圆(1) 学生版

合集下载

第5讲 圆(学生版)(知识梳理+典例分析+举一反三+巩固提升)人教版

第5讲 圆(学生版)(知识梳理+典例分析+举一反三+巩固提升)人教版

第5讲圆圆半径圆的认识圆心圆的周长πd或2πr直径圆的面积圆环的面积πr 2πR2-πr2或π(R2-r2)知识点一:圆的认识1. 圆是轴对称图形,直径所在的直线是圆的对称轴。

2. 一个圆有无数条半径,有无数条直径。

圆有无数条对称轴。

3. 在同圆或等圆中,所有的半径都相等,所有的直径都相等。

4. 在同圆或等圆中,r=12d或d=2r。

知识点二:圆的周长及圆周率的意义1.测量圆的周长的方法:绕绳法和滚动法。

2.圆的周长除以直径的商是一个固定的数。

我们把它叫做圆周率,用字母π表示。

3.圆的周长的计算公式:C=πd,C=2πr知识点三:圆的面积公式的推导及应用1.圆的面积计算公式是:S=πr²2.求圆的面积,要根据圆的面积计算公式来求。

3.圆环面积的计算方法:S=πR2-πr2或S=π(R-r)2。

4.“外方内圆”图形中,圆的直径等于正方形的边长。

如果圆的半径为r,那么正方形和圆之间部分的面积为0.86r2。

5.“外圆内方”图形中,这个正方形的对角线等于圆的直径。

如果圆的半径为r,那么圆和正方形之间部分的面积为1.14r2。

知识点四:扇形的认识1.一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形;2.顶点在圆心的角叫做圆心角;3.扇形的大小和半径的长短、圆心角的大小有关。

考点一:圆的认识【例1】(2017秋•龙华区期末)圆有条半径,圆半径的长度是它直径的;半圆有条对称轴1.(2018秋•武昌区期末)圆是一个轴对称图形,它有条对称轴.圆的周长与直径的比值,我们称之为.2.(2019•衡水模拟)在一个长5厘米,宽3厘米的长方形中画一个最大的圆,这个圆的半径是厘米.3.(2019•天津模拟)填空题:(1)圆的直径是.(2)圆的半径是.考点二:圆的周长及圆周率的意义【例2】(2016•舟山校级模拟)李师傅想把3根横截面直径都是10厘米的圆木用铁丝紧紧地捆绑在一起(如图),捆一圈(接头处不计)至少需铁丝厘米.1.(2014•海门市)把一个直径是4厘米的圆分成若干等份,然后把它剪开,照图的样子拼起来,拼成的图形的周长比原来圆的周长增加厘米.2.(2012•福州)一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为厘米.3.(2019•亳州模拟)从A到B,小红沿上面的大半圆走,走了m;李明走沿下面的两个小半圆走,走了m.我发现:这两条路线的长度.考点三:圆的面积公式的推导及应用【例3】一幅圆形壁画的边框长是1.57m,这幅壁画的面积是.1.(2019•利州区)如图,圆的面积和长方形的面积相等,圆的周长是6.28厘米,长方形的周长是厘米.2.(2019春•兴化市期末)将圆平均分成若干份,剪拼成一个近似的长方形(如图).它的周长比圆的周长增加了6厘米,圆的周长是厘米,近似长方形的面积是平方厘米.3.(2019春•枣阳市校级月考)如图圆的面积是25.12平方厘米,阴影部分的面积是平方厘米.考点四:扇形的认识【例4】(2019•天津模拟)扇形是由圆的和圆上的一段围成的.1.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的半径为cm,面积为cm2.2.已知扇形心角为45°,扇形面积为8πm2,则扇形的半径为;弧长为.3.已知扇形的圆心角为60°,弧长为6πm,则扇形的半径为,扇形面积为.一.选择题(共6小题)1.张老师在数学课上让同学们在圆中画一个圆心角是100°的扇形,四个同学分别画了四幅不同的作品,()的作品符合老师的要求.A.B.C.D.2.(2019秋•孝昌县期末)下面各圆中的阴影部分,()是扇形.A.B.C.D.3.(2019秋•濉溪县期末)下面图形中的角是圆心角的是()A.B.C.D.4.(2019秋•濉溪县期末)把一个圆平均分成32份,然后剪开,拼成一个近似的长方形,这个转化过程中,()A.周长和面积都没变B.周长没变,面积变了C.周长变了,面积没变D.周长和面积都变了5.(2019秋•文水县期末)一个圆形水池,直径是10米,在水池周围围一圈栅栏,再在栅栏外围修一条宽2米的环形小路,环形小路的面积是()平方米.A.138.16B.75.36C.34.54D.301.446.(2019秋•广州期末)在边长是10cm的正方形内画一个最大的圆,圆的面积占正方形面积的()A.B.C.D.二.填空题(共6小题)7.(2020•泰安)把一个圆等分成16份,拼成一个近似的长方形,周长增加了6cm,这个圆的面积是cm2.8.(2020•曾都区)在一个长12厘米,宽8厘米的长方形纸上画一个最大的半圆,这个半圆的周长是厘米,面积是平方厘米.9.(2020•汉川市)小明把圆规的两脚张开3cm,在纸上画了一个圆,这个圆的周长是cm,面积是cm2.10.(2019秋•武川县期末)用一个37.68厘米的铁丝围成一个圆(接口处不计),这个圆的直径是厘米,这个圆的面积是平方厘米.11.(2020春•隆回县期末)一个圆形水池的直径是8米,这个水池的周长是米,面积是平方米.12.(2019秋•望城区期末)要剪一个周长是12.56厘米的圆形纸片,它的半径是厘米,这个圆形纸片的面积是平方厘米.三.判断题(共5小题)13.因为圆是弯曲的,所以没有周长.(判断对错)14.(2019秋•肥城市期末)半径是1厘米的圆,它的周长与面积相等.(判断对错)15.(2019秋•番禺区期末)一个圆的周长是12.56m,半径增加了1m后,面积增加了3.14m2.(判断对错)16.(2020•齐齐哈尔)把一个周长是628cm的圆分成2个半圆,每个半圆的周长都是314cm.(判断对错)17.(2019秋•望城区期末)当圆的半径是2cm时,这个圆的面积等于它的周长.(判断对错).四.计算题(共2小题)18.(2019秋•朔城区期末)计算下面各圆的周长和面积.19.(2019•衡水模拟)求下面图形中阴影部分的周长和面积.五.应用题(共6小题)20.(2018秋•故城县期末)如图,一个羊圈依墙(墙足够长)而建,呈半圆形,半径是5米.围这个羊圈需要多长的栅栏?这个羊圈的面积是多少?21.(2018秋•江汉区期末)某广场建了一个周长是37.68m的圆形花坛、在花坛里面铺了一条宽1m的圆环草坪,草坪的面积是多少平方米?22.如图是王师傅加工的一个环形铁片,它的外圆直径是20cm,内圆半径是6cm,这个铁片的面积是多少?第11 页 共 11 页23.(2018秋•荆门期末)为美化校园环境,学校准备在一个周长12.56米的花坛外围铺一条1米宽的环形下路,这条小路的面积是多少平方米?24.(2018秋•册亨县期末)册亨县某村有一个直径是30m 的圆形早冰场,为了满足更多滑冰爱好者的需求要将这个旱冰场的半径扩建5m .扩建后旱冰场的面积是多少平方米?25.(2018秋•邓州市期末)学校建一个圆形花坛,花坛的直径是8m ,周边还要修一条宽1米的小路,小路的面积是多少平方米?。

