(完整)高一上学期数学知识点大全,推荐文档
高一数学上册全单元知识点

高一数学上册全单元知识点一、函数与导数1. 函数与映射- 函数的定义与性质- 映射的概念与表示2. 函数的表示与性质- 函数的图像与坐标系- 奇偶函数与周期函数- 函数的单调性与最值3. 函数的运算- 函数的四则运算与复合运算- 函数的反函数与恒等函数- 函数的映射关系与可逆性4. 导数与函数的变化率- 函数的导数定义与几何意义- 导数的性质与计算方法- 函数的单调区间与极值点5. 初等函数与导数- 幂函数与指数函数的导数- 三角函数与反三角函数的导数- 对数函数与常数函数的导数二、二次函数与一元二次方程1. 二次函数的图像特征- 二次函数的标准形式与顶点形式- 二次函数图像的平移与伸缩- 二次函数图像的对称性与特殊情况2. 二次函数与一元二次方程- 二次函数与一元二次方程的关系- 一元二次方程的根与因式分解- 一元二次方程的解的判别式与求解方法3. 二次函数与一元二次不等式- 二次函数与一元二次不等式的关系- 一元二次不等式的解与解集表示- 一元二次不等式的图像与应用三、平面向量与解析几何1. 平面向量的概念与运算- 平面向量的定义与性质- 平面向量的数量积与向量投影- 平面向量的线性运算与共线性判定2. 解析几何的基本概念- 点、直线和平面的坐标表示- 直线和平面的位置关系与垂直判定- 点到直线的距离与角平分线的性质3. 直线与圆的方程- 直线的斜截式、截距式与一般式- 圆的标准方程与一般方程- 直线与圆的位置关系与交点计算4. 空间向量与空间解析几何- 空间向量的概念与坐标表示- 空间向量的数量积与向量投影- 空间点、直线和平面的方程与位置关系四、三角函数与解三角形1. 三角函数的基本概念与性质- 弧度制与角度制的换算- 三角函数的定义与性质- 三角恒等式的推导与应用2. 三角函数的图像与变换- 三角函数图像的周期与轴对称性- 三角函数的平移、挤压与反转变换- 三角函数图像的合成与拆分3. 三角函数的应用- 幅角的求解与解的表示- 三角函数在周期内的性质与应用- 三角函数与三角方程的关系4. 解三角形的基本原理与方法- 根据已知条件解三角形- 利用解三角形求解实际问题- 解三角形的特殊情况与应用五、概率统计与排列组合1. 概率与事件- 概率的基本概念与性质- 事件的概念与运算- 事件的概率计算与应用2. 随机变量与概率分布- 随机变量的概念与分类- 概率分布的概念与性质- 随机变量的数学期望与方差3. 排列与组合的基本概念- 排列与组合的定义与计算公式- 二项式定理的推导与应用- 排列组合在实际问题中的应用4. 统计与抽样调查- 统计数据的搜集与整理- 抽样调查的基本方法与误差分析- 统计图表的制作与分析。
高一上学期数学详细知识点

高一上学期数学详细知识点一、代数与函数1. 数与式- 自然数、整数、有理数、实数、复数的概念及性质;- 代数式概念、相等与恒等、同类项与合并、合并与提取公因式。
2. 一次函数与二次函数- 一次函数的定义、图像、性质及其应用;- 二次函数的定义、图像、极值、性质及其应用。
3. 指数与对数函数- 指数函数的定义、图像、性质及其应用;- 对数函数的定义、图像、性质及其应用。
二、平面几何与向量1. 图形的基本概念- 点、线、面的定义及性质;- 直线、射线、线段的定义及性质;- 角的定义、角平分线、垂直角、同位角。
2. 直线与圆- 相交直线的性质、垂直与平行、角平分线; - 圆的定义、圆心角、弧、弦、切线的性质; - 切线定理及其应用。
3. 向量的基本概念- 向量的定义、模、方向及性质;- 向量的表示、共线与平行、运算法则。
三、立体几何1. 空间几何基本概念- 空间图形的种类及其特点;- 空间几何图形的投影及性质。
2. 空间直线与平面- 面的性质、平面的位置关系;- 直线与面的位置关系、直线与平面的交线; - 平面与平面的位置关系及其交线。
3. 空间向量- 空间向量的概念及运算;- 平面向量与空间向量的关系。
四、数列与数学归纳法1. 数列的概念与性质- 数列的定义及基本性质;- 等差数列与等比数列的定义与性质。
2. 数列的求和与通项公式- 数列的求和公式及其应用;- 等差数列与等比数列的通项公式及其应用。
3. 数学归纳法- 数学归纳法的原理及应用。
五、概率与统计1. 概率的基本概念- 随机试验的基本概念及其性质;- 事件、样本空间、概率的定义。
2. 概率计算- 古典概型与几何概型;- 概率计算的方法与公式。
3. 统计图表与统计量- 统计图表的绘制与分析;- 数据的统计量、均值、中位数、众数。
