113导数的几何意义-湖北省通山县第一中学高中数学选修2-2导学案(无答案)

合集下载

人教版高中数学选修2-2学案:1.1.3导数的几何意义

人教版高中数学选修2-2学案:1.1.3导数的几何意义

1.1.3 导数的几何意义【学习目标】1.认识导函数的观点;2.经过函数图象直观地理解导数的几何意义;3.会求曲线y f (x) 在某点处的切线方程.【新知自学】知识回首:1.若直线 l 过点P(x0,y0),且直线的斜率为k,则直线 l 的方程为_________________________.2. 函数y f ( x) 在点x x0处的导数是:_____________________,记作f / ( x0 )或 y / |x x0,即 f / ( x0 ) lim y_____________________ .x0 x新知梳理:1.由以下图,我们发现,当点P n趋近于点P时,割线PP n趋近于确立的地点,这个确立的地点的直线 PT 称为点 P 处的________.注意:曲线的切线与曲线的公共点可能有多个.2.导数的几何意义:函数在 f (x) 在 x x0处的导数就是函数图象在点( x0 , f (x0 )) 处的切线 PT 的斜率k,即k____________________________.3.曲线y f (x) 上在 x x0处的切线方程为_________________________ .4.若关于函数y f ( x)定义域内的每一个自变量值x ,都对应一个确立的导数值 f / ( x) ,则在 f (x) 定义域内,f/( x) 组成一个新的函数,这个函数称为函数y f (x) 的___________(简称_________),记作 ______或 ____,即 ______________________.感悟:( 1)设切线的倾斜角为,那么当x→ 0 时 ,割线PQ 的斜率,称为曲线在点P 处的切线的斜率;( 2)导数的定义供给了求曲线上某点切线的斜率的一种方法;(3)切线斜率的实质—函数在x x0处的导数;(4)曲线在某点处的切线与该点的地点相关.对点练习:1.已知函数y f (x) 在点 x 0处的导数分别为以下状况:(1) f / (x) =0;(2) f / ( x) =1;(3)f/( x)=-1.试求函数图象在对应点处的切线的倾斜角.2.甲、乙二人跑步的行程与时间关系以及百米赛跑行程和时间关系分别如图①②,试问:( 1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?3.建议后置以下说法正确的选项是( A. 若 f ′(x0)不存在,则曲线)y = f (x)在点 (x0 , f(x0)) 处就没有切线B. 若曲线y = f (x)在点 (x0, f (x0))处有切线,则 f ′(x0)必存在C.若 f ′(x0)不存在,则曲线y = f (x)在点 (x0 , f (x0)) 处的切线斜率不存在D. 若曲线 y = f (x)在点 (x0, f (x0))处的切线斜率不存在,则曲线在该点处就没有切线4.若曲线 y = f (x)在点 ( x0, f (x0)) 处的切线方程是y=-2x-7, 则f (x0) =________________.【合作研究】典例精析:例 1. 求曲线y x21在点 P(1,2) 处的切线方程.变式练习:求曲线 y3x 2在点 (1,3) 处的切线方程.例 2.在曲线y=x2上过哪一点的切线平行于直线y=4x-5 ?变式练习:已知抛物线y=2x 2+1,求其上哪一点处的切线垂直于直线x+8y-3=0 ?规律总结 :一般地,设曲线C 是函数 y=f(x) 的图象, P(x0,y0)是曲线 C 上的定点,由导数的几何意义知直线的斜率 k= f/( x0)ylim f x0f xx ,既而由点和斜率可得点斜式方limx 0 x x 0x程,化简得切线方程 .【讲堂小结】【当堂达标】1.函数y f (x) 在 x x0处的导数 f / ( x0 ) 的几何意义是()A. 在点x0处的斜率B. 在点(x0, f ( x0))处的切线与x 轴所夹的锐角的正切值C.曲线y f (x) 在点 ( x0 , f ( x0 )) 处的切线的斜率D. 点( x0, f ( x0))与点(0,0)连线的斜率2.假如曲线y f (x) 在点 ( x0 , f ( x0 )) 处的切线方程为x 2 y 3 0 ,那么()A. f/(x0)>0B. f/( x0)<0C. f/(x0)=0D. f/( x0)不存在3.若函数y f (x)的图像上点P(x0 , y0 )处的导数 f / ( x0 ) <0,则说明函数在点P 邻近_________________(填单一递加或单一递减).4.已知函数y=2x 2图象上一点A(2,8) ,求点 A 处的切线方程 .【课时作业】1.在曲线 f ( x) x 2上的切线倾斜角为的切点为()4A. (0,0)B. (2,4)C.(1,1) D.(1,1)416242.曲线y x 22x 3 在点 A(1,6) 处的切线方程是_______________.3.如图,函数y=f(x) 的图象在点P 处的切线方程是y=-x+8 ,则 f(5)+ f ( 5)=_________.应当标出点P 的横坐标54.在抛物线.y x 2上求一点,使过此点的切线:(1)平行于直线y 4 x15 ;(2)垂直于直线 2 x 6 y 50 .5.已知抛物线 y=ax 2+bx+c 经过点 P(1,1)、Q( 2, -1),且在点 Q 处与直线 y=x-3 相切,务实数 a,b,c 的值 .。

