高速铁路路基结构

合集下载

高速铁路路基工程施工质量验收标准

高速铁路路基工程施工质量验收标准

高速铁路路基工程施工质量验收标准一、概述高速铁路路基工程是高速铁路建设的重要组成部分,其施工质量直接关系到高速铁路的安全、稳定和舒适性。

为了确保高速铁路路基工程的施工质量,制定本验收标准。

本标准适用于新建和改建设计速度为200km/h及以下铁路路基工程施工质量的验收。

二、验收标准1. 材料质量(1)路基填料应符合设计要求,土质应稳定、坚实,粒径应符合规定。

(2)路基填料的含水量应控制在设计要求的范围内,超过允许含水量的填料应进行处理。

(3)路基填料应进行必要的压实,压实度应符合设计要求。

2. 路基结构(1)路基结构应符合设计要求,包括路基床层、排水设施、防护设施等。

(2)路基床层应平整、坚实,顶面高程应符合设计要求。

(3)排水设施应设置合理,排水能力应满足设计要求。

(4)防护设施应设置合理,能够有效防止路基病害的发生。

3. 路基稳定性(1)路基边坡应稳定,边坡坡率应符合设计要求。

(2)路基沉降应控制在设计允许范围内,沉降速率应满足要求。

(3)路基横向裂缝应控制在设计允许范围内,裂缝宽度应满足要求。

4. 施工质量控制(1)施工单位应按照设计文件和施工技术规范进行施工,确保施工质量。

(2)施工过程中应加强质量控制,对关键工序和重要部位进行质量检查。

(3)施工单位应做好施工记录,及时反馈施工中出现的问题,确保工程质量。

三、验收程序1. 验收准备(1)施工单位完成工程后,应向建设单位提交验收申请。

(2)建设单位收到验收申请后,应组织相关人员进行预验收。

(3)预验收合格后,建设单位应向相关政府部门提交验收报告。

2. 验收检查(1)政府部门收到验收报告后,应组织专家进行验收检查。

(2)验收检查应包括资料审查、现场检查等内容。

(3)验收专家应及时提出验收意见,建设单位应根据验收意见进行整改。

3. 验收结论(1)整改完成后,建设单位应向政府部门申请验收结论。

(2)政府部门收到申请后,应组织专家进行验收结论。

(3)验收结论应包括工程质量是否合格、是否符合设计要求等内容。

专题二:高速铁路路基基床

专题二:高速铁路路基基床

高速铁路路基基床一、基床的作用与结构1.基床的作用基床是铁路路基最重要的关键部位,其作用主要有三个方面:(1)强度:应有足够的强度以抵抗列车荷载产生的动应力而不致破坏;能抵抗道碴压入基床土中,防止道碴陷槽等病害的形成;在路基填筑阶段能承受重型施工车辆走行而不形成印坑,以免留下隐患。

(2)刚度:在列车荷载的重复作用下,塑性累积变形很小,避免形成过大的不均匀下沉而造成轨道的不平顺,增加养护维修的困难;在列车高速行驶时,基床的弹性变形应满足高速走行的安全性和舒适性要求,同时还能保障道床的稳固。

