2012年高考数学分类汇编:数列
高三数学《数列》高考分析

日期
2020.3.11
科目
数学
中心发言人
赵艳萍
课题
《数列》高考分析
参加教师
高三全体数学教师
考向分析
1.数列是高考的必考内容,从2011年---2019年的高考试题来看,理科每年的题量和分值一般都是两个小题共10分,或一个大题共12分,其中2013年是两选一填共15分,2019年是一选一填和概率压轴题里的一问,约14分;文科2011年、2013年、2019年两个小题一个大题共17分,2012年和2015年是一选一填共10分,其他年份是一道解答题共12分。
2.解答题的命题特点分析
等差(比)数列的基本运算:a1,an,Sn,n,d(q)这五个量中已知其中的三个量,求另外两个量.已知数列的递推关系式以及某些项,求数列的通项公式.已知等差(比)数列的某些项或前几项的和,求其通项公式.等差(比)数列的判断与证明以及等差数列前n项和的最值问题等。结合模考中的数列大题是劣构问题,可提醒学生选择有益于形成解决方案的信息和技能。
二、例题分析
1.选择题和填空题的命题特点分析
选择、填空题常考题型主要涉及等差、等比数列的通项公式与前项和公式,知三求二,借助方程组求解基本量,有时也会用到“整体求解”的技巧;有些客观题如能灵活运用数列的性质求解则可以大大简化运算。
例题:
此处设置了5个小题,都是近两年高考试题改编题。建议强调通性通法,设基本量解方程或方程组,如果已知等差中有几项和是常数的计算问题,一般是性质与求和公式结合使用,体现整体代入的思想。
(1).从试题命制角度看,重视对基础知识、基本技能和基本数学思想方法的考查。
(2).从课程标准角度看,要求学生“探索并掌握等差数列、等比数列的通项公式与前n项和的公式,能在具体问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题”。
【高考数学真题分类汇编】——递推数列与数列求和(后附答案解析)

专题六数列第十七讲递推数列与数列求和2019年 1.19(2019天津理)设{}n a 是等差数列,{}n b 是等比数列.已知112233 4,622,24a b b a b a ===−=+,.(Ⅰ)求 {}n a 和 {}n b 的通项公式;(Ⅱ)设数列 {}n c 满足11 1,22,2,1,,kk n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . ()求数列i() {}221n n a c −的通项公式;()求ii()2*1ni ii a c n =∈∑N . 2010-2018年一、选择题1.(2013大纲)已知数列 {}n a 满足12430,3n n aa a + +==−,则 {}n a 的前项和等于10 A .106(13)−−− B .101(13)9−C .10 3(13)−− D .10 3(13)−+2.(2012 )上海设25sin1πn n a n =,n n a a a S +++= 21,在10021 ,,,S S S 中,正数的个数是A 25 B 50 C 75 D 100....二、填空题3(2018 .全国卷Ⅰ记)n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____. 42017 .( 新课标Ⅱ)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ .52015 .( 新课标Ⅱ)设n S 是数列{}n a 的前n 项和,且 1111,n n n a a S S ++ =−=,则n S =__.62015.(江苏)数列}{n a 满足11=a ,且11+=−+n a a n n (*N n ∈),则数列}1{na前10项的和为.72013 .(新课标Ⅰ)若数列{n a }的前项和为n n S =2133n a +,则数列{n a }的通项公式是n a =______.82013 .( 湖南)设n S 为数列{}n a 的前项和,n 1 (1),,2n n n nS a n N *= −−∈则()13a =_____;()2 12100S S S ++⋅⋅⋅+=___________ .92012 .( 新课标)数列}{n a 满足12)1(1−=−++n a a n n n ,则}{n a 的前项和为60 .10.(福建)数列2012 {}n a 的通项公式cos 12n n a n π=+,前n 项和为n S ,则2012S =___________.三、解答题11.(2018 浙江)已知等比数列1{}a 的公比1q >,且34528a a a ++=,42a +是3a ,5a 的等差中项.数列{}n b 满足11b =,数列1 {()}n n n b b a +−的前n 项和为22n n +. (1)求q 的值;(2)求数列{}n b 的通项公式.12.(2018)天津设{}n a 是等比数列,公比大于,其前0n 项和为n S ()n * ∈N ,{}n b 是等差数列.已知11a =,322a a =+, 435a b b =+, 5462a b b =+. (1)求{}n a 和{}n b 的通项公式;(2)设数列{}n S 的前n 项和为n T ()n *∈N , (i)求n T ;(ii)证明221()22(1)(2)2n nk k k k T b b k k n ++=+=− +++∑()n *∈N . 