EAD=∠FAD
∴∠FAD=∠ADF
∴FA=FD
∴四边形AEDF是菱形
(2)要使四边形AEDF为正方形,则只需在菱形的基础上,再加一角为直角即可,故∠BAC=90°即可满足条件.
如图菱形ABCD的对角线AC,BD交于点O,且AC=16 cm,
BD=12 cm,
求菱形ABCD的高DH和AB的长.
如图,四边形ABCD是平行四边形AD=12,AB=13,BD⊥AD,求BC,CD及OB的长.。

相关文档
最新文档