(3)排水防渗:必须具备良好的排水性,以防止雨水浸入造成路基土软化,防止发生翻浆冒泥等病害的发生。

(4)在可能发生冻害的地区,还有防冻等特殊作用。

2.基床的结构一般情况,高速铁路路基基床是由基床表层和底层组成的两层结构。

有的国家针对填料、气候、无碴轨道等不同线路情况,将基床表层再细分成两层或多层结构,每层使用不同材料或结构。

最典型的是德国无碴轨道的线路结构,包括钢筋混凝土板连续板、混凝土绝热层和支持层、素混凝土、矿碴混凝土、填土、道碴等。

日本在基床表层的表面铺设一层5cm厚的沥青混凝土,德国在有碴线路基床表层加设一层混凝土板和过滤层。

我国的京沪高速铁路路基基床采用两层结构。

二、基床表层设计基床表层是路基直接承受列车荷载的部分,又常被称为路基的承载层或持力层,因此基床表层的设计是路基设计中最重要的部分。

自20世纪50年代末日本开始研究东海道新干线路基以来,主要是研究强化的基床表层的设计及施工问题。

在此之前,日本铁路并无基床表层。

70年代,欧盟为了减少路基病害,提高路基适应大运量、高速度的运输需求,对路基上部的受力条件、结构、材料等方面进行了深入的研究。

法国在制定TGV线路技术标准前以及德国在建设高速铁路时,都对基床表层进行了比较深入研究。

1.基床表层的作用基床表层是铁路路基最重要的组成部分,是轨道的直接基础,担负着重要使命。

高速铁路路基

高速铁路路基

高速铁路路基
1.1高速铁路路基概述
1.高速铁路路基应满足的要求
(3)路基排水良好。水的活动往往是造成路基病害 的重要原因,为保证路基的坚固和稳定,路基必须具备良 好的排水能力。
(4)路基的设计、施工和养护应当符合经济合理的 原则。
高速铁路路基
1.1高速铁路路基概述
(1)高速铁路的路 基具有多层结构系统。
高速铁路路基
1.1高速铁路路基概述
1.高速铁路路基应满足的要求
(1)基面平顺,有足够的宽度,路基面上方应形成与铁路限界规 定相符的安全空间,以满足列车运行与线路作业安全的要求。
(2)应具有抵御各种自然因素影响的坚固性和稳定性。坚固性是 指路基本体必须有足够的强度,不发生超过允许的沉落;稳定性是指 路基边坡和基底应保持固定的位置,不发生危及正常运营的变形。
(2)控制变形
2.高速铁路路基的特点 (3)控制沉降。
高速铁路路基
1.2高速铁路路基的结构
图3高速铁路路基的结构
高速铁路路基
1.2高速铁路路基的结构
1.基床
(1)基床的组成
①基床表层。基床 表层是路基直接承受列 车荷载的部分,又常被 称为路基的承载层或持 力层。
②基床底层。基床底层的作 用偏重于保护,颗粒粒径应与基 床填料相匹配,保证基床底层的 填料不能进入基床表层,同时要 求填料的渗透系数小(至少要小 于10-4 m/s)。
➢ (3)在过渡段较硬的一侧,通过设路轨下、枕下、砟底橡胶垫块 (板)来减小轨道的竖向刚度。
高速铁路路基
1.4高速铁路路基过渡段
过渡段的长度按式(2-9)确定,且不小于20 m。
L=a+nH-h (2-9)
式中,L为过渡段的长度(m);a为倒梯形底部沿线 路方向的长度,取3~5 m;n为常数,取2~5;H为 台后路堤的高度(m);h为基床表层的厚度(m)。

高速铁路概论课件-第三讲-铁路路基及桥隧构筑物

高速铁路概论课件-第三讲-铁路路基及桥隧构筑物
铁路路基及桥隧构筑物
目录
Contents
学习目标 了解路基断面形式 了解铁路桥梁组成
1
铁路路基
2
3
铁路桥梁
铁路隧道
3
一、铁路路基
铁路路基是轨道的基础,承受并传递轨道的重量及列车的动载荷。
路基的断面形式
1.1路基断面形式
通常,把垂直于线路中心线的路基横截面称为路基横断面,简 称路基断面。按照路基所处的地势情况与横断面的形状,路基断面 可以分为6类:
有路拱路基断面 无路拱路基断面
路基顶面宽度示意图
1.2 路基组成
2)路肩与路基边坡
路肩: 路基顶面两侧无道床覆盖的部分。 路基边坡: 路肩边缘以外的斜坡。
路基路肩与边坡示意图
1.2 路基组成
3)路基附属设施
路基附属设施的作用:保证路基的强度与稳定。
①排水设施 ➢ 地面排水设施→汇集地表雨水,引到路基以外。
例如:排水沟(见图)、截水沟等。
➢ 地下排水设施→截断、疏导地下水,排出路基。
1.2 路基组成
3)路基附属设施
②防护设施 ➢ 路基边坡坡面防护→增强路基边坡的抗风化能力。
例如:植被防护、砌石防护等。
➢ 路基边坡冲刷防护→用于滨河、河滩、水库地段防护。
例如:植被防护、抛石防护等。
路基边坡度冲刷防护
1.2 路基组成
②按结构体系分:梁桥、拱桥、刚架桥、悬索桥和组合体系桥等。
简支梁桥
拱桥
刚架桥
2.2桥梁的分类
②按结构体系分:梁桥、拱桥、刚架桥、悬索桥和组合体系桥等。
悬索桥
斜拉-悬索组合体系
2.2桥梁的分类
③按跨径大小分类
桥梁分类
特大桥 大桥 中பைடு நூலகம் 小桥

