第二章单自由度系统自由振动)

合集下载

单自由度系统的无阻尼自由振动课件

单自由度系统的无阻尼自由振动课件
置开始量取 ),则自由振动的运动微分方程必数有关的常数。令 n2 c/ a
则自由振动的微分方程的标准形式:
xn2x0
方程的通解解为:xAsi nnt()
学习交流PPT
7

力 学或:
xC 1co nts C 2sin n t
C1,C2由初始条件决定
这里A和φ与C1和C2的关系为:
一、自由振动的概念:
学习交流PPT
2

单自由度系统的自由振动


以弹簧质量系统为力学模型
学习交流PPT
3
动 力运动过程中,总指向物体平衡位置的力称为恢复力。 学
物体受到初干扰后,仅在系统的恢复力作用下在其平衡位 置附近的振动称为无阻尼自由振动。
质量—弹簧系统:
令x为位移,以质量块的静平衡位置 为坐标原点,当系统受干扰时,根据 牛顿第二定律,有:
m x m g k(sx)
学习交流PPT
4
动 力在静平衡时有: 学
mg k s
振动微分方程为:
m x m g k(sx)
m x kx
令 n2 k / m g / s xn2x 0
方程的通解为:xAsi nnt()
学习交流PPT
5

力 学
xAsi nnt()
学习交流PPT
6
动 二力、单自由度系统无阻尼自由振动微分方程及其解 学对于任何一个单自由度系统,以x 为广义坐标(从平衡位
学习交流PPT
12
固有频率及固有周期
n
k m
固有圆频率,为了方便也称 为固有频率,是系统的固有 特性,与系统是否振动无关
只与振动系统的弹簧常量k和物块的质量 m 有关, 而与运动的初始条件无关,所以称为固有频率。

机械振动学_第二章单自由度振动系统

机械振动学_第二章单自由度振动系统

第二章单自由度系统振动§1-1 概述单自由度系统的振动理论是振动理论的理论基础。

(1)尽管实际的机械都是弹性体或多自由度系统,然而要掌握多自由度振动的基本规律,就必须先掌握单自由度系统的振动理论。

此外,(2)许多工程技术上的具体振动系统在一定条件下,也可以简化为单自由度振动系统来研究。

[举例如下:]例如:(1)悬臂锤削镗杆;(2)外圆磨床的砂轮主轴;(3)安装在地上的床身等。

[力学模型的简化方法]若忽略这些零部件中的镗杆、主轴和转轴的质量,只考虑它们的弹性。

忽略那些支承在弹性元件上的镗刀头、砂轮、床身等惯性元件的弹性,只考虑它们的惯性。

把它们看成是只有惯性而无弹性的集中质点。

于是,实际的机械系统近似地简化为单自由度线性振动系统的动力学模型。

在实际的振动系统中必然存在着各种阻尼,故模型中用一个阻尼器来表示。

阻尼器由一个油缸和活塞、油液组成。

汽车轮悬置系统等等。

[以上为工程实际中的振动系统]单自由度振动系统——指用一个独立参量便可确定系统位置的振动系统。

所有的单自由度振动系统经过简化,都可以抽象成单振子,即将系统中全部起作用的质量都认为集中到质点上,这个质点的质量m 称为当量质量,所有的弹性都集中到弹簧中,这个弹簧刚度k称为当量弹簧刚度。

以后讨论中,质量就是指当量质量,刚度就是指当量弹簧刚度。

在单自由度振动系统中,质量m、弹簧刚度k、阻尼系数C是振动系统的三个基本要素。

有时在振动系统中还作用有一个持续作用的激振力P。

应用牛顿运动定律,作用于一个质点上所有力的合力等于该质点的质量和该合力方向的加速度的乘积。

(牛顿运动定律)(达伦培尔原理)现取所有与坐标x 方向一致的力、速度和加速度为正,则:kx x C t P xm --= ωsin 0 (牛顿运动定律) (达伦培尔原理:在一个振动体上的所有各力的合力必等于零) (动静法分析:作用在振动体上的外力与设想加在此振动体上的惯性力组成平衡力系)上式经整理得,t P kx x C xm ωsin 0=++ (2.1) 该式就是单自由度线性振动系统的运动微分方程式的普遍式。