六、三角函数1. 弧度制及三角函数的定义- 弧度制与角度制的转换;- 正弦、余弦、正切函数的定义。
2. 三角函数的性质与图像- 三角函数的性质及其应用;- 三角函数图像的特点及变换。
高一上数学知识点全总结

高一上数学知识点全总结一、集合与函数1. 集合的概念与表示方法1.1 集合的定义1.2 集合的元素1.3 集合的表示方法:枚举法、描述法、扩展法2. 集合的运算与关系2.1 并集、交集与差集的定义及性质2.2 子集、真子集与集合相等的概念2.3 集合的运算律和运算性质3. 函数的概念与表示方法3.1 函数的定义3.2 函数的图像与函数的性质3.3 函数关系的表示方法:映射、集合对、秩序对4. 函数的基本性质4.1 定义域、值域和对应变量的概念4.2 奇函数与偶函数的定义与性质4.3 单调性、奇偶性与周期性的判定方法二、数列与等差数列1. 数列的概念与表示方法1.1 数列的定义与性质1.2 数列的通项公式1.3 数列的前n项和2. 等差数列的性质与公式2.1 等差数列的定义与性质2.2 等差数列的通项公式与前n项和公式2.3 特殊的等差数列:等差数列的倒数列、等差数列的相乘列3. 等差数列的应用3.1 等差中数的性质与定理3.2 等差数列求和问题3.3 等差数列在实际问题中的应用:等时速度问题、等温度变化问题三、平面几何图形的性质与计算1. 点、线、面和体的概念1.1 点的概念与性质1.2 线的概念与性质1.3 面的概念与性质1.4 体的概念与性质2. 三角形的性质与计算2.1 三角形的定义与性质2.2 三角形的内角和与外角性质2.3 三角形的周长与面积的计算公式2.4 特殊的三角形:等边三角形、等腰三角形3. 直角三角形与勾股定理3.1 直角三角形的概念与性质3.2 勾股定理的表述与证明3.3 勾股定理的应用:求三角形的边长与判断三角形类型四、直线方程与坐标系1. 直线的方程1.1 斜率与直线的关系1.2 直线的点斜式与斜截式方程1.3 直线的一般式方程与截距式方程2. 坐标系及其应用2.1 直角坐标系与平面直角坐标系2.2 点的坐标与位置关系的判定2.3 两点间的距离与点到直线的距离3. 直线的倾斜角及其性质3.1 直线的倾斜角定义及计算方法3.2 直线平行与垂直的判定方法3.3 直线的夹角、交角以及相关性质五、解析几何与向量1. 向量的概念与表示方法1.1 向量的定义与性质1.2 向量的表示方法:坐标表示、数量表示、矢量表示2. 向量的运算2.1 向量的加法与减法2.2 向量的数量乘法与数量除法2.3 向量的数量积与向量积3. 空间几何与平面几何3.1 平面与直线的关系与性质3.2 平面与平面的关系与性质3.3 三角形、四边形及其它多边形的性质与计算总结:高一上学期的数学知识点包括集合与函数、数列与等差数列、平面几何图形的性质与计算、直线方程与坐标系以及解析几何与向量等内容。
高一数学上 全部知识点

高一数学上全部知识点一、代数与函数1.整式的加减乘除、乘方化简2.一元一次方程与一元一次不等式3.二次函数的定义、性质、图像与应用4.基本初等函数与反函数5.实数与绝对值6.数列的概念与常用数列的性质7.分式的化简与分式方程的解法二、平面几何1.平面直角坐标系与向量2.多边形的定义、性质与计算3.圆的定义、性质与计算4.三角形的定义、性质与计算5.相似三角形的判定与计算6.三角函数的定义、性质与计算7.三角函数的应用三、立体几何1.立体图形的投影与展开2.平行线与平面3.多面体的定义、性质与计算4.球的定义、性质与计算5.三棱锥与四棱锥的定义、性质与计算6.正多面体与棱柱的定义、性质与计算四、概率与统计1.随机事件的概念与性质2.概率的定义、性质与计算3.频率与概率的关系4.抽样调查与统计分析5.常用的统计图表的制作与分析6.正态分布的性质与应用五、数学思想方法及数论1.数学的证明方法与思想2.方程与不等式的证明3.数论的基本概念与性质4.整除性与素数的性质5.最大公约数与最小公倍数的计算6.同余关系与模运算六、平面向量与解析几何1.平面向量的概念与运算2.平面向量的线性相关与线性无关3.空间直角坐标系与空间向量4.平面与直线的位置关系5.平面的方程与直线的方程6.平行线与垂直线的判定与性质七、导数与微分1.导数的定义与性质2.常用函数的导数与导数公式3.函数的单调性与极值4.函数图形的描绘与性质5.函数的近似计算与应用6.微分的定义与性质八、不等式与极限1.不等式的基本性质与解法2.绝对值不等式的求解3.函数不等式的解法4.极限的定义与性质5.极限的运算法则与计算6.自然对数与指数函数的极限计算九、数理统计1.随机事件与概率2.频率与概率的估计3.统计图表的绘制与分析4.总体与样本的概念与性质5.统计量的计算与应用6.抽样调查与统计分析总结:高一数学涉及了代数与函数、平面几何、立体几何、概率与统计、数学思想方法及数论、平面向量与解析几何、导数与微分、不等式与极限、数理统计等多个知识点。