高速铁路路基及轨道工程第二章

高速铁路路基及轨道工程第二章

<18%
<18%
路堤
当为软质岩、 强风化的硬质 岩及土质路堑 时
级配碎石 0.55 中粗砂 0.15
注:基床表层的K30、Evd、n三项指标要求同时检测,均必须满足压实标准。
27
三、高速铁路基床结构
(二)基床表层材料、压实标准 1.基床表层的材料和级配 级配碎石或级配砂砾石的材料规格及压实标准应符合下列规 定: 2 采用级配砂砾石时应符合下述技术要求: (1)颗粒的粒径、级配应符合表4.2.2-2的规定。 (2)级配曲线应接近圆滑,某种尺寸的粒径不应过多或过少。 (3)与上部道床及下部填土之间应满足D15<4d85的要求。当 与下部填土之间不能满足此项要求时,基床表层应采用颗粒 级配不同的双层结构,或在基床底层表面铺设土工合成材料。 但当下部填土为改良土时,可不受此项规定限制。 (4) 颗粒中细长及扁平颗粒含量不应超过20%;黏土团及有 机物含量不应超过2%。 (5)粒径小于0.5mm的细集料的液限应小于28%,其塑性指 数应小于6。
2016/9/5
23
三、高速铁路基床结构
(一)基床结构确定依据 3.基床表层厚度确定 1)变形控制:在列车荷载作用下,以路基顶面变 形量不大于3.5mm为控制条件; 2) 强度控制:以作用在基床底层顶面的动应力不 大于填土允许应力为控制条件。
2016/9/5
24
三、高速铁路基床结构
(一)基床结构确定依据 4.表层沥青混凝土防水层设置的必要性 1)秦沈客运专线的科研试验成果和路基冻涨问题 2)京沪高速铁路填料、沿线气温、降水和冻结深 度 3)《暂规》和设计国际咨询的意见
2016/9/5
22
三、高速铁路基床结构
(一)基床结构确定依据 2.列车动应力传递比例原则 列车动应力由轨道、道床传至路基本体,沿深度 逐渐衰减。 路基基床厚度按列车荷载产生的动应力与路基自 重应力之比为0.2的原则确定。 当动应力与自重应力之比为0.2时,深度约为3.0m, 因此将基床厚度定为3.0m。

高速铁路路基

高速铁路路基

2. 基床以下路堤填料的压实标准
2.1 路堤高度大于3.0m
2.2 路堤高度 h ≤3.0m (①h>0.7 ,② h≤0.7) 1)地基为黏性土
2)地基为砂类土或碎石类土(①h>0.7 ;② h≤0.7)
③地基为岩石:视风化程度分别处理
坚硬岩石
强风化硬质岩和软质岩
3. 高速铁路路堤边坡形式
振动次数
100 90 80 70 竖 应 (kPa) 向 力 60 50 40 30 20 10 0 0 2 4 6 埋深(m) 8 10 12
4.00
倒梯形
3.50 3.00
正梯形
路基沉降(mm)
2.50 2.00 1.50 1.00 0.50 0.00 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00
级配砂砾石级配范围
2)级配碎石
组成:粗、细碎石集料和石屑 级配良好(颗粒粒径搭配); 粒径、级配和材料性能符合《铁路碎石道 床底碴》规定; 变形、强度等满足高铁路基基床表层技术 条件; 太沙基反滤准则
3.4 基床表层结构(上层、下层)
1)上层(承力、提供弹性、刚度、防水) 承载能力高 变形模量大 渗透系数小 沥青混凝土 石英质母岩的砂石料
2 结构
京沪:双层结构
3 基床表层
路基上部直接承受列车荷载的部分,又被 称为路基的承载层或持力层。 研究历程: 50年代,日本最早开始研究; 70年代,欧盟; 法国、德国。
3.1 基床表层的作用
1)增加线路强度和刚度,控制线路变形; 2)扩散作用到基床底层顶面上的动应力; 3)防止道碴与基床土相互渗压; 4)防排水作用; 5)防冻等。