13.( 2017江苏)对于给定的正整数k ,若数列{}n a 满足11112n k n k n n n k n k n a a a a a a ka −−+−++−+++⋅⋅⋅+++⋅⋅⋅++=对任意正整数n ()n k >总成立,则称数列{}n a 是“()P k 数列”.()证明:等差数列1{}n a 是“(3)P 数列”;()若数列2{}n a 既是“(2)P 数列,又是”“(3)P 数列,证明:”{}n a 是等差数列. 14.(2016年全国II )n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记 []lg n n b a =,其中 []x表示不超过x 的最大整数,如 [] 0.90=, [] lg991=. (Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列 {}n b 的前1000项和.15.( 2015新课标Ⅰ)n S 为数列{}n a 的前n 项和,已知0n a >,2243n n n a a S +=+ (ⅠⅠ)求{}n a 的通项公式: (Ⅱ)设11n n n b a a +=,求数列{}n b 的前n 项和. 16.( 2015广东)数列{}n a 满足:1212242n n n a a na −+ ++⋅⋅⋅+=−,*N n ∈. ()求13a 的值;()求数列2{}n a 的前n 项和n T ;()令311b a =,1 111 (1)23n n n Tb a nn− =++++⋅⋅⋅+(2)n ≥ 证明:数列{}n b 的前n 项和n S 满足 22ln n S n <+.17.( 2014广东)设各项均为正数的数列 {}n a 的前n 项和为n S ,且n S 满足()()* ∈=+−−+−N n n n S n n S n n ,033222.(Ⅰ)求1a 的值;(Ⅱ)求数列 {}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a 18.( 2013湖南)设n S 为数列{n a }的前项和,已知01≠a ,2n n S S a a •=−11,∈n N *()Ⅰ求1a ,2a ,并求数列{n a }的通项公式;()Ⅱ求数列{n na }的前n 项和.19.( 2011 广东)设0b >,数列 {}n a 满足1a b =,11 (2)22n n n nba a n a n −−=≥+−.()求数列1 {}n a 的通项公式;()证明:对于一切正整数2n ,11 1.2n n n b a ++≤+专题六数列第十七讲递推数列与数列求和答案部分 2019年1.解析 (Ⅰ)设等差数列 {}n a 的公差为d ,等比数列 {}n b 的公比为q ,依题意得2 662, 6124q d q d =+⎧⎨=+⎩解得3.2d q =⎧⎨=⎩故1 4(1)331,6232n n n n a n n b − =+−⨯=+=⨯=⨯. 所以, {}n a 的通项公式为 () {} 31,n na n n b*=+∈N 的通项公式为 ()32n nb n *=⨯∈N . (Ⅱ))(i () () ()()222 11321321941n n n n n n n a c a b −=−=⨯+⨯−=⨯−. 所以,数列() {}221n n a c −的通项公式为 ()()22 1941n n n a c n * −=⨯−∈N . ()ii () ()222211112211n n n niii i i i i ii i i i c a c a a c a a ====−⎡⎤ =+−=+⎣⎦ ∑∑∑∑ ()()1 221 2439412n nn ni i =⎛⎫− ⎪ =⨯+⨯+⨯− ⎪⎝⎭∑()()2114143252914n n n n−−−=⨯+⨯+⨯−−() 211*2725212n n n n −−=⨯+⨯−−∈N . 2010-2018年1.【解析】∵113n n a a +=−,∴ {}n a 是等比数列 又243a =−,∴14a =,∴ ()1010101413 313113S −⎛⎫⎛⎫−− ⎪ ⎪ ⎪⎝⎭⎝⎭ ==−+,故选C . 2.D 【解析】由数列通项可知,当125n 剟,n N +∈时,0na …,当 2650n 剟,n N +∈时,0n a …,因为 1260a a +>, 2270a a +>⋅⋅⋅∴ 1250,,,S S S ⋅⋅⋅都是正数;当51100n 剟,n N +∈同理5152100,,,S S S ⋅⋅⋅也都是正数,所以正数的个 数是100.3.63−【解析】通解 因为21n n S a =+,所以当1=n 时,1121=+a a ,解得11=−a ;当2=n 时,12221+=+a a a ,解得22=−a ; 当3=n 时,123321++=+a a a a ,解得34=−a ; 当4=n 时,1234421+++=+a a a a a ,解得48=−a ; 当5=n 时,12345521++++=+a a a a a a ,解得516=−a ; 当6=n 时,123456621+++++=+a a a a a a a ,解得632=−a . 所以61248163263=− −−−−−=−S . 