高一上册的数学知识点整理(优秀7篇)

高一上册的数学知识点整理(优秀7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高一上册的数学知识点整理(优秀7篇)作为一名无私奉献的老师,常常要写一份优秀的教案,借助教案可以提高教学质量,收到预期的教学效果。
高一上册数学知识点(实用6篇)

高一上册数学知识点(实用6篇)高一上册数学知识点(1)0的所有实数,q不能是偶数;2、已知函数f(_)=3_+k(k为常数),A(-2k,2)是函数y=f-1(_)图象上的点.[来源](1)求实数k的值及函数f-1(_)的解析式;(2)将y=f-1(_)的图象按向量a=(3,0)平移,得到函数y=g(_)的图象,若2f-1(_+-3)-g(_)≥1恒成立,试求实数m的取值范围.高一上册数学知识点(2)几何体的展开图、几何体的三视图仍是高考的热点.三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.知识结构:多面体的结构特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.高一上册数学知识点(3)函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
(完整版)高数上册知识点

高等数学上册知识点一、 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f x x =→间断点 第一类:左右极限均存在. ( 可去间断点、跳跃间断点)第二类:左右极限、至少有一个不存在. (无穷间断点、振荡间断点)5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论. (二) 极限 1、 定义1) 数列极限 : εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限 :εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+=)()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔; Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换) 4、 求极限的方法1)单调有界准则; 2)夹逼准则; 3)极限运算准则及函数连续性;4) 两个重要极限: a) 1sin lim 0=→xx x b) e x x x x x x =+=++∞→→)11(lim )1(lim 15)无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~ b) 221~cos 1x x - c) x ex~1-,(a x a x ln ~1-) d)x x ~)1ln(+ (ax x a ln ~)1(log +) e) x x αα~1)1(-+二、 导数与微分(一) 导数 1、定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→- , 右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔ 2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率.3、可导与连续的关系: 4、求导的方法1) 导数定义; 2)基本公式; 3)四则运算; 4)复合函数求导(链式法则); 5) 隐函数求导数; 6)参数方程求导; 7)对数求导法. 