机械振动学 第二章

机械振动学 第二章

第二章单自由度系统第一节 概 述任何一个单自由度系统都可以用这样一个理论模型(图 2.1-1)来描述:它是由理想的质量m (“无弹性”、“无阻尼”的质量)、理想的弹簧k (“无质量”、“无阻尼”的弹簧)和理想的阻尼(“无质量”“无弹性”的阻尼器)三个基本元件所组成的系统。

系统的运动只沿一个方向,比如,沿x 方向发生。

如果系统受到外力的作用,则外力也只沿这一方向,比如,外力()F t ,沿x 方向的作用。

实际的机械系统是由许多零件、部件组成的,这些零件,部件的材料是既有质量,又有弹性和阻尼的物质,且有分布性质。

运动也不一定只发生在某一位置和只沿一个方向。

那么,为什么要讨论单自由度系统的振动呢?首先,研究单自由度系统的振动有实践意义。

很多机械系统,从振动学的角度看,为了满足工作性能的要求,只需研究其在最低阶自由振动频率附近的振动特性,而且在某一方向的振动决定了该系统工作性能的优劣。

这时,为了改善机器工作的性能,分析其振动特性,可以把系统合理地简化为一个单自由度系统。

虽然这是对实际系统的近似描述,但却使分析得以简化,抓住了问题的实质,满足了工程需要。

例如,前章中提及的汽车由于颠簸而引起的振动,在一定条件下,可简化为图2.1-1的单自由度系统。

其次,研究单自由度系统的振动具有理论意义,单自由度系统是最简单的振动系统,通过对单自由度系统的分析,能够简单明了地阐明机械学振动的一些基本概念、原理和方法。

这些概念、原理和方法对于整个机械振动学的研究是很重要的,它们是机械振动学的基础。

我们在这一部分将要讨论的系统都是时不变、集中参数的线性系统。

那么,什么样的系统是一个线性系统呢?从物理的观点看,一个系统(图2.1-2)受到一个外界激励(或输入)()1F t 时,可测得其响应(或输出)为()2x t 。

而受到激励()2F t 时,测得的响应力()2x t 。

它们可表示为()()()()1122F t x t F t x t →→} (2.1-1)如果受到的激励将是()()()1122F t a F t a F t =+,对于线性系统,可以预测系统的响应将是()()()1122x t a x t a x t =+,12a a 和为任意常数。

振动力学-单自由度振动系统

振动力学-单自由度振动系统

§2.2 无阻尼自由振动
2.2.1 运动微分方程
列微分方程的步骤: 1 确定坐标系,确定原点,确定坐标正向 2 惯性元件沿坐标正向有一个位移 考察惯性元件的受力情况 画隔离体图 3 根据牛顿第二定律列出运动微分方程 4 确定系统的初始运动状态,即确定运动微
分方程的初始条件。
图形
隔离体受 力分析
kx
衡时水平,求其系统 的微分方程和固有频
k

(提示:取静平衡
a
θ
m
位置为坐标原点,可
不考虑重力势能,当
偏角很小时,弹簧的
伸长,圆球的位移可
以表示为:a ,l)
2.2.3 有效质量
在前面的讨论中,都假定了弹性元件的质量远 远小于振动系统的集中质量,因而忽略弹性元 件的质量。这相当于忽略系统的一部分动能, 引起一定误差。
ce 2 mk 2mn
§2. 3 阻尼自由振动
阻尼比(第二个重要参数)
c c c ce 2 mk 2mn
特征方程解
=
s1,2


c 2m

c 2m
c2 4mk
2m
c2 (2m)2

k m
s1,2 n n 2 1
§2. 3 阻尼自由振动
k
m
x(t)
O
2.2.1 运动微分方程
1DOFS无阻尼自由振动运动微分方程
微分方程 首1形式
mx kx 0

x(0)

x0 ,
x0 (0)

0

x n2 x 0
x(0) x0, x0 (0) 0
第一个也是最重要的振动参数

第二章单自由度系统自由振动)