高中数学选修2-2教学设计4:1.1.3 导数的几何意义教案

高中数学选修2-2教学设计4:1.1.3 导数的几何意义教案

导数的几何意义【教学目标】知识与技能目标:本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:(1) 通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。

(2) 借助两个类比的动画,从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。

(3) 依据割线与切线的变化联系,数形结合探究函数)(x f 在0x x =处的导数0()f x '的几何意义,使学生认识到导数0()f x '就是函数)(x f 的图象在0x x =处的切线的斜率。

即:()()xx f x x f x f x ∆-∆+=→∆)(lim 0000/=曲线在0x x =处切线的斜率 在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。

在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。

过程与方法目标:(1) 学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。

(2) 学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。

(3) 结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。

情感、态度、价值观:(1) 通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;(2) 在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。

在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。

20152016学年高中数学 113导数的几何意义教案 新人教A版选修22

20152016学年高中数学 113导数的几何意义教案 新人教A版选修22

1、1、3导数的几何意义教学建议1、教材分析教材从割线入手,观察割线的变化趋势,揭示了平均变化率与割线斜率之间的关系,通过逼近方法,将割线趋于的确定位置的直线定义为切线,从而将切线斜率与导数相联系,发现了导数的几何意义、本节的重点就是理解导数的几何意义,难点就是过曲线上某一点的切线斜率的求解方法、2、主要问题及教学建议(1)切线的定义、建议教师运用信息技术演示割线的动态变化趋势,让学生观察、思考,并引导学生共同分析,直观获得切线的定义、(2)导数的几何意义、建议教师通过数形结合,将切线斜率与导数相联系,发现导数的几何意义,引导学生体会用数形结合的方法解决问题的优势、备选习题1、若函数y=ax2+1的图象与直线y=x相切,则a=()A、B、C、D、1解析:根据题意y'===(2ax+a·Δx)=2ax,设切点为(x0,y0),则2ax0=1,且y0=a+1,y0=x0,解得a=、答案:B2、已知函数y=f(x)=-1(a>0)的图象在x=1处的切线为l,求l与两坐标轴围成的三角形面积的最小值、解:∵Δy=-1-+1=,∴、当Δx无限趋近于0时,趋近于,即f'(x)=、∴f'(1) =、又f(1)=-1,∴f(x)在x=1处的切线l的方程就是y-+1=(x-1)、∴l与两坐标轴围成的三角形的面积S==×(2+2)=1、当且仅当a=,即a=1时,直线l与两坐标轴围成的三角形的面积最小,最小值为1、3、过点P(-1,0)作抛物线f(x)=x2+x+1的切线,求切线方程、解:f(x)=x2+x+1,设抛物线上一点M(x1,y1),则该点处的切线斜率k=f'(x1)==2x1+1,于就是过点(x1,y1)的切线方程就是y-y1=(2x1+1)(x-x1)、又∵y1=f(x1)=+x1+1,①且点(-1,0)在切线上,∴-y1=(-1-x1)(2x1+1)、②由①②联立方程组,可解得x1=0或x1=-2,于就是y1=1或y1=3,即切点为(0,1)或(-2,3)、过(0,1)的切线方程为y-1=x,即x-y+1=0;过点(-2,3)的切线方程为y-3=-3(x+2),即3x+y+3=0、。