专题2.5对称图形圆(章节复习能力强化卷)学生版

专题2.5对称图形圆(章节复习能力强化卷)学生版

20232024学年苏科版九年级上册册章节知识讲练专题2.5 对称图形—圆(章节复习+能力强化卷)知识点01:圆的定义、性质及与圆有关的角1.圆的定义(1) 旋转一周,另一个端点A所形成的,叫做圆.(2)圆是 .细节剖析:①圆心确定,半径确定;确定一个圆应先确定,再确定,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是,绕圆心旋转任一角度都和原来图形重合;圆是图形,对称中心是在中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是,经过圆心的任一直线都是它的 .(3)垂径定理及推论:①垂直于弦的直径这条弦,并且平分②平分弦(不是直径)的直径于弦,并且平分弦所对的 .③弦的过圆心,且平分弦对的④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧 .细节剖析:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的、平分弦所对的在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“”作为题设时,平分的弦不能是直径)3.两圆的性质(1)两个圆是一个,对称轴是 .(2)相交两圆的连心线,相切两圆的连心线经过4.与圆有关的角(1)圆心角: 叫圆心角. 圆心角的性质: . (2)圆周角:顶点在 , 叫做圆周角. 圆周角的性质:①圆周角等于② 所对的圆周角相等;在 中,相等的圆周角所对的弧相等.③ 所对的弦为直径; 所对的圆周角为直角. ④如果 ,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的 .细节剖析:(1)圆周角必须满足两个条件:①顶点在 ;②角的两边都和圆 (2)圆周角定理成立的前提条件是在 中.知识点02:与圆有关的位置关系1.判定一个点P 是否在⊙O 上设⊙O 的半径为,OP=,则有点P 在⊙O 外;点P 在⊙O 上;点P 在⊙O 内.细节剖析:和 是相对应的,即知道 就可以确定 ;知道 也可以确定 .2.判定几个点12nA A A 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为.(1)直线和⊙O 没有公共点直线和圆相离.(2)直线和⊙O 有唯一公共点直线和⊙O 相切. (3)直线和⊙O 有两个公共点直线和⊙O 相交.4.切线的判定、性质(1)切线的判定:① 是圆的切线.②是圆的切线.(2)切线的性质:①圆的切线过切点的半径.②经过圆心作圆的切线的垂线经过③经过切点作切线的垂线经过(3)切线长:从圆外一点作圆的切线,这叫做切线长.(4)切线长定理:从圆外一点作圆的两条,它们的切线长,这两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.知识点03:三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是 .细节剖析:(1) 任何一个三角形都一个内切圆,但任意一个圆都有个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:2.圆内接四边形和外切四边形(1) 叫圆的内接四边形,圆内接四边形,外角等于 .(2) 叫圆外切四边形,圆外切四边形相等.知识点04:圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为 .圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有 .细节剖析:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系: .一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•化州市模拟)如图,AB,CD是⊙O的弦,延长AB,CD相交于点P.已知∠P=30°,∠AOC =80°,则BD所对的圆心角的度数是()A.30°B.25°C.10°D.20°2.(2分)(2023•西藏)如图,四边形ABCD内接于⊙O,E为BC延长线上一点.若∠DCE=65°,则∠BOD的度数是()A.65°B.115°C.130°D.140°3.(2分)(2022秋•南山区校级期末)如图,⊙O的半径为2,PA,PB是⊙O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,若∠APB=60°,则△PAB的周长为()A.B.C.6 D.34.(2分)(2022秋•桃城区校级期末)如图,△ABC的边AC经过⊙O的圆心O,BC与⊙O相切于B,D是⊙O上的一点,连接AD,BD,若∠C=50°,则∠ADB的大小为()A.50°B.60°C.70°D.80°5.(2分)(2023•邯郸模拟)如图,有公共顶点O的两个边长为4的正五边形(不重叠),以点O为圆心,4为半径作弧,构成一个“蘑菇”形图案(阴影部分),则这个“蘑菇”形图案的面积为()A.B.C.D.6.(2分)(2023春•卫滨区校级期末)如图,在Rt△ABC中,∠B=90°,AB=6,AC=10,以边BC为直径作一个半圆,则半圆(阴影部分)的面积为()A.4πB.8πC.12πD.16π7.(2分)(2023•兴宁市二模)如图所示,AB为⊙O的直径,C,D是⊙O上的点,CD⊥AB,垂足为点G,∠CDB=30°,过点C作⊙O的切线交AB延长线于点E,在不添加辅助线的情况下,角度为30°的角的个数为()A.2个B.3个C.4个D.5个8.