优解因为 21n n S a =+,所以当1=n 时,1121=+a a ,解得11=−a ,当2≥n 时,112121−−=−=+−−n n n n n a S S a a ,所以12−=n n a a , 所以数列{}n a 是以1−为首项,2 为公比的等比数列,所以12−=−n n a ,所以661(12)6312−⨯−==−−S .4.21n n +【解析】设等差数列的首项为1a ,公差为d ,则1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩,解得11a =,1d =,∴1(1)(1)22n n n n n S na d −+=+⨯=,所以12112()(1)1n S k k k k ==−++,所以1111111122[(1)()()]2(1)223111nk knS n n n n ==−+−+⋅⋅⋅+−=−=+++∑.5.1n −【解析】当1n =时,111S a ==−,所以111S =−,因为111n n n n n a S S S S +++=−=,所以1111n n S S +−=,即1111n nS S +−=−,所以1{}nS 是以1−为首项,1−为公差的等差数列, 所以1 (1)(1)(1)nn n S = −+−−=−,所以1n S n =−.6.2011【解析】由题意得: 112211()()()nn n n n a a a a a a a a −−− =−+−++−+ (1)1212n n n n + =+−+++=所以10 11112202(),2(1), 11111n n n S S a n n n n =−=−== +++.7.【解析】当n =1 时,1a =1S =12133a +,解得1a =1, 当n ≥2 时,n a =1n n S S −−=2133n a +-(12133n a −+)=12233n n a a −−,即n a =12n a −−,∴{n a}是首项为,公比为-1 2 的等比数列,∴n a =1(2)n −−. 81.( )116−,(2)10011 (1)32−【解析】(1)∵1(1)2n n n nS a = −−.3n =时,a 1+a 2+a 3=-a 3-18①4n =时,a 1+a 2+a 3+a 4=a 4-116,∴a 1+a 2+a 3=-116.②由①②知a 3=-116.(2)1n >时,11111(1)()2n n n n S a −−−− = −−,∴11(1)(1)()2n n nn n n a a a − = −+−+ 当为奇数时,n 1111()22n n n a a +−=−; 当为偶数时,n 11()2nn a −=−.故11 (),21 (),2n n n n a n +⎧−⎪⎪=⎨⎪⎪⎩为奇数为偶数,11,20,n n n S n +⎧−⎪=⎨⎪⎩为奇数为偶数∴ 12100 2461001111() 2222S S S ++⋅⋅⋅+=−+++⋅⋅⋅+10010010011(1)111142(1)(1)1323214−=−=−−=−−.9.1830【解析】可证明:14142434443424241616n n n n n n n n n n b a a a a a a a a b +++++−−−=+++=++++=+1123410b a a a a =+++=⇒15151410151618302S ⨯=⨯+⨯=.10.3018【解析】因为cos 2n π的周期为4;由cos 12n n a n π=+n N *∈∴12346a a a a +++=,56786a a a a +++=,… ∴201250363018S =⨯=. 11.【解析】由(1)42a +是3a ,5a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=,因为1q >,所以2q =.(2)设1()nn n n c b b a +=−,数列{}n c 前n 项和为n S .由11,1,2n nn S n c S S n −=⎧=⎨−⎩≥,解得41n c n =−. 由可知(1)12n n a −=,所以111(41)()2n n n b b n −+−=−⋅,故211(45)()2n nn b b n −−−=−⋅,2n ≥, 11123221()()()()n n n n n b b b b b b b b b b −−−−=−+−+⋅⋅⋅+−+−23111(45)()(49)()73222n n n n −−=−⋅+−⋅+⋅⋅⋅+⋅+.设221113711()(45)()222n n T n −=+⋅+⋅+⋅⋅⋅+−⋅,2n ≥,2311111137()11()(45)()22222n n T n −=⋅+⋅+⋅+⋅⋅⋅+−⋅所以22111111344()4()(45)()22222n n n T n −−=+⋅+⋅+⋅⋅⋅+⋅−−⋅,因此2114(43)()2n nT n −=−−⋅,2n ≥,又11b =,所以2115(43)()2n n b n −=−−⋅.12.【解析】(1)设等比数列{}n a 的公比为q .由1321,2,a a a ==+可得220q q −−=. 因为0q >,可得2q =,故12n n a −=.