高中数学 1.1.3 导数的几何意义导学案 新人教A版选修22

高中数学 1.1.3 导数的几何意义导学案 新人教A版选修22

高中数学 1.1.3 导数的几何意义导学案 新人教A 版选修22 学习目标:1、了解导数的概念;理解导数的几何意义;2、会求导函数;3、根据导数的几何意义,会求曲线上某点处的切线方程。

一、主要知识:1、导数的几何意义:(1)导数()0f x '表示了函数()f x 在0x x =处的 ,反映了函数()f x 在0x x =附近的变化情况。

(2)函数()y f x =在0x x =处导数()0f x '的几何意义是曲线()y f x =在点()()00,P x f x 处的 ,相应地,曲线()y f x =在点()()00,P x f x 处的切线方程是 。

2、导函数从求()f x 在0x x =处的导数的过程中可看到,当0x x =时,()0f x '是一个 。

当x 变化时,()f x '便是x 的一个 ,称它为()f x 的导函数(简称导数),()y f x =的导函数有时也记作 ,即()f x y ''== 。

二、典例分析:〖例1〗:求曲线21y x =+在点()1,2P 处的切线的斜率k 。

〖变式训练1〗:曲线3123y x =-在点71,3⎛⎫-- ⎪⎝⎭处的的切线的倾斜角为 。

〖例2〗:在曲线2y x =上求点P ,使过点P 的切线:(1)垂直于直线2650x y -+=;(2)倾斜角为135。

〖变式训练2〗:若曲线21y x =-的一条切线平行于直线43y x =-,求这条切线的方程。

〖例3〗:若抛物线24y x =上的点P 到直线45y x =-的距离最短,求点P 的坐标。

〖变式训练3〗:设函数()()32910f x x ax x a =+--<,若曲线()y f x =的斜率最小的切线与直线1260x y +-=平行,求a 的值。

三、课后作业:1、已知曲线22y x =上一点()1,2A ,则点A 处的切线的斜率等于( )A 、2B 、4C 、()2662x x +∆+∆D 、6 2、曲线2122y x =-在点31,2⎛⎫- ⎪⎝⎭处的切线的倾斜角为( ) A 、6π B 、4π C 、54π D 、4π- 3、设曲线22y x x =+-在点M 处的切线斜率为3,则点M 的坐标为( )A 、()0,2-B 、()1,0C 、()0,0D 、()1,14、设()f x 为可导函数且满足()()0112lim1x f f x x →-+=,则过曲线()y f x =上点()()1,1f 处的切线斜率为( ) A 、1B 、1-C 、12D 、12-5、已知直线1y kx =+与曲线32y x x =+-相切于点()1,3,则b 的值为( )A 、3B 、3-C 、5D 、5-6、曲线1y x=在点()1,1P 处的切线方程是 。

高中数学 专题1.1.3 导数的几何意义教案 新人教A版选修2-2(2021年整理)

高中数学 专题1.1.3 导数的几何意义教案 新人教A版选修2-2(2021年整理)

高中数学专题1.1.3 导数的几何意义教案新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题1.1.3 导数的几何意义教案新人教A版选修2-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题1.1.3 导数的几何意义教案新人教A版选修2-2的全部内容。