(2分)(2022秋•蜀山区校级期末)如图,在正六边形ABCDEF中,分别以B,E为圆心,以边长为半径作弧,图中阴影部分的面积为12π,则正六边形的边长为()A.3 B.9 C.D.189.(2分)(2023春•铜梁区校级期中)在Rt△ABC中,∠C=90°,点O是斜边AB边上一点,以O为圆心,OA为半径作圆,⊙O恰好与边BC相切于点D,连接AD,若AD=BD,⊙O的半径为4,则CD的长度为()A.2B.4 C.3 D.510.(2分)(2023春•洪山区月考)如图,△ABC内接于⊙O,AB是⊙O的直径,I是△ABC的内心,连接IA,IB,IC,CI的延长线交⊙O于点D,若IC=,IA=IB,则ID的长为()A.B.3 C.D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•淮安)如图,四边形ABCD是⊙O的内接四边形,BC是⊙O的直径,BC=2CD,则∠BAD的度数是°.12.(2分)(2023•九龙坡区模拟)如图,在边长为2的正方形ABCD右侧以CD为边作等边△CDE,再以点E 为圆心,以EC为半径作弧CD,则图中阴影部分的面积等于.13.(2分)(2022秋•宝山区期末)如图,将边长为6的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为.14.(2分)(2023•绥化模拟)如图,边长为a的正六边形内有两个三角形(数据如图),则=.15.(2分)(2022秋•兴城市期末)如图,在Rt△ABC中,∠A=30°,按以下步骤作图:以点B为圆心,BC长为半径作弧,交AB于点P,过点P作PM⊥BC,垂足为M,过点C作CN⊥AB,垂足为N,PM和CN相交于点O,连接BO并延长,交AC于点Q,连接PQ,若AC=6,则PQ=.16.(2分)(2023春•北仑区校级月考)摩天轮是游乐园里非常受欢迎的项目之一,如示意图,等腰三角形的底边AB与⊙O相切于点E,腰OA,OB分别与⊙O交于点C,D,此时点C,D恰好是OA,OB的中点.若⊙O的半径为48m,则扇形COD的面积为m2(结果保留π).17.(2分)(2023春•朝阳区校级月考)边长均为5的正五边形与正六边形按如图的方式拼接在一起,连结AB.则以AO为半径的⊙A与六边形、三角形重叠部分图形的面积之和为.18.(2分)(2022秋•蜀山区校级期末)如图,△ABC内接于⊙O,∠A=45°,CD⊥AB于点D,若AB=8,CD =6,则⊙O的半径为.19.(2分)(2023•广西模拟)已知以AB为直径的圆O,C为AB弧的中点,P为BC弧上任意一点,CD⊥CP交AP于D,连接BD,若AB=6,则BD的最小值为.20.(2分)(2023•金牛区模拟)如图,已知四边形ABCD是矩形,AB=8,AD=12,点E是线段DC上一个动点,分别以DE、EC为边向线段DC的下方作正方形DEFG、正方形CEHI,连接GI,过点B作直线GI的垂线,垂足是J,连接AJ,求点E运动过程中,线段AJ的最大值是.三.解答题(共8小题,满分60分)21.(6分)(2023•庐阳区一模)如图,⊙O的直径AB垂直于弦CD,垂足为E,AE=2,CD=8.(1)求⊙O的半径长;(2)连接BC,作OF⊥BC于点F,求OF的长.22.(6分)(2023春•江岸区校级月考)如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线;(2)若∠DFA=30°,DF=4,求阴影部分的面积.23.(8分)(2023•镜湖区校级二模)如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A 作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.(1)求证:∠EAC=∠ADC(2)若AB=4,BC=6,求DC的长.24.(8分)(2023春•蓬安县期中)如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠CEA+∠CAD=90°.(1)求证:CF是⊙O的切线;(2)如果AB=10,CD=6,求BE的长.25.(8分)(2022秋•安徽期末)如图,四边形ABCD内接于⊙O,,点E在AB的延长线上,∠ECB=∠DAC.(1)求证:EC是⊙O的切线;(2)若AD=5,∠E=30°,求⊙O的半径.26.(8分)(2022秋•河口区校级期末)如图,点A、B、C在圆O上,∠ABC=60°,直线AD∥BC,AB=AD,点O在BD上.(1)判断直线AD与圆O的位置关系,并说明理由;(2)若圆的半径为6,求劣弧BC所在扇形的面积.27.(8分)(2023•襄城区校级二模)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若∠ABC=60°,BE=3,求图中阴影部分的面积.28.(8分)(2023•巴中)如图,已知等腰△ABC,AB=AC,以AB为直径作⊙O交BC于点D,过D作DF⊥AC 于点E,交BA延长线于点F.(1)求证:DF是⊙O的切线.(2)若CE=,CD=2,求图中阴影部分的面积(结果用π表示).。

2023-2024学年九年级上数学:正多边形和圆(精讲学生版)

2023-2024学年九年级上数学:正多边形和圆(精讲学生版)

2023-2024学年九年级上数学:第24章圆
24.3
正多边形和圆
正多边形和圆
(1)正多边形与圆的关系
只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.
一个正多边形的外接圆的圆心叫作这个正多边形的中心,外接圆的半径叫作这个正多边形的半径;正多边形每一边所对的圆心角叫作正多边形的中心角;中心到正多边形的一边的距离叫做正多边形的边心距.
把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.
第1页(共13页)。