第二章单自由度系统自由振动)
二、单自由度系统的自由振动 1、无阻尼系统的自由振动 2、有阻尼系统的自由振动
三、单自由度系统在简谐激励作用下的受迫振动 1、简谐激励下的受迫振动响应及频谱分析 2、受迫振动的复数求解法--单位谐函数法 3、支座简谐激励(位移激励)引起的振动与被动隔振 4、偏心质量(力激励)引起的振动与主动隔振 5、测振传感器的原理
正弦型激励 周期激励 任意激励
k
kx m x
m
F(t)
mx kx F0 sin t
p2 k m
x p2x F0 sin t
第一章 概论
一、振动及其研究的问题 1、振动 2、振动研究的问题 振动隔离 在线控制 工具开发 动态性能分析 模态分析
第一章 概论
二、振动分类及研究振动的一般方法 1、振动分类:振动分析、振动环境预测、系统识别 2、研究振动的一般方法 (1)理论分析方法
建立系统的力学模型、建立运动方程、求解方程得到响应 (2)实验研究方法 (3)理论与实验相结合的方法
②旋转矢量表示法
③复数表示法
z Acos(t ) iAsin(t )
z Aei(t )
eit cost i sin t eit cost i sin t
x Im( Aei(t) ) Asin(t )
x

iAei(t )
振幅
A
x02


x0 p
2
初相位
arctan px0
x0
固有圆频率 p k m
(rad/s)
固有频率 f p 1 k
2 2 m
(HZ)
固有周期 T 1 2 m (s)
f
k
例题2.7 某仪器中一元件为等截面悬臂梁,梁的质 量可忽略。在梁的自由端由磁铁吸住两个集中质量 m1、m2。梁在静止时,断电使m2突然释放,求随 后m1的振动。

单自由度系统(自由振动)

单自由度系统(自由振动)

第二章 单自由度系统的自由振动本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。

§2-1 无阻尼系统的自由振动无阻尼单自由度系统的动力学模型如图1.1所示。

设质量为m ,单位是kg 。

弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。

弹簧在自由状态位置如图中虚线所示。

当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形∆:,同时也产生弹簧恢复力K ∆,当其等于重力W 时,则处于静平衡位置,即 W=K ⋅∆若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。

首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。

现设质量m 向下运动到x ,此时弹簧恢复力为K(∆+x),显然大于重力W ,由于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx xm (1-1-1 令mkp =2(1-1-2)单自由度无阻尼系统自由振动运动方程为02=+x p x(1-1-3)设方程的特解为 ste x =将上式代入(1-1-3)处特征方程及特征根为ips p s ±==+2,1220则(1-1-3)的通解为ptD pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4)C 、D 为任意积分常数,由运动的初始条件确定,设t=0时00,x xx x == (1-1-5)()x m x k W F=+∆-=∑量位静平衡位置 一自由度弹簧—质量系统 ∆==k mgW xx)则pt pxpt x x sin cos 00 += (1-1-6)经三角变换,又可表示为)sin(α+=pt A x(1-1-7)其中 001220,x px tg p x x A -=⎪⎪⎭⎫ ⎝⎛+=α (1-1-8) 自由振动的振幅A 和初相位角α与系统的参数和初始条件有关。

结构动力学 -单自由度体系的振动

结构动力学 -单自由度体系的振动
负号表示等效力的方向和地面加速度方向相反。
13
§2.2 无阻尼自由振动
自由振动(free vibration) :无外界干扰的体系振动形 态称为自由振动(free vibration)。振动是由初始位 移或初始速度或两者共同影响下所引起的。 无阻尼自由振动:如果阻尼系数等于零,则这种自由 振动称为无阻尼自由振动(undamped free vibration)。 假设由于外界干扰,质点离开平衡位置,干扰消失后, 质点将围绕静力平衡点作自由振动。
或:m y ( t) c y ( t) k ( t) y m y g ( t) P e( f t) f
Peff (t ) :等效荷载,即在地面加速度yg (t )影响下,结构的响
应就和在外荷载p (t )作用下的响应一样,只是外荷载 p (t )
等于质量和地面加速度的乘积。
干扰力的大小只能影响振幅A的大小,而对结构自
振周期T的大小没影响。
(2)自振周期与质量平方根成正比,质量越大,则
周期越大;自振周期与刚度的平方根成反比,刚度
越大,则周期越小。要改变结构的自振周期,只有
改变结构的质量或刚度。
24
§2.2 无阻尼自由振动
k g
m
st
(3)把集中质点放在结构上产生最大位移的地方,则可
1、位移以静力平衡位置作为基准的,而这样确定的位移 即为动力响应。
2、在求总挠度和总应力时,要把动力分析的结果与静
力分析结果相加。
9
§2.1运动方程的建立
3、支座运动的影响 结构的动位移和动应力既可以由动荷载引起,也
可以由结构支座的运动而产生。 1)由地震引起建筑物基础的运动; 2)由建筑物的振动而引起安置在建筑物内的设备 基底的运动等等。