导数的几何意义【教学目标】1.了解导函数的概念;了解导数与割线斜率之间的关系.2.理解曲线的切线的概念;理解导数的几何意义.3.会求曲线上某点处的切线方程,初步体会以直代曲的意义.【教法指导】本节学习重点:曲线的切线的概念、切线的斜率、导数的几何意义.本节学习难点:导数的几何意义.【教学过程】☆复习引入☆如果一个函数是路程关于时间的函数,那么函数在某点处的导数就是瞬时速度,这是函数的实际意义,那么从函数的图象上来考察函数在某点处的导数,它具有怎样的几何意义呢?这就是本节我们要研究的主要内容.☆探索新知☆思考1:如图,当点P n(x n,f(x n))(n=1,2,3,4)沿着曲线f(x)趋近于点P(x0,f(x0))时,割线PP n的变化趋势是什么?思考2:曲线的切线是不是一定和曲线只有一个交点?答:不一定.曲线的切线和曲线不一定只有一个交点,和曲线只有一个交点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.其图象特征是:切点附近的曲线均在切线的同侧,如l 2.思考3:曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同? 答:曲线f (x )在点(x 0,f (x 0))处的切线,点(x 0,f (x 0))一定是切点,只要求出k =f ′(x 0),利用点斜式写出切线即可;而曲线f (x )过某点(x 0,y 0)的切线,给出的点(x 0,y 0)不一定在曲线上,既使在曲线上也不一定是切点.【小结】曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k =f ′(x 0),欲求斜率,先找切点P (x 0,f (x 0)).思考4:如何求曲线f (x )在点(x 0,f (x 0))处的切线方程?答:先确定切点P (x 0,f (x 0)) ,再求出切线的斜率k =f ′(x 0),最后由点斜式可写出切线方程.2、例题剖析例1:(1)求曲线y =f (x )=x 2+1在点P (1,2)处的切线方程.(2)求函数y =3x 2在点(1,3)处的切线方程。

高中数学人教B版选修2—2第一章1.1.3《导数的几何意义》优秀教案

高中数学人教B版选修2—2第一章1.1.3《导数的几何意义》优秀教案

1.1.3 《导数的几何意义》教案教学目的:理解函数的导数的几何意义,会求已知切点的切线方程. 重点难点:已知函数图象上某点的坐标,求切线方程.学科素养:用所学探索未知,通过数学定义的教学,体会数学研究的手段方法. 一、引入与新课: 【提出问题】已知函数f (x )=x 2,求x =2时的导数。

解:因为22(2)(2)(2)2(4)y y x y x x x ∆=+∆-=+∆-=+∆∆所以4yx x∆=+∆∆ 因为00limlim(4)4x x yx x ∆→∆→∆=+∆=∆所以x =2时的导数为4。

我们知道,从数量上,函数在一点x 0的导数是函数在x 0处函数的瞬时变化率。

那么,从图形上看,一般函数()f x 在点x 0的导数有怎样的几何意义呢? 【抽象概括】设函数y =f (x )的图像如下图:AB 是过点A (x 0 ,f (x 0)),B (x 0+⊿x ,f (x 0+⊿x ))的割线, AB 的斜率是:00()()y f x x f x x x∆+∆-=∆∆ 就是函数y =f (x )的平均变化率。

【获得新知】当点B 沿着曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置是直线AD ,这条直线AD 叫做此曲线在点A 的切线。

由此可见,当⊿x 趋近于0时,割线AB 的斜率趋近于在点A 的切线AD 的斜率。

即切线AD 的斜率=000()()lim x f x x f x x∆→+∆-∆【解决问题】由导数意义可知,曲线y =f (x )在点(x 0 ,f (x 0))的切线的斜率等于f ′(x 0)即k =f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)Δx. 【概念领悟】1.函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f ′(x 0),相应的切线方程为:y -f (x 0)=f ′(x 0)(x -x 0),2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴,这时切线的斜率不存在,即f (x )在这点的导数也不存在。