第22课 圆的基本概念和性质(学生版 九年级数学上册精品讲义(人教)

第22课  圆的基本概念和性质(学生版 九年级数学上册精品讲义(人教)

A.2.5cm
B.6.5cm C. 2.5cm 或 6.5cm D. 5cm 或 13cm
【即学即练 4】(1)过____________________上的三个点确定一个圆. (2)交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________.
【典例 5】如图,⊙O 的直径为 10,弦 AB=8,P 是弦 AB 上的一个动点,那么 OP 的长的取值范围是
的图形叫做圆,固定的端点 O 叫做圆心,线段 OA 叫做
. 以点 O 为圆心的圆,记作“ ”,读
作“圆 O”.
要点诠释:
①圆心确定圆的
,半径确定圆的
;确定一个圆应先确定圆心,再确定半径,二者缺一不
可;
②圆是一条封闭曲线.
(2)静态:圆心为 O,半径为 r 的圆是平面内 的集合.
要点诠释:
①定点为圆心,定长为半径;
【即学即练 2】 点 A、O、D 与点 B、O、C 分别在同一直线上,图中弦的条数为( )
A.2
B.3
C.4
D.5
考法 03 圆的对称性
【典例 4】圆 O 所在平面上的一点 P 到圆 O 上的点的最大距离是 10,最小距离是 2,求此圆的半径是多少?
【即学即练 3】平面上的一个点到圆的最小距离是 4cm,最大距离是 9cm,则圆的半径是( ).
弧:
叫做圆弧,简称弧.以 A、B 为端点的弧记作 »AB ,读作“圆弧 AB”或“弧 AB”.
半圆:圆的任意一条直径的两个端点把圆分成两条弧,
优弧:
的弧叫做优弧;
劣弧:
的弧叫做劣弧.
半圆是弧,而弧不一定是半圆; ②无特殊说明时,弧指的是劣弧. 3.同心圆与等圆 圆心相同,半径不等的两个圆叫做同心圆. 圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.

人教版小学数学六年级上册《第五单元 圆:1.圆的认识:第1课时 圆的认识(1)》教案

人教版小学数学六年级上册《第五单元 圆:1.圆的认识:第1课时 圆的认识(1)》教案

5 圆【教学目标】1.使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

2.使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

3.独立自学,使学生初步认识弧、圆心角和扇形。

4.使学生认识轴对称图形,知道轴对称的含义,能找出轴对称图形的对称轴。

5.通过介绍圆周率的历史知识,使学生受到爱国主义教育。

【重点难点】1.认识圆和轴对称图形。

2.掌握圆的周长和面积的计算公式。

3.理解圆周率“π”,掌握圆面积计算公式的推导,会画具有定半径或直径的圆。

【教学指导】1.加强动手操作,培养学生的自主探索能力。

教材里安排了很多活动让学生探究圆的基本特征,故实际教学时,教师应注意让学生动手操作,通过画一画、剪一剪、围一围等多种方式,帮助学生认识圆的基本特征,探讨圆的周长和面积计算公式。

比如在教学圆的认识时,当学生画好圆后,教师可引导学生进行对折,从而导出圆心、半径和直径等概念,再通过测量来发现半径、直径的特点及相互关系;探究圆的周长时,则可让学生采用围一围、滚一滚的方法先测出周长,在此基础上再引导学生探究周长与直径的关系;探究圆的面积时,教师可利用书中的附页或备好的工具,引导学生动手剪切、拼贴,从而“化圆为方”,得出圆面积的计算方法。

实际教学时,教师不应把学生的动手操作简单地作为活动目的,而应合理引导学生在操作的基础上,自主探究和发现圆的有关特性。

2.注重知识的前后联系,体现“化曲为直”“化圆为方”的转化思想。

圆是一种曲线图形,和以前学的直线图形在性质上有很大的不同,但在研究方法上,联系又很紧密,故教学时应注意引导学生合理应用转化思想,将圆转化成以前学过的直线图形来研究。

如在研究圆的面积时,教师可先让学生回顾:以前在研究多边形的面积时,主要采用了割补、拼组等方法,将多边形的面积转化成更熟悉和更简单的图形来解决,那么,这里是否也可以仿此思路把圆的面积采用割补等方式转化成熟悉的图形来计算呢?教学时,还要让学生认识到转化是一种很重要的数学思想方法,在解决日常问题以及在科学研究中,人们常常就是把复杂转化为简单、未知转化为已知、抽象转化为具体等方式来处理的。

圆的方程(学生版)

圆的方程(学生版)

第二节 圆的方程一 课标要求1.掌握圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆的方程;理解圆的标准方程与一般方程之间的关系,会进行互化。

2. 能利用代数方法和几何方法判定直线与圆的位置关系;熟练运用圆的有关性质解决直线与圆、圆与圆的综合问题 二 基础回顾1.圆心为),(b a C ,半径为r 的圆的标准方程为:)0()()(222>=-+-r r b y a x 。

特殊地,当0==b a 时,圆心在原点的圆的方程为:222ryx =+。

2.圆的一般方程022=++++F Ey Dx y x ,圆心为点)2,2(E D --2422FE Dr -+=,其中0422>-+F E D 。

注:二元二次方程22=+++++F Ey Dx CyBxy Ax,表示圆的方程的充要条件是:①、2x 项2y 项的系数相同且不为0,即0≠=C A ;②、没有xy 项,即B=0;③、0422>-+AF E D 。