第二章单自由度系统的自由振动

第二章单自由度系统的自由振动

可见动张力几乎是静张力的一半,由于
v kA k v km wn
因而为了降低动张力,应该降低系统的刚度
15
例2.2 图示的直升机桨 叶经实验测出其质量 为m,质心C距铰中心 O距离为l。现给予桨 叶初始扰动,使其微 幅摆动,用秒表测得 多次摆动循环所用的 时间,除以循环次数 获得近似的固有周期, 试求桨叶绕垂直铰O的 转动惯量。
第二章 单自由度系统的自由振动
以弹簧质量系统为力学模型,讨论单自由度 无阻尼系统的固有振动和自由振动, • 固有振动的表现形式为简谐振动,其固有频率 的计算方法有静变形法、能量法、瑞利法以及 等效刚度、等效质量法 • 有阻尼的系统根据阻尼的大小分为过阻尼、临 界阻尼及欠阻尼三种状态
1
单自由度系统的自由振动
一、自由振动的概念:
以弹簧质量系统为力学模型
2
运动过程中,总指向物体平衡位置的力称为恢复力。 物体受到初干扰后,仅在系统的恢复力作用下在其平衡位 置附近的振动称为无阻尼自由振动。 质量—弹簧系统: 令x为位移,以质量块的静平衡位置 为坐标原点,当系统受干扰时,有:
m mg k (s x) x
O l C mg
16
解:取图示坐标系,将直升机桨叶视为一物 理摆,根据绕固定铰的动量矩定理得到其 摆动微分方程
J 0 mgl sin
O l C mg
sin
n
mgl , J0
J0 mgl 0
J0 Tn 2 mgl
mgl J0 2 Tn2 4
m Tn 2 n k 2
固有周期
k / m g / s
10
固有频率及固有周期
k g wn m s
对于不易得到刚度或质量的系统, 若能测出静变形,可用上式计算固有频率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在简谐振动中,加速度的方向与位移的方向相反,大小与位移的大 小成正比,始终指向静平衡位置。
④简谐振动的合成
(2)周期振动的谐波分析
f (t) f (t nT) n 0, 1, 2,L
2
基频
T
一个周期函数如果满足如下条件,就可以展成傅立叶级数。
(1)在一个周期内连续或只有有限个间断点,且间断点的左右极限都存在;
四、单自由度系统在周期性激励作用下的受迫振动 1、谐波分析与叠加原理 2、傅立叶(Fourier)级数法
五、单自由度系统在任意激励作用下的受迫振动 1、脉冲响应函数法或杜哈梅(Duhamel)积分法 2、傅立叶(Fourier)变换法 3、拉普拉斯(Laplas)变换法
一、单自由度振动系统 1、单自由度系统及其振动微分方程建立 2、振动等效系统及外界激励 3、振动微分方程的求解
1 sin 5t
5
L
(3)振动的频谱分析 频率特性分析是经典控制理论中研究与分析系统特性的主要方法。利用此方
法可以将系统传递函数从复域引到具有明显物理概念的频域来分析系统的特性。
将频率特性分析方法用于振动分析,成为频谱分析。 引入频谱分析的重要性在于:
①可将任意激励函数分解为叠加的谐波信号,即可将周期激励函数分解为叠加 的频谱离散的谐波信号,可将非周期激励函数分解为叠加的频谱连续的谐波信 号。 ②对于无法用分析法求得传递函数或微分方程的振动系统,可以通过实验求 出系统的频率特性,进而得到系统的传递函数或微分方程。
②旋转矢量表示法
③复数表示法
z Acos(t ) iAsin(t )
z Aei(t )
eit cost i sin t eit cost i sin t
x Im( Aei(t) ) Asin(t )
x&
iAei(t )
i(t )
Ae 2
&x& A2ei(t) A e2 i(t )
第一章 概论
一、振动及其研究的问题 1、振动 2、振动研究的问题 振动隔离 在线控制 工具开发 动态性能分析 模态分析
第一章 概论
二、振动分类及研究振动的一般方法 1、振动分类:振动分析、振动环境预测、系统识别 2、研究振动的一般方法 (1)理论分析方法