设等差数列{}n b 的公差为,由d 435a b b =+,可得13 4.b d +=由5462a b b =+, 可得131316,bd += 从而11,1,b d == 故.n b n =所以数列{}n a 的通项公式为12n n a −=,数列{}n b 的通项公式为.n b n =(2)(i)(1)由,有122112nn n S −==−−,故1112(12)(21)22212nnnk k n n k k T n n n +==⨯−=−=−=−=−−−∑∑.(ii)证明:因为11212()(222)222(1)(2)(1)(2)(1)(2)21k k k k k k+kT +b b k k k k k k k k k k k k ++++−−++⋅===−++++++++,所以,324321221()2222222()()()2(1)(2)3243212n n n n k k kk T b b kk n n n ++++=+=−+−++−=−+++++∑.13.【解析】证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+−, 从而,当n 4≥时,nk n k a a a −++=+11(1)(1)n k d a n k d −−+++−122(1)2n a n d a =+−=,1,2,3,k =所以n n n n n n n a a a a a a a −−−+++++=321123+++6, 因此等差数列{}n a 是“(3)P 数列”. (2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,因此,当3n ≥时,n n n n n a a a a a −−++ +++=21124,①当4n ≥时,n n n n n n n a a a a a a a −−−+++ +++++=3211236.② 由①知,n n n a a a−−− +=−32141()n n a a ++,③ n n n a a a +++ +=−23141()n n aa −+,④ 将③④代入②,得n n n a a a −++=112,其中4n ≥,所以345 ,,,a a a 是等差数列,设其公差为d'.在①中,取4n =,则 235644a a a a a +++=,所以23a a d'=−, 在①中,取3n =,则 12453 4a a a a a +++=,所以122a a d'=−, 所以数列{}n a 是等差数列.14.【解析】(Ⅰ)设 {}n a 的公差为d ,74 728S a ==,∴44a =,∴4113a a d −==,∴1 (1)na a n d n =+−=. ∴ [][]11 lg lg10b a ===, [][] 1111 lg lg111b a ===, [][] 101101101 lg lg 2b a ===. (Ⅱ)记 {}n b 的前n 项和为n T ,则 1000121000 Tb b b =++⋅⋅⋅+ [][] [] 121000 lg lg lg a a a =++⋅⋅⋅+.当 0lg 1na <≤时, 129n =⋅⋅⋅,,,; 当 1lg 2n a <≤时,101199n =⋅⋅⋅,,,; 当 2lg 3n a <≤时, 100101999n =⋅⋅⋅,,,;当 lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=. 15.【解析】(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3, 当2n ≥时,22 111 43434 −−− +−−=+−−=n n nn n n n a a a a S S a ,即 111 ()()2()n n n n n n a a a a aa −−− +−=+,因为0n a >,所以1n n a a −−=2, 所以数列{n a}32是首项为,公差为的等差数列,所以n a =21n +; ()由(ⅡⅠ)知,n b =1111() (21)(23)22123n n n n =− ++++,所以数列{n b}n 前项和为 12n b b b +++=1111111 [()()()]235572123n n −+−++−++=116463(23)n n n −=++. 16.【解析】()由题意知:11212242n n n a a na −+ +++=−当3=n 时,121222=42++−a a ;当3=n 时, 1232322+3=42++−a a a ;321 322233=4(4) 224++ −−−=a 31=4a ()当21n =时,11112412a -+=-=;当2n ≥时,由1212242n n n a a na −++++=−知 121212 2(1)42n n n a a n a −−−++++−=−两式相减得21112 222n n n n n n nna −−−++ =−=, 此时112n n a -=.经检验知11a =也满足112n n a -=.故数列{}n a 是以为首项,1 12为公比的公比数列, 故11 1[1()]1221212nn n T −⨯− ==−−.()由()知,31)( 2111b a ==.当2n ≥时,2111211111112(1)(1) 23232n n n n n Tb a n n n n −−−−=++++⋅⋅⋅+=++++⋅⋅⋅+⋅1