高中数学选修2-2教学设计9:1.1.3 导数的几何意义教案

高中数学选修2-2教学设计9:1.1.3 导数的几何意义教案

1.1.3 导数的几何意义教学目标 1.了解导函数的概念,理解导数的几何意义.2.会求简单函数的导函数.3.根据导数的几何意义,会求曲线上某点处的切线方程.教学知识梳理知识点一导数的几何意义如图,P n的坐标为(x n,f(x n))(n=1,2,3,4),P的坐标为(x0,y0),直线PT为在点P处的切线.思考1割线PP n的斜率k n是多少?[答案]割线PP n的斜率k n=f(x n)-f(x0) x n-x0.思考2当点P n无限趋近于点P时,割线PP n的斜率k n与切线PT的斜率k有什么关系?[答案]k n无限趋近于切线PT的斜率k.梳理(1)切线的定义:设PP n是曲线y=f(x)的割线,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT 称为曲线y =f (x )在点P 处的切线.(2)导数f ′(x 0)的几何意义:导数f ′(x 0)表示曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)Δx.(3)切线方程:曲线y =f (x )在点(x 0,f (x 0))处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 知识点二 导函数思考 已知函数f (x )=x 2,分别计算f ′(1)与f ′(x ),它们有什么不同. [答案] f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=2.f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx=2x ,f ′(1)是一个值,而f ′(x )是一个函数.梳理 对于函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数,则当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y =f (x )的导函数(简称导数), 即f ′(x )=y ′=lim Δx →0 f (x +Δx )-f (x )Δx.特别提醒:区别联系f ′(x 0)f ′(x 0)是具体的值,是数值 在x =x 0处的导数f ′(x 0)是导函数f ′(x )在x =x 0处的函数值,因此求函数在某一点处的导数,一般先求导函数,再计算导函数在这一点的函数值f ′(x )f ′(x )是函数f (x )在某区间I 上每一点都存在导数而定义的一个新函数,是函数题型探究类型一 求切线方程命题角度1 曲线在某点处的切线方程例1 已知曲线C :y =13x 3+43.求曲线C 在横坐标为2的点处的切线方程.解 将x =2代入曲线C 的方程得y =4, ∴切点P (2,4).=2|x y'=lim Δx →0 ΔyΔx=lim Δx →0 13(2+Δx )3+43-13×23-43Δx =lim Δx →0[4+2Δx +13(Δx )2]=4, ∴k ==2|x y'=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0. 反思与感悟 求曲线在某点处的切线方程的步骤跟踪训练1 曲线y =x 2+1在点P (2,5)处的切线与y 轴交点的纵坐标是________. [答案]-3[解析]∵=2|x y'=lim Δx →0ΔyΔx=lim Δx →0 (2+Δx )2+1-22-1Δx =lim Δx →0 (4+Δx )=4, ∴k ==2|x y'=4.∴曲线y =x 2+1在点(2,5)处的切线方程为 y -5=4(x -2),即y =4x -3. ∴切线与y 轴交点的纵坐标是-3. 命题角度2 曲线过某点的切线方程例2 求过点(-1,0)与曲线y =x 2+x +1相切的直线方程.解 设切点为(x 0,x 20+x 0+1), 则切线的斜率为k =lim Δx →0 (x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)Δx =2x 0+1.又k =(x 20+x 0+1)-0x 0-(-1)=x 20+x 0+1x 0+1,∴2x 0+1=x 20+x 0+1x 0+1.解得x 0=0或x 0=-2.当x 0=0时,切线斜率k =1,过(-1,0)的切线方程为 y -0=x +1,即x -y +1=0.当x 0=-2时,切线斜率k =-3,过(-1,0)的切线方程为y -0=-3(x +1),即3x +y +3=0.故所求切线方程为x -y +1=0或3x +y +3=0.反思与感悟 过点(x 1,y 1)的曲线y =f (x )的切线方程的求法步骤 (1)设切点(x 0,f (x 0)). (2)建立方程f ′(x 0)=y 1-f (x 0)x 1-x 0.(3)解方程得k =f ′(x 0),x 0,y 0,从而写出切线方程.跟踪训练2 求函数y =f (x )=x 3-3x 2+x 的图象上过原点的切线方程.解 设切点坐标为(x 0,y 0),则y 0=x 30-3x 20+x 0,∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3-3(x 0+Δx )2+(x 0+Δx )-(x 30-3x 20+x 0) =3x 20Δx +3x 0(Δx )2-6x 0Δx +(Δx )3-3(Δx )2+Δx ,∴Δy Δx=3x 20+3x 0Δx -6x 0+1+(Δx )2-3Δx , ∴f ′(x 0)=lim Δx →0Δy Δx=3x 20-6x 0+1. ∴切线方程为y -(x 30-3x 20+x 0)=(3x 20-6x 0+1)·(x -x 0). ∵切线过原点,∴x 30-3x 20+x 0=3x 30-6x 20+x 0,即2x 30-3x 20=0,∴x 0=0或x 0=32, 故所求切线方程为x -y =0或5x +4y =0. 