建立系统的力学模型、建立运动方程、求解方程得到响应 (2)实验研究方法 (3)理论与实验相结合的方法
(2)在一个周期内,具有有限个极大、极小点。
f (t)
a0 2
a1 cost a2 cos 2t L
b1 sin t b2 sin 2t L
=
a0 2
a j
j 1
cos(
jt) bj
sin(
jt)
a0 2
j 1
Aj
sin(
jt j )
其中
a0
2 T
T
f (t)dt
0
2
aj T
输出和输入的傅氏变换之比等于频率响应函数H (() 频响函数)
物理特性
模态特性
响应特性
力学模型: 质量、刚度、阻尼
模态模型: 固有频率、模态矢量 模态质量、刚度、阻尼
响应模型: 位移、速度、加速度
时域模型:微分方程描述
频域模型:传递函数描述 频率特性描述
汽车振动学
第二章 单自由度系统的振动
一、单自由度振动系统 1、振动微分方程的建立 2、振动等效系统及外界激励
(1)等效刚度
通常用能量法求复杂系统的等效刚度,即按实际系统要转化的弹簧 的弹性势能与等效系统弹簧势能相等的原则来求系统的等效刚度。
拉压刚度 弯曲刚度 扭转刚度
kD
EA l3
3EI
kB l13
kC
GI p l2
弹簧的串、并联
ke k1 k2
1 11
ke k1 k2
串联弹簧的刚度 并联弹簧的刚度
同样,实际振动系统不可避免地存在阻力,因而在一定时间内自由振 动会逐渐衰减,直至完全消失。振系中阻力有各种来源,如干摩擦、流体 阻力、电磁阻力、材料内阻力等,统称阻尼。
在这些阻尼中,只有粘性阻尼是线性阻尼,它与速度成正比,易于数 学处理,可以大大简化振动分析问题的数学求解,因而通常均假设系统的 阻尼为粘性阻尼。对于其他比较复杂的实际阻尼,则被转化为等效粘性阻 尼来处理。
1 1 1 L k k1 k2
k k1 k2 L
(2)等效质量
T
f (t) cos( jt)dt
0
bj
2 T
T
f (t)sin( jt)dt
0
Aj
j
a
2 j
arctan
ba2jj bj
例题1-1 对方波信号
f (t) FF00
0tT 2
T tT 2
进行谐波分析。
f (t) 4F0 sin jt
j1,3,5,L
j
4F0
sin t
1 siБайду номын сангаас 3t
3
1、单自由度系统及其振动微分方程建立 (1)单自由度振动系统
(2)单自由度系统振动方程的建立方法 ①牛顿第二定律或达朗贝尔原理
f m&x& f m&x& 0 M J&& M J&& 0
例题2-1 (教材例题2.10) 建立如图所示振动系统的振动微分方程。
ml&x&
b2 l
cx&
a2 l
三、 汽车上的振动问题 四、简谐振动、谐波分析及频谱分析
1、简谐振动 2、谐波分析 3、频谱分析
(1)简谐振动 ①函数表示法
x Asin(t ) Asin(2 t ) Asin(2ft )
x
A cos(t
)
T
A sin(t
)
2
x A 2 sin(t ) A 2 sin(t )
二、单自由度系统的自由振动 1、无阻尼系统的自由振动 2、有阻尼系统的自由振动
三、单自由度系统在简谐激励作用下的受迫振动 1、简谐激励下的受迫振动响应及频谱分析 2、受迫振动的复数求解法--单位谐函数法 3、支座简谐激励(位移激励)引起的振动与被动隔振 4、偏心质量(力激励)引起的振动与主动隔振 5、测振传感器的原理
k1
d2 l
k2
x
0
②能量法
T+U=常数
d T U 0
dt
例题2-2 (教材例题2.11)
半径为r、重力为 mg的圆柱体在半径为R 的圆柱面内滚动而不滑 动,如图所示。试求圆 柱体绕其平衡位置作微 小振动的微分方程。
&& 2g 0
3(R r)
2、等效振动系统及外界激励
在工程上为便于研究,常把一些较为复杂的振动系统进行简化,以便 当作运动坐标方向上只存在一个质量和弹簧来处理,经简化后得到的质量 和刚度,分别成为原系统的等效质量和等效刚度。
相关文档
最新文档