5、 高阶导数1)定义:⎪⎭⎫ ⎝⎛=dx dy dx d dx y d 222)Leibniz 公式:()∑=-=nk k n k k n n v u C uv 0)()()( (二) 微分1) 定义:)()()(00x o x A x f x x f y ∆+∆=-∆+=∆,其中A 与x ∆无关. 2) 可微与可导的关系:可微⇔可导,且dx x f x x f dy )()(00'=∆'=三、 微分中值定理与导数的应用 (一) 中值定理1、 Rolle 定理:若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈; 3))()(b f a f =;则0)(),,(='∈∃ξξf b a 使. 2、 Lagrange 中值定理:若函数)(x f 满足:1)],[)(b a C x f ∈;2)),()(b a D x f ∈;则))(()()(),,(a b f a f b f b a -'=-∈∃ξξ使. 3、 Cauchy 中值定理:若函数)(),(x F x f 满足: 1)],[)(),(b a C x F x f ∈; 2)),()(),(b a D x F x f ∈;3)),(,0)(b a x x F ∈≠'则)()()()()()(),,(ξξξF f a F b F a f b f b a ''=--∈∃使(二) 洛必达法则 (三) Taylor 公式 (四) 单调性及极值1、单调性判别法:],[)(b a C x f ∈,),()(b a D x f ∈,则若0)(>'x f ,则)(x f 单调增加;则若0)(<'x f ,则)(x f 单调减少.2、 极值及其判定定理:a) 必要条件:)(x f 在0x 可导,若0x 为)(x f 的极值点,则0)(0='x f . b) 第一充分条件:)(x f 在0x 的邻域内可导,且0)(0='x f ,则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.c) 第二充分条件:)(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,则 ①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.3、 凹凸性及其判断,拐点1))(x f 在区间I 上连续,若2)()()2( ,,212121x f x f x x f I x x +<+∈∀,则称)(x f 在区间I 上的图形是凹的;若2)()()2(,,212121x f x f x x f I x x +>+∈∀,则称)(x f 在区间I 上的图形是凸的. 2)判定定理:)(x f 在],[b a 上连续,在),(b a 上有一阶、二阶导数,则 a) 若0)(),,(>''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凹的; b) 若0)(),,(<''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凸的.3)拐点:设)(x f y =在区间I 上连续,0x 是)(x f 的内点,如果曲线)(x f y =经过点))(,(00x f x 时,曲线的凹凸性改变了,则称点))(,(00x f x 为曲线的拐点.(五) 不等式证明1、 利用微分中值定理;2、利用函数单调性;3、利用极值(最值). (六) 方程根的讨论1、连续函数的介值定理;2、Rolle 定理;3、函数的单调性;4、极值、最值;5、凹凸性. (七) 渐近线1、 铅直渐近线:∞=→)(lim x f ax ,则a x =为一条铅直渐近线;2、 水平渐近线:b x f x =∞→)(lim ,则b y =为一条水平渐近线;3、 斜渐近线:k xx f x =∞→)(lim ,b kx x f x =-∞→])([lim 存在,则b kx y +=为一条斜渐近线.(八) 图形描绘四、 不定积分 (一) 概念和性质1、 原函数:在区间I 上,若函数)(x F 可导,且)()(x f x F =',则)(x F 称为)(x f 的一个原函数.2、不定积分:在区间I 上,函数)(x f 的带有任意常数的原函数称为)(x f 在区间I 上的不定积分.3、 基本积分表(P188,13个公式);4、 性质(线性性).(二) 换元积分法1、 第一类换元法(凑微分):[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2、 第二类换元法(变量代换):[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ(三) 分部积分法:⎰⎰-=vdu uv udv(四) 有理函数积分 : 1、“拆”; 2、变量代换(三角代换、倒代换、根式代换等).