类型二 利用图象理解导数的几何意义例3 已知函数f (x )的图象如图所示,则下列不等关系中正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(2)<f (3)-f (2)<f ′(3)C .0<f ′(3)<f (3)-f (2)<f ′(2)D .0<f (3)-f (2)<f ′(2)<f ′(3) [答案]C[解析]k AB =f (3)-f (2)3-2=f (3)-f (2),f ′(2)为函数f (x )的图象在点B (2,f (2))处的切线的斜率, f ′(3)为函数f (x )的图象在点A (3,f (3))处的切线的斜率, 根据图象可知0<f ′(3)<f (3)-f (2)<f ′(2).反思与感悟 导数的几何意义就是切线的斜率,所以比较导数大小的问题可以用数形结合思想来解决.跟踪训练3 若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是( )[答案]A[解析]依题意,y=f′(x)在[a,b]上是增函数,则在函数f(x)的图象上,各点的切线的斜率随着x的增大而增大,观察四个选项的图象,只有A满足.类型三求切点坐标例4已知曲线f(x)=x2-1在x=x0处的切线与曲线g(x)=1-x3在x=x0处的切线互相平行,求x0的值.解对于曲线f(x)=x2-1,k1=limΔx→0f(x0+Δx)-f(x0)Δx=2x0.对于曲线g(x)=1-x3,k 2=lim Δx →0 g (x 0+Δx )-g (x 0)Δx=lim Δx →0 1-(x 0+Δx )3-(1-x 30)Δx =-3x 20. 由题意得2x 0=-3x 20, 解得x 0=0或-23.反思与感悟 求切点坐标的一般步骤 (1)设出切点坐标.(2)利用导数或斜率公式求出斜率.(3)利用斜率关系列方程,求出切点的横坐标. (4)把横坐标代入曲线或切线方程,求出切点纵坐标.跟踪训练4 直线l :y =x +a (a ≠0)和曲线C :f (x )=x 3-x 2+1相切,则a 的值为________,切点坐标为________. [答案]3227 ⎝⎛⎭⎫-13,2327 [解析]设直线l 与曲线C 的切点为(x 0,y 0),因为f ′(x )=lim Δx →0 (x +Δx )3-(x +Δx )2+1-(x 3-x 2+1)Δx =3x 2-2x ,则f ′(x 0)=3x 20-2x 0=1解得x 0=1或x 0=-13, 当x 0=1时,f (x 0)=x 30-x 20+1=1, 又点(x 0,f (x 0))在直线y =x +a 上,将x 0=1,y 0=1. 代入得a =0,与已知条件矛盾,舍去. 当x 0=-13时,f (x 0)=⎝⎛⎭⎫-133-⎝⎛⎭⎫-132+1=2327. 将⎝⎛⎭⎫-13,2327代入直线y =x +a 中,得a =3227.当堂检测1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0 D .f ′(x 0)不存在[答案]B[解析]∵切线x +2y -3=0的斜率为-12,∴f ′(x 0)=-12<0.2.设曲线f (x )=ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B.12 C .-12D .-1 [答案]A[解析]因为f ′(1)=lim Δx →0 a (1+Δx )2-a ×12Δx =lim Δx →0 2a Δx +a (Δx )2Δx =lim Δx →0 (2a +a Δx )=2a , 所以2a =2,所以a =1.3.已知函数y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定 [答案]B[解析]由导数的几何意义,知f ′(x A ),f ′(x B )分别是切线在点A ,B 处切线的斜率,由图象可知f ′(x A )<f ′(x B ).4.已知曲线y =f (x )=2x 2+a 在点P 处的切线方程为8x -y -15=0,则实数a 的值为________. [答案]-7[解析]设点P (x 0,2x 20+a ). 由导数的几何意义可得, f ′(x 0)=lim Δx →0ΔyΔx=lim Δx →0 2(x 0+Δx )2+a -(2x 20+a )Δx =4x 0=8.∴x 0=2,∴P (2,8+a ).将x =2,y =8+a ,代入8x -y -15=0, 得a =-7.5.已知曲线f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 围成的三角形的面积为16,则a =________. [答案]±1[解析]∵f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0 (x +Δx )3-x 3Δx=3x 2, ∴曲线f (x )=x 3在点(a ,a 3)处的切线斜率为f ′(a )=3a 2, ∴切线方程为y -a 3=3a 2(x -a ), 即y =3a 2x -2a 3.令y =0得切线与x 轴的交点为⎝⎛⎭⎫23a ,0, 由题设知三角形面积为12⎪⎪⎪⎪a -23a |a 3|=16, 得a =±1.。