3.直线l :Ax +By +C =0与圆(x -a)2+(y -b)2=r2(r>0)的位置关系(1)几何方法:圆心(a ,b)到直线Ax +By +C =0的距离d =|Aa +Bb +C|A2+B2,_____⇔直线与圆相交;_____⇔直线与圆相切;_____⇔直线与圆相离.(2)代数方法:由⎩⎪⎨⎪⎧Ax +By +C =0,x -a 2+y -b 2=r2,消元,得到一元二次方程判别式为Δ则_____⇔直线与圆相交;_____⇔直线与圆相切;_____⇔直线与圆相离. 4.圆与圆的位置关系(1)几何方法:两圆(x -a1)2+(y -b1)2=r21(r1>0)与(x -a2)2+(y -b2)2=r22(r2>0)的圆心距为d ,则:_________⇔两圆外离;___________⇔两圆相外________________⇔两圆相交;__________⇔两圆内切;___________⇔两圆内含(d =0时为同心圆) (2)代数方法:方程组⎩⎪⎨⎪⎧x2+y2+D1x +E1y +F1=0,x2+y2+D2x +E2y +F2=0,有两组不同的实数解⇔两圆______;有两组相同的实数解⇔两圆______;有无数组解⇔两圆重合;无实数解⇔两圆_________三 基础训练1.已知圆的方程是x2+y2=1,则在y 轴上截距为2的切线方程为 ( )A .y =x + 2B .y =-x + 2C .y =x +2或y =-x + 2D .x =1或y =x + 22.直线l 与圆x2+y2+2x -4y +a =0(a <3)相交于A ,B 两点,若弦AB 的中点C 为 (-2,3),则直线l 的方程为 ( ) A .x -y +5=0 B .x +y -1=0 C .x -y -5=0 D .x +y -3=0 3.直线2x -y =0与圆C :(x -2)2+(y +1)2=9相交于A ,B 两点,则△ABC(C 为圆心)的面积等于 A .2 5 B .2 3 C .4 3 D .4 5 ( )4.直线与圆的位置关系为( ) A .相切B .相交但直线不过圆心C .直线过圆心D .相离1y x =+221x y +=5.已知直线ax +by +c =0与圆O :x2+y2=1相交于A ,B 两点,且|AB|=3,则OA OB ∙=________. 6.(2009年高考全国卷Ⅱ)已知圆O :x2+y2=5和点A(1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积等于________. 7. 点A 是圆C:上任意一点,A 关于直线的对称点也在圆C 上,则实数a 的值为________. 8. .若圆上至少有三个不同点到直线:的距离为,则直线的倾斜角的取值范围是 ________.9. 设直线与圆相交于、两点,且弦的长为________. 10._______ 四,例题分析例1.已知圆x2+y2+4x +10y +4=0.(1)证明点B(1,-1)在圆上,并求出过点B 的圆的切线方程.(2)证明点C(1,0)在圆外,并求出过点C 的圆的切线方程 .练习 已知直线方程mx -y -m -1=0,圆的方程x2+y2-4x -2y +1=0.当m 为何值时,圆与直线(1)有两个公共点;(2)只有一个公共点;(3)没有公共点.例2已知两圆x2+y2-2x +10y -24=0和x2+y2+2x +2y -8=0.(1)试判断两圆的位置关系;(2)求公共弦所在直线方程;(3)求公共弦的长度. ,22450x y ax y +++-=210x y +-=2244100x y x y +---=l 0ax by +=l 30ax y -+=22(1)(2)4x y -+-=A B AB a =2()34250x y x y x y ++=+若点,在直线上移动,则的最小值为练习(2009年高考江苏卷)在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为23,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等.试求所有满足条件的点P的坐标.五,巩固提升1.若直线xa+yb=1与圆x2+y2=1有公共点,则()Aa2+b2≤1 B.a2+b2≥1 C.1a2+1b2≤1 D.1a2+1b2≥12.过点(0,1)的直线与圆x2+y2=4相交于A,B两点,则|AB|的最小值为 ()A.2 B.2 3 C.3 D.2 53.已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为()A.x2+y2-2x-3=0 B.x2+y2+4x=0 C.x2+y2+2x-3=0 D.x2+y2-4x=0 4.设O为坐标原点,C为圆(x-2)2+y2=3的圆心,且圆上有一点M(x,y)满足OM CM=0,则y x=() A.33 B.33或-33C. 3D.3或- 35.(2008年高考山东卷)已知圆的方程为x2+y2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为 () A.10 6 B.20 6 C.30 6 D.40 6 6.若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y=2的距离等于1,则半径r的取值范围是 () A.(4,6) B.[4,6) C.(4,6] D.[4,6] 7.(2009年高考天津卷)若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦的长为23,则a=________.8.过点M(1,2)的直线l将圆A:(x-2)2+y2=9分成两段弧,其中当劣弧最短时,直线l的方程为______________.9.(2009年高考湖北卷)过原点O作圆x2+y2-6x-8y+20=0的两条切线,设切点分别为P、Q,则线段PQ的长为________.10.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程.11.已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为43,半径小于5.(1)求直线PQ与圆C的方程;(2)若直线l∥PQ,且l与圆C交于点A、B,∠AOB=90°,求直线l的方程.12.如右图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得PM=2PN,试建立适当的坐标系,并求动点P的轨迹方程.。

圆中的重要模型之定角定高模型、米勒最大角模型(学生版)-2024年中考数学

圆中的重要模型之定角定高模型、米勒最大角模型(学生版)-2024年中考数学

圆中的重要模型之定角定高模型、米勒最大角模型 圆在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就圆形中的重要模型(米勒最大视角(张角)模型、定角定高(探照灯)模型)进行梳理及对应试题分析,方便掌握。

近几年一些中考几何问题涉及了“最大视角”与“定角定高”模型,问题往往以动点为背景,与最值相结合,综合性较强,解析难度较大,学生难以找到问题的切入点,不能合理构造辅助圆来求解。