五、 定积分(一) 概念与性质:1、 定义:∑⎰=→∆=ni i i ba x f dx x f 1)(lim )(ξλ2、性质:(7条)性质7 (积分中值定理) 函数)(x f 在区间],[b a 上连续,则],[b a ∈∃ξ,使))(()(a b f dx x f ba-=⎰ξ(平均值:ab dx x f f ba-=⎰)()(ξ)(二) 微积分基本公式(N —L 公式)1、变上限积分:设⎰=Φxa dt t f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dxd x x ααβββα'-'=⎰ 2、N —L 公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰(三) 换元法和分部积分1、换元法:⎰⎰'=βαϕϕt t t f dx x f bad )()]([)( 2、分部积分法:[]⎰⎰-=baba ba vdu uv udv(四) 反常积分1、 无穷积分:⎰⎰+∞→+∞=tat adx x f dx x f )(lim)(, ⎰⎰-∞→∞-=btt bdx x f dx x f )(lim)(, ⎰⎰⎰+∞∞-+∞∞-+=0)()()(dx x f dx x f dx x f2、瑕积分:⎰⎰+→=btat badx x f dx x f )(lim )((a 为瑕点), ⎰⎰-→=tabt badx x f dx x f )(lim )((b 为瑕点)两个重要的反常积分:1) ⎪⎩⎪⎨⎧>-≤∞+=-∞+⎰1,11,d 1p p a p x x p a p 2) ⎪⎩⎪⎨⎧≥∞+<--=-=--⎰⎰1,1 ,1)()(d )(d 1q q qa b x b x a x x qb a q b a q六、 定积分的应用 (一) 平面图形的面积1、 直角坐标:⎰-=badx x f x f A )]()([122、极坐标:⎰-=βαθθϕθϕd A )]()([212122(二) 体积1、 旋转体体积:a)曲边梯形x b x a x x f y ,,),(===轴,绕x 轴旋转而成的旋转体的体积:⎰=bax dx x fV )(2πb)曲边梯形x b x a x x f y ,,),(===轴,绕y 轴旋转而成的旋转体的体积:⎰=b ay dx x xf V )(2π(柱壳法) 2、 平行截面面积已知的立体:⎰=badx x A V )((三) 弧长1、 直角坐标:[]⎰'+=badx x f s 2)(1 2、参数方程:[][]⎰'+'=βαφϕdt t t s 22)()(3、极坐标:[][]⎰'+=βαθθρθρd s 22)()(七、 微分方程 (一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程. 阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同. 特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程dx x f dy y g )()(=,两边积分⎰⎰=dx x f dy y g )()((三) 齐次型方程)(x y dx dy ϕ=,设xyu =,则dx du x u dx dy +=; 或)(y x dy dx φ=,设y x v =,则dy dv y v dy dx += (四) 一阶线性微分方程)()(x Q y x P dx dy =+ ,用常数变易法或用公式:⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C dx e x Q e y dx x P dx x P )()()( (五) 可降阶的高阶微分方程1、)()(x f yn =,两边积分n 次;2、),(y x f y '=''(不显含有y ),令p y =',则p y '='';3、),(y y f y '=''(不显含有x ),令p y =',则dydp p y =''(六) 线性微分方程解的结构1、21,y y 是齐次线性方程的解,则2211y C y C +也是;2、21,y y 是齐次线性方程的线性无关的特解,则2211y C y C +是方程的通解;3、*2211y y C y C y ++=为非齐次方程的通解,其中21,y y 为对应齐次方程的线性无关的解,*y 非齐次方程的特解.(七) 常系数齐次线性微分方程二阶常系数齐次线性方程:0=+'+''qy y p y特征方程:02=++q pr r ,特征根: 21,r r(八) 常系数非齐次线性微分方程 )(x f qy y p y =+'+''1、)()(x P e x f m xλ=,设特解)(*x Q e x y m xkλ=,其中 ⎪⎪⎩⎪⎪⎨⎧=是重根是一个单根不是特征根, λ, λ, λk 210 2、()x x P x x P e x f n l x ωωλsin )(cos )()(+=设特解[]x x R x x R e x y m mx k ωωλsin )(cos )()2()1(*+=, 其中 } ,max{n l m =,⎪⎩⎪⎨⎧++=是特征根不是特征根i i k ωλωλ ,1 ,0。