简述高速铁路路基结构

简述高速铁路路基结构

简述高速铁路路基结构
高速铁路路基结构是支撑和保护高速铁路铺轨的重要组成部分。

它一般由路堤、路基和道床三部分构成。

首先,路堤是高速铁路路基的主要承载部分,是由填方或者挖方得到的土石料构成的人工土体。

为了确保路堤的稳定性和强度,通常需要进行地基处理,如软土地区的加固、土体加固等。

此外,路堤还需要考虑水文要求,例如排水设施的设置,以防止长期积水对路基造成影响。

其次,路基是高速铁路路基结构的中间层,主要由砂、砾石等材料构成。

路基的作用是分散路堤的荷载,保证高速铁路的平稳运行。

它还可以承受一定的水平和垂直变形,降低因地震、温度等因素引起的影响。

最后,道床是高速铁路路基结构的最上层,是铺设轨道的基础。

道床通常由石子、碎石等材料构成,通过压实和振实来提高强度和稳定性。

道床的设计还需考虑排水、防冻和隔音等因素,以确保高速铁路的安全和舒适性。

除了上述三个部分,高速铁路路基结构还包括边坡、排水设施和防护结构。

边坡的设计和施工是为了防止土体滑坡和侵蚀,同时也能保护
铁路线路的稳定性。

排水设施的设置可以有效排除降雨和地下水对路基的影响,保持路基的干燥和稳定。

防护结构主要包括挡墙、挡土墙等,用于抵抗外部荷载和确保路基的完整性。

总而言之,高速铁路路基结构是确保铁路线路平稳运行和安全的重要组成部分。

它的设计和施工需要考虑各种因素,如土质条件、水文要求、地震影响等,以确保高速铁路的稳定性和舒适性。

同时,路基结构中的边坡、排水设施和防护结构也起到重要的保护作用。

高速铁路建设中的路基与桥梁设计优化

高速铁路建设中的路基与桥梁设计优化

高速铁路建设中的路基与桥梁设计优化随着城市化进程的推进,交通运输领域的发展迫切需要高速铁路的建设。

而高速铁路的设计优化对于确保运输系统的安全、高效运行具有至关重要的意义。

其中,路基与桥梁设计是高速铁路建设中的关键环节,需要进行全面且精确的优化。

一、路基设计优化路基是高速铁路的基础结构,直接影响着列车的行驶平稳性、安全性以及维护成本。

在路基设计中,需要考虑以下几个方面的优化:1.地质勘察和土力学分析:通过充分了解地下土质的情况,进行详细的地质勘察和土力学分析,以确定路基的设计参数。

这样可以确保路基在不同地质条件下具有足够的稳定性和承载力。

2.基床设计:在路基设计中,需要合理选择基床类型。

传统的土石填筑基床在施工周期长、施工难度大的情况下,可以考虑采用混凝土模块化路基。

这种路基具有模块化施工、工期短、稳定性好等优点,能够降低施工风险和维护成本。

3.排水设计:路基的排水设计是确保路基长期稳定运行的关键因素之一。

通过合理设计排水系统,可以避免水分对路基和桥梁结构的破坏。

优化排水系统的设计,可以采用透水材料作为路面,以提高路基的排水性能。

4.断面设计:高速铁路的路基断面设计应结合列车的运行速度和荷载特点,合理确定路基的宽度和高度。

断面设计的优化可以降低路基的工程量,并提高路基的纵向和横向稳定性。

在路基设计优化中,必须充分考虑工程的可行性和经济性,合理平衡各项设计指标,确保高速铁路建设的可持续发展。

二、桥梁设计优化高速铁路中桥梁是承载列车荷载的重要结构,直接关系到线路的安全和舒适性。

在桥梁设计中,需要进行如下几个方面的优化:1.材料选择:选择合适的材料对于桥梁的设计和施工具有重要影响。

在高速铁路桥梁设计中,常用的材料包括钢结构、混凝土结构等。

根据桥梁的功能和负荷要求,合理选择材料,以提高桥梁的承载能力和使用寿命。

2.结构形式:根据不同地理条件和桥梁的功能要求,选择合适的桥梁结构形式。

常见的桥梁结构包括梁式桥、拱桥和斜交桥等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速铁路路基结构
高速铁路路基一般由基床表层、基床底层、路堤和地基等部分组成。

其中,基床表层是轨道的直接基础,是基床的重要组成部分,受到列车动荷载的剧烈作用,对轨道的平顺性和稳定性影响很大,通常称为承载层和持力层,是高速铁路路基结构中最为重要的部分之一。

基床表层除了为轨道提供坚实、稳定的基础,还必须具有以下特点:
(1)较大的强度,以抵御外力作用,避免破坏。

(2)足够的刚度,以抵抗变形。

(3)较好的稳定性,以免基床的表层刚度与强度在外界不利因素的作用下发生改变。

(4)为路基提供保护,具有良好的扩散应力的能力。

不良基床表层产生的轨道变形是好的基床表层的数倍,而且差距会随着行车速度的提高而增大。

因此,为了给高速铁路提供较大的路基刚度和强度,需对基床表层进行特别的加强。

无砟轨道正线曲线地段的路基面不应加宽,如果轨道结构和接触网支柱等设施的设置有特殊要求,则应根据具体情况进行分析和确定;有砟轨道正线曲线地段的路基面应在曲线外侧按规定加宽,曲线加宽值应在缓和曲线内渐变。

相关文档
最新文档