实际上,这样的问题中隐含了几何的“最大视角”与“定角定高”模型,需要对其中的动点轨迹加以剖析,借助圆的特性来探究最值情形。

而轨迹问题是近些年中考压轴题的热点和难点,既可以与最值结合考查,也可以与轨迹长结合考查,综合性较强、难度较大。

模型1.米勒最大张角(视角)模型【模型解读】已知点A,B是∠MON的边ON上的两个定点,点C是边OM上的动点,则当C在何处时,∠ACB 最大?对米勒问题在初中最值的考察过程中,也成为最大张角或最大视角问题。

米勒定理:已知点AB是∠MON的边ON上的两个定点,点C是边OM上的一动点,则当且仅当三角形ABC 的外圆与边OM相切于点C时,∠ACB最大。

【模型证明】如图1,设C'是边OM上不同于点C的任意一点,连结A,B,因为∠AC'B是圆外角,∠ACB是圆周角,易证∠AC'B小于∠ACB,故∠ACB最大。

在三角形AC'D中,∠ADB=∠AC D+∠DAC ∴∠ADB>∠AC D又∵∠ACB=∠ADB∴∠ACB>∠AC D【解题关键】常常以解析几何、平面几何和实际应用为背景进行考查。

若能从题设中挖出隐含其中的米勒问题模型,并能直接运用米勒定理解题,这将会突破思维瓶颈、大大减少运算量、降低思维难度、缩短解题长度,从而使问题顺利解决。

否则这类问题将成为考生的一道难题甚至一筹莫展,即使解出也费时化力。

1(2023·广东珠海·九年级统考期末)如图,在足球训练中,小明带球奔向对方球门PQ,仅从射门角度大小考虑,小明将球传给哪位球员射门较好()A.甲B.乙C.丙D.丁2(2023·四川宜宾·校考二模)如图,已知点A 、B 的坐标分别是0,1 、0,3 ,点C 为x 轴正半轴上一动点,当∠ACB 最大时,点C 的坐标是()A.2,0B.3,0C.2,0D.1,03(2023·江苏南京·九年级统考期中)如图,在矩形ABCD 中,AB =4,AD =8,M 是CD 的中点,点P 是BC 上一个动点,若∠DPM 的度数最大,则BP =.4(2023·陕西西安·校考模拟预测)足球射门时,在不考虑其他因素的条件下,射点到球门AB 的张角越大,射门越好.当张角达到最大值时,我们称该射点为最佳射门点.通过研究发现,如图1所示,运动员带球在直线CD 上行进时,当存在一点Q ,使得∠CQA =∠ABQ (此时也有∠DQB =∠QAB )时,恰好能使球门AB 的张角∠AQB 达到最大值,故可以称点Q 为直线CD 上的最佳射门点.(1)如图2所示,AB为球门,当运动员带球沿CD行进时,Q1,Q2,Q3为其中的三个射门点,则在这三个射门点中,最佳射门点为点;(2)如图3所示,是一个矩形形状的足球场,AB为球门,CD⊥AB于点D,AB=3a,BD=a.某球员沿CD向球门AB进攻,设最佳射门点为点Q.①用含a的代数式表示a,若此时守DQ的长度并求出tan∠AQB的值;②已知对方守门员伸开双臂后,可成功防守的范围为54门员站在张角∠AQB内,双臂张开MN垂直于AQ进行防守,求MN中点与AB的距离至少为多少时才能确保防守成功.(结果用含a的代数式表示)5(2023上·北京东城·九年级校考阶段练习)在平面直角坐标系xOy中,给出如下定义:对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MPN最大,称∠MPN为点P关于⊙C的“视角”.直线l与⊙C相离,点Q在直线l上运动,当点Q关于⊙C的“视角”最大时,则称这个最大的“视角”为直线l关于⊙C的“视角”.(1)如图,⊙O的半径为1,①已知点A(1,1),直接写出点A关于⊙O的“视角”;已知直线y=2,直接写出直线y=2关于⊙O的“视角”;②若点B关于⊙O的“视角”为90°,直接写出一个符合条件的B点坐标;(2)⊙C的半径为1,①点C的坐标为(1,2),直线l:y=kx+b(k>0)经过点D( -23+1,0),若直线关于⊙C的“视角”为60°,求k的值;②圆心C在x轴正半轴上运动,若直线y=3x+1关于⊙C的“视角"大于120°,直接写出圆心C的横坐标x C的取值范围.3模型2. 定角定高模型(探照灯模型)定角定高模型:如图,直线BC外一点A,A到直线BC距离为定值(定高),∠BAC为定角,则AD有最小值,即△ABC的面积有最小值。

第5讲 圆(学生版)

第5讲 圆(学生版)

第5讲圆圆半径圆的认识圆心圆的周长πd或2πr直径圆的面积圆环的面积πr2πR2-πr2或π(R2-r2)知识点一:圆的认识1. 圆是轴对称图形,直径所在的直线是圆的对称轴。

2. 一个圆有无数条半径,有无数条直径。

圆有无数条对称轴。

3. 在同圆或等圆中,所有的半径都相等,所有的直径都相等。

4. 在同圆或等圆中,r=12d或d=2r。

知识点二:圆的周长及圆周率的意义1.测量圆的周长的方法:绕绳法和滚动法。

2.圆的周长除以直径的商是一个固定的数。

我们把它叫做圆周率,用字母π表示。

3.圆的周长的计算公式:C=πd,C=2πr知识点三:圆的面积公式的推导及应用1.圆的面积计算公式是:S=πr²2.求圆的面积,要根据圆的面积计算公式来求。

3.圆环面积的计算方法:S=πR2-πr2或S=π(R-r)2。

4.“外方内圆”图形中,圆的直径等于正方形的边长。

如果圆的半径为r,那么正方形和圆之间部分的面积为0.86r2。

5.“外圆内方”图形中,这个正方形的对角线等于圆的直径。

如果圆的半径为r,那么圆和正方形之间部分的面积为1.14r2。

知识点四:扇形的认识1.一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形;2.顶点在圆心的角叫做圆心角;3.扇形的大小和半径的长短、圆心角的大小有关。