高一上册数学全套知识点

高一上册数学全套知识点本文将介绍高一上册数学的全套知识点。
包括数与式、一元一次方程与应用、函数与图像、三角形的性质等内容。
一、数与式1.自然数与整数的概念及表示方法2.有理数的性质与运算法则3.无理数的概念及表示方法4.实数的性质及数轴表示5.幂与指数的基本概念与运算法则6.根式的概念及运算法则7.分数的概念与运算法则8.科学计数法的表示与运算9.万位数以上数的读法与写法二、一元一次方程与应用1.一元一次方程的定义与解法2.一元一次方程的实际应用3.关于方程组的基本概念与解法4.含绝对值的一元一次方程的解法5.含有分数的一元一次方程的解法6.实际问题中一元一次方程的应用三、函数与图像1.函数的概念与基本性质2.常量函数、线性函数与二次函数的图像3.函数的符号表示与运算法则4.函数的定义域与值域的概念5.函数的增减性、奇偶性与周期性6.反函数的概念与求解方法7.复合函数的概念与求解方法8.函数与方程的关系与应用四、三角形的性质1.三角形的定义与分类2.勾股定理与勾股数的概念3.角平分线分割的性质4.三角形的内、外接圆与垂心、重心、外心、内心的概念5.相似三角形的定义与性质6.三角形面积的计算公式及应用7.正弦定理、余弦定理与正切定理的概念与应用8.不等式在三角形中的应用五、数列与数列的求和1.数列的概念与基本性质2.等差数列的定义与求和公式3.等比数列的定义与求和公式4.数列的迭代与递推关系5.数列在实际问题中的应用六、平面向量与坐标系1.平面向量的定义及表示方法2.向量的运算法则与性质3.空间直角坐标系与平面直角坐标系的建立4.平面向量在坐标系中的表示与运算5.向量的模、方向角与相等性质6.向量在几何中的应用七、解析几何基础1.坐标系中点与直线的表示方法2.点与线的相关性质及判定条件3.点到直线的距离公式与角平分线的性质4.直线的方程与图像的表示5.平行线、垂直线与角平分线的性质与判定条件6.直线之间关系的判定条件及应用以上是高一上册数学的全套知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
决定图像的什么?
(5)对数函数y loga x a 0,a 1 a 决定图像的什么?
y
(0<a<1) 1
y=ax(a>1) y=logax(a>1)
O1
x
(0<a<1)
引申 y 2a x3 6, y log a 3x2 3 过那个定点?
xn
(6)幂函数 y=
11、分数指数幂
m
(1) a n
如:集合A x|x2 2x 3 0 ,B x|ax 1
若B A,则实数a的值构成的集合为
3. 注意下列性质:
(1)集合 a1,a2,……,an 的所有子集的个数是2n ;
(2) A B A B A A U B B
(3)德摩根定律:
CU A U B CU AU CU B CU A B CU AU CU B
注意如下结论: (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函 数;一个偶函数与奇函数的乘积是奇函数。
(2)若f(x)是奇函数且定义域中有原点,则f(0) 0。
如:若f (x)
a·2 x 2x
a 1
2
为奇函数,则实数a
10. 你熟练掌握常用函数的图象吗?
(1)一次函数:y kx b k 0。k、b 决定图像的什么?
13、有理指数幂的运算性质
(1)
ar
as
ars (a
0, r, s Q)
新疆 王新敞
奎屯
(2)
(ar )s
ars (a
0, r, s Q) 新疆 王新敞
奎屯
(3) (ab)r
arbr (a
0, b
0, r Q) 新疆 王新敞
奎屯
14、指数式与对数式的互化式:
loga
N
b ab
N
(a 0, a 1, N
4. 对映射的概念了解吗? 映射 f:A→B,是否注意到 A 中元素的任意性和 B 中与之对应元素的唯一性 5. 函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域) 6. 求函数的定义域有哪些常见类型?
x4 x 例:函数 y lgx 32 的定义域是
7. 如何求复合函数的定义域?