113导数的几何意义-云南省梁河县第一中学高中数学人教A版选修2-2学案(无答案)

113导数的几何意义-云南省梁河县第一中学高中数学人教A版选修2-2学案(无答案)

1.1.3 导数的几何意义一、学习目标1.了解导函数的概念;了解导数与割线斜率之间的关系.2.理解曲线的切线的概念;理解导数的几何意义.3.会求曲线上某点处的切线方程,初步体会以直代曲的意义.二、知识点梳理1、导数的几何意义:函数y =f (x )在点x =x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的 .也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 .相应地,切线方程为 .2、函数的导函数:当x =x 0时,f ′(x 0)是一个确定的数,则当x 变化时,f ′(x )是x 的一个函数,称f ′(x )是f (x )的导函数(简称导数).f ′(x )也记作y ′,即f ′(x )=y ′=lim Δx →0 Δx f(x +Δx -f(x .三、例题与变式例1、若曲线y =x 3+3ax 在某点处的切线方程为y =3x +1,求a 的值.变式1、求过曲线y =x 1在点21处的切线方程.例2、已知曲线y =2x 2-7,求曲线过点P (3,9)的切线方程.变式2、求过点A (2,0)且与曲线y =x 1相切的直线方程.例3、在曲线y =x 2上过哪一点的切线,(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)与x 轴成135°的倾斜角.变式3、已知抛物线y =2x 2+1,求(1)抛物线上哪一点的切线平行于直线4x -y -2=0?(2)抛物线上哪一点的切线垂直于直线x +8y -3=0?四、目标检测1、已知曲线y =f (x )=2x 2上一点A (2,8),则点A 处的切线斜率为( )A.4B.16C.8D.22、若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A.a =1,b =1B.a =-1,b =1C.a =1,b =-1D.a =-1,b =-13、已知曲线y =21x 2-2上一点P 23,则过点P 的切线的倾斜角为( )A.30°B.45°C.135°D.165°4、已知曲线y =f (x )=2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为________.5、曲线y =2x 2+1在点P (-1,3)处的切线方程为________________.五、课堂小结六、课外作业(见步步高)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.3 导数的几何意义
【学习目标】理解曲线的切线的概念, 通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题
【重点难点】曲线的切线的概念、切线的斜率、导数的几何意义
一、自主学习
要点1导数的几何意义
f′(x0)是曲线y=f(x)在点(x0,f(x0))处的相应的切线方程为:
要点2导数的物理意义
指如果物体运动的规律是s(t),那么物体在时刻t的瞬时速度即为v=
要点3导函数
y=f(x)的导函数(导数)是f′(x)=y′=.
试一试
1.f(x)在点x0处的导数f′(x0)与函数f(x)的导数f′(x)有何区别?
二、合作,探究,展示,点评
题型一求曲线上某点处的切线方程
例1求曲线f(x)=x3+2x+1在点(1,4)处的切线方程.
思考题1已知曲线y=x+1
x上一点A(2,