考点一:圆的认识【例1】(2017秋•龙华区期末)圆有条半径,圆半径的长度是它直径的;半圆有条对称轴1.(2018秋•武昌区期末)圆是一个轴对称图形,它有条对称轴.圆的周长与直径的比值,我们称之为.2.(2019•衡水模拟)在一个长5厘米,宽3厘米的长方形中画一个最大的圆,这个圆的半径是厘米.3.(2019•天津模拟)填空题:(1)圆的直径是.(2)圆的半径是.考点二:圆的周长及圆周率的意义【例2】(2016•舟山校级模拟)李师傅想把3根横截面直径都是10厘米的圆木用铁丝紧紧地捆绑在一起(如图),捆一圈(接头处不计)至少需铁丝厘米.1.(2014•海门市)把一个直径是4厘米的圆分成若干等份,然后把它剪开,照图的样子拼起来,拼成的图形的周长比原来圆的周长增加厘米.2.(2012•福州)一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为厘米.3.(2019•亳州模拟)从A到B,小红沿上面的大半圆走,走了m;李明走沿下面的两个小半圆走,走了m.我发现:这两条路线的长度.考点三:圆的面积公式的推导及应用【例3】一幅圆形壁画的边框长是1.57m,这幅壁画的面积是.1.(2019•利州区)如图,圆的面积和长方形的面积相等,圆的周长是6.28厘米,长方形的周长是厘米.2.(2019春•兴化市期末)将圆平均分成若干份,剪拼成一个近似的长方形(如图).它的周长比圆的周长增加了6厘米,圆的周长是厘米,近似长方形的面积是平方厘米.3.(2019春•枣阳市校级月考)如图圆的面积是25.12平方厘米,阴影部分的面积是平方厘米.考点四:扇形的认识【例4】(2019•天津模拟)扇形是由圆的和圆上的一段围成的.1.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的半径为cm,面积为cm2.2.已知扇形心角为45°,扇形面积为8πm2,则扇形的半径为;弧长为.3.已知扇形的圆心角为60°,弧长为6πm,则扇形的半径为,扇形面积为.一.选择题(共6小题)1.张老师在数学课上让同学们在圆中画一个圆心角是100°的扇形,四个同学分别画了四幅不同的作品,()的作品符合老师的要求.A.B.C.D.2.(2019秋•孝昌县期末)下面各圆中的阴影部分,()是扇形.A.B.C.D.3.(2019秋•濉溪县期末)下面图形中的角是圆心角的是()A.B.C.D.4.(2019秋•濉溪县期末)把一个圆平均分成32份,然后剪开,拼成一个近似的长方形,这个转化过程中,()A.周长和面积都没变B.周长没变,面积变了C.周长变了,面积没变D.周长和面积都变了5.(2019秋•文水县期末)一个圆形水池,直径是10米,在水池周围围一圈栅栏,再在栅栏外围修一条宽2米的环形小路,环形小路的面积是()平方米.A.138.16B.75.36C.34.54D.301.446.(2019秋•广州期末)在边长是10cm的正方形内画一个最大的圆,圆的面积占正方形面积的()A.B.C.D.二.填空题(共6小题)7.(2020•泰安)把一个圆等分成16份,拼成一个近似的长方形,周长增加了6cm,这个圆的面积是cm2.8.(2020•曾都区)在一个长12厘米,宽8厘米的长方形纸上画一个最大的半圆,这个半圆的周长是厘米,面积是平方厘米.9.(2020•汉川市)小明把圆规的两脚张开3cm,在纸上画了一个圆,这个圆的周长是cm,面积是cm2.10.(2019秋•武川县期末)用一个37.68厘米的铁丝围成一个圆(接口处不计),这个圆的直径是厘米,这个圆的面积是平方厘米.11.(2020春•隆回县期末)一个圆形水池的直径是8米,这个水池的周长是米,面积是平方米.12.(2019秋•望城区期末)要剪一个周长是12.56厘米的圆形纸片,它的半径是厘米,这个圆形纸片的面积是平方厘米.三.判断题(共5小题)13.因为圆是弯曲的,所以没有周长.(判断对错)14.(2019秋•肥城市期末)半径是1厘米的圆,它的周长与面积相等.(判断对错)15.(2019秋•番禺区期末)一个圆的周长是12.56m,半径增加了1m后,面积增加了3.14m2.(判断对错)16.(2020•齐齐哈尔)把一个周长是628cm的圆分成2个半圆,每个半圆的周长都是314cm.(判断对错)17.(2019秋•望城区期末)当圆的半径是2cm时,这个圆的面积等于它的周长.(判断对错).四.计算题(共2小题)18.(2019秋•朔城区期末)计算下面各圆的周长和面积.19.(2019•衡水模拟)求下面图形中阴影部分的周长和面积.五.应用题(共6小题)20.(2018秋•故城县期末)如图,一个羊圈依墙(墙足够长)而建,呈半圆形,半径是5米.围这个羊圈需要多长的栅栏?这个羊圈的面积是多少?21.(2018秋•江汉区期末)某广场建了一个周长是37.68m的圆形花坛、在花坛里面铺了一条宽1m的圆环草坪,草坪的面积是多少平方米?22.如图是王师傅加工的一个环形铁片,它的外圆直径是20cm,内圆半径是6cm,这个铁片的面积是多少?23.(2018秋•荆门期末)为美化校园环境,学校准备在一个周长12.56米的花坛外围铺一条1米宽的环形下路,这条小路的面积是多少平方米?24.(2018秋•册亨县期末)册亨县某村有一个直径是30m的圆形早冰场,为了满足更多滑冰爱好者的需求要将这个旱冰场的半径扩建5m.扩建后旱冰场的面积是多少平方米?25.(2018秋•邓州市期末)学校建一个圆形花坛,花坛的直径是8m,周边还要修一条宽1米的小路,小路的面积是多少平方米?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学试题分类汇编:圆
一、选择题
1、一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是( )
(A )9π
(B )18π (C )27π
(D )39π
2、如图1,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB ∠为120