(2)、另一类是直到型循环结构,它的功能是先执行,然后判断给定的条件 P 是否
成立,如果 P 仍然不成立,则继续执行 A 框,直到某一次给定的条件 P 成立为止,
此时不再执行 A 框,离开循环结构I。F 条件 THEN
19、条件语句与循环语句
语句 1
条件语句的一般格式有两种:
(1)IF—THEN—ELSE 语句; ELSE
(1) loga (MN ) loga M loga N ;
(2)
M loga N
loga M loga N ;
(3)
logam
Nn
n m loga
N (n, m R) 新疆 王新敞 奎屯
17、函数的零点
函数 f(x)的零点 方程 f(x)=0 的根 y=f(x)与 x 轴交点的横坐标
用较大的数 m 除以较小的数 n 得到一个商 S0 和一个余数 R0 ;(2):若 R0 =0,
则 n 为 m,n 的最大公约数;若 R0 ≠0,则用除数 n 除以余数 R0 得到一个商 S1 和一个
当内、外层函数单调性相同时f(x)为增函数,否则f(x)为减函数。)
9. 函数 f(x)具有奇偶性的前提条件是什么? (f(x)定义域关于原点对称)
若f (x) f (x)总成立 f (x)为奇函数 函数图象关于原点对称
若f (x) f (x)总成立 f (x)为偶函数 函数图象关于y轴对称
高一第一学期数学公式 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
如:集合A x|y lg x,B y|y lg x,C (x, y)|y lg x,A、B、C
中元素各表示什么?
2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。
语句 2
END IF
IF 条件 THEN 语句
END IF
(2)IF—THEN 语句。 循环语句的一般格式有两种:
(1)WHILE 语句的一般格式是
WHILE 条件 循环体 WEND
(2)UNTIL 语句的一般格式是 DO 循环体 LOOP UNTIL 条件
20、辗转相除法。也叫欧几里德算法,用辗转相除法求最大公约数的步骤如下:
0) 新疆 王新敞 奎屯
15、对数的换底公式
: loga
N
logm N logm a
( a 0 ,且 a 1, m 0 ,且 m 1, N 0 )
新疆 王新敞
奎屯
对数恒等式: aloga N
N ( a 0 ,且 a 1,
N 0 )新疆 王新敞 奎屯
16、对数的四则运算法则:若 a>0,a≠1,M>0,N>0,则
如:函数f (x)的定义域是 a,b ,b a 0,则函数F(x) f (x) f (x)的定
义域是_____________。 8. 如何用定义证明函数的单调性?
(取值、作差、利用因式分解配方判正负)
如何判断复合函数的单调性?
(y f (u),u (x),则y f(x)
(外层) (内层)
18、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
循环结构可细分为两类:
(1)、一类是当型循环结构,它的功能是当给定的条件 P 成立时,执行 A 框,A 框
执行完毕后,再判断条件 P 是否成立,如果仍然成立,再执行 A 框,如此反复执行
A 框,直到某一次条件 P 不成立为止,此时不再执行 A 框,离开循环结构。
(2)反比例函数:y= k (k 0) 。k 决定图像的什么?引申 y= k b(k 0) 表示
x
xa
什么?
(3)二次函数y
ax 2
bx
c
a
0
a x
b 2a
2
4ac 4a
b2
图象为抛物线
a,c, b , b2 4ac 决定图像的什么? 2a
(4)指数函数:y a x a 0,a 1
1
(
a
0,
m,
nNBiblioteka ,且n1) 新疆 王新敞
奎屯
n am
m
(2) a n
1
(
a
0,
m,
n
N
,且
n
1
) 新疆 王新敞
m
奎屯
an
12、根式的性质
( a ) a (1) n n
新疆
王新敞
奎屯
(2)当 n 为奇数时, n an a ;
当 n 为偶数时, n
an
a, a 0
新疆 王新敞
| a | a, a 0 奎屯