5
2).求:
(1)在点A处的切线的斜率;(2)在点A处的切线方程.
例2曲线y=x3在x0=0处的切线是否存在?若存在,求其方程.思考题2曲线y=
1
x在(1,1)处的切线斜率为___ _____,切线倾斜角为________.
题型二求过某点的切线方程
例3求抛物线y=-3x2+1过点P(1,-1)的切线方程.
思考题3求抛物线y=x2过点(
5
2,6)的切线方程.
题型三求导函数
例4求函数y=x2+ax+b(a、b为常数)的导数.
思考题4函数f(x)=
1
x的导数为()
A.
1
x B.1 C.
1
x2D.-
1
x2
题型四求过某一点处的导数
例5求函数y=f(x)=2x2+4x在x=3处的导数.
思考题5 已知函数f(x)=ax2+c,且f′(1)=2,求a.
三、知识小结
1.位移的导数是速度.速度的导数是加速度.
2.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则切线方程为y-f(x0)=f′(x0)(x-x0);若已知点不在切线上,则设出切点(x0,f(x0)),表示出切线方程,然后求出切点.
3.函数f(x)在点x0处有导数,则在该点处函数f(x)的曲线必有切线,且导数值是该切线的斜率;但函数f(x)的曲线在点x0处有切线,而函数f(x)在该点处不一定可导,如f(x)=x在x=0处有切线,但它不可导.
《导数的概念》课时作业
一、选择题
1.已知函数y=f(x)在x=x0处的导数为11,则lim
Δx→0f(x0-Δx)-f(x0)
Δx=()
A.11 B.-11 C.1
11D.-1
11
2.函数f(x)在x=0可导,则lim
h→a f(h)-f(a)
h-a
=()
A.f(a) B.f′(a) C.f′(h) D.f(h)
3.已知函数y=x2+1的图像上一点(1,2)及邻近点(1+Δx,2+Δy),则lim
Δx→0Δy
Δx=()
A.2 B.2x C.2+Δx D.2+Δx2
4.设f(x)为可导函数,且满足lim
x→0f(1)-f(1-2x)
2x=-1,则f′(1)的值为()
A.2 B.-1 C.1 D.-2
二、填空题
5.一个物体的运动方程为S=1-t+t2,其中S的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是________.
6.函数y=(3x-1)2在x=x0处的导数为0,则x0=________.
7.设f(x)=ax+4,若f′(1)=2,则a=________.
8.质点M按规律s=2t2+3做直线运动(位移单位:m,时间单位:s),则质点M的瞬时速度等于8 m/s时的时刻t的值为________.9.已知f(x)=
1
x,则lim
Δx→0
f(2+Δx)-f(2)
Δx的值是________.
10.如图,函数f(x)的图像是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))=________;lim
Δx→0
f(1+Δx)-f(1)
Δx=______.
三、解答题
11.设f(x)=x2,求f′(x0),f′(-1),f′(2).
12.某物体运动规律是S=t2-4t+5,问什么时候此物体的瞬时速度为0?
13.若f′(x0)=2,求li m
k→0
f(x0-k)-f(x0)
2k的值.
14.若一物体运动方程如下:(位移:m,时间:s) s=
⎩⎪

⎪⎧3t2+2(t≥3),①
29+3(t-3)2(0≤t<3).②求:(1)物体在t∈[3,5]内的平均速度;
(2)物体的初速度v0;(3)物体在t=1时的瞬时速度.。

相关文档
最新文档