OC 长为8cm ,CA 长为12cm ,则阴影部分的面积为( )
A .2
64πcm B .2
112πcm
C .2
144πcm
D .2
152πcm
图 2 图 3
图4
3、在△ABC 中,AB =2,AC =1,以AB 为直径的圆与AC 相切,与边BC 交于点D ,则AD 的
长为( )。

A 、
552 B 、554 C 、35
2
D 、
354
4、如图2,已知ACB ∠是⊙O 的圆周角,50ACB ∠=︒,则圆心角AOB ∠是( )
A .40︒ B. 50︒ C. 80︒ D. 100︒
5、已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O 1O 2为1cm ,则这两圆的位置关系是( )
(A )相交 (B )内含 (C )内切 (D )外切
6、⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )
A .相离
B .相切
C .相交
D .内含 7、如图3,点A B C ,,都在⊙O 上,若34C =
∠,则AOB ∠的度数为( ) A .34
B .56
C .60
D .68
8、已知圆锥的底面半径为1cm ,母线长为3cm ,则其全面积为( )。

A 、π B 、3π C 、4π D 、7π
9、如图4所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向折向行走。

按照这种方式,小华第五次走到场地边缘时处于弧AB 上,此时∠AOE =56°,则α的度数是( )。

A 、52°
B 、60°
C 、72°
D 、76°
A
C O B

1
10、如图5,⊙O 中,弦AB 的长为6cm ,圆心O 到AB 的距离为4cm ,则⊙O 的半径长为( ) A .3cm B .4cm C .5cm D .6cm 11、如图6,已知P A 是⊙O 的切线,A 为切点,PC 与⊙O 相交于B 、C 两点,PB =
2 cm ,BC =8 cm ,则P A 的长等于( )
A .4 cm
B .16 cm
C .20 cm D

12、如图7,已知圆心角∠BOC=100°、则圆周角∠BAC 的大小是( ) A .50° B .100° C .130° D .200°
13、如图8,⊙O 内切于ABC △,切点分别为D E F ,,.已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,那么EDF ∠等于( ) A.40° B.55° C.65° D.70°
图6 图7 图8
二、填空题
1、如图9,已知:△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC =5,DC =3,AB =24, 则⊙O 的直径等于 。

2、已知,如图10:AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC =450。

给出以下五个结论:①∠EBC =22.50
,;②BD =DC ;③AE =2EC ;④劣弧⋂
AE 是劣弧⋂
DE 的2倍;⑤AE =BC 。

其中正确结论的序号是 。

3、如图11所示为一弯形管道,其中心线是一段圆弧 AB .已知半径60cm OA =,
108AOB =
∠,则管道的长度(即 AB 的长)为 cm .(结果保留π)
4、如图12,从P 点引⊙O 的两切线PA 、PA 、PB ,A 、B 为切点,已知⊙O 的半径为2,∠P =60°,则图中阴影部分的面积为 。

图10 图
11 图12
图5 A ·O
P C B 图9
O
B
5、如图13,△ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为 ⊙O 的直径,AD =6,则BC = 。

6、如图14,⊙O 是等边三角形ABC 的外接圆,点D 是⊙O 上一点,则∠BDC = .
7、如图,点P 是半径为5的⊙O 内的一点,且OP =3,设AB 是过点P 的⊙O 内的弦,且AB ⊥OP ,则弦AB 长是________。

8、如图15,已知AB 是O
的直径,弦CD AB ⊥,AC =1BC =,那么sin ABD ∠的值是 .
图13 图15 三、解答题
1、如图,点P 在O 的直径BA 的延长线上,AB =2PA ,PC 切O 于点C ,连结BC 。

(1)求P ∠的正弦值;
(2)若O 的半径r =2cm ,求BC 的长度。

2、如图,AB 是O 的切线,A 为切点,AC 是O 的弦,过O 作OH AC ⊥于点H .若
2OH =,12AB =,13BO =.
求:(1)O 的半径;
(2)sin OAC ∠的值;
(3)弦AC 的长(结果保留两个有效数字).
C
图14
A B
3、如图,AB 为⊙O 的直径,弦CD ⊥AB 于点M ,过点B 作BE ∥CD ,交AC 的延长线于点E ,连结BC 。

(1)求证:BE 为⊙O 的切线;
(2)如果CD =6,tan ∠BCD =2
1
,求⊙O 的直径。

4、如图,已知:ABC △内接于O ,点D 在OC 的延长线上,1sin 2
B =,30D ∠=
. (1)求证:AD 是O 的切线;
(2)若6AC =,求AD 的长.
5、如图,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,AC 平分∠BCD ,∠ADC =120°,四
边形ABCD 的周长为10。

(1)求此圆的半径;
(2)求图中阴影部分的面积。

A
6、如图,ABC △是O 的内接三角形,AC BC =,D 为O 中 AB 上一点,延长DA 至点E ,使CE CD =.
(1)求证:AE BD =;
(2)若AC BC ⊥
,求证:AD BD +=.
7、如图,A 是以BC 为直径的O 上一点,AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延长线相交于点E G ,是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P . (1)求证:BF EF =;
(2)求证:PA 是O 的切线;
(3)若FG BF =,且O
的半径长为BD 和FG 的长度.


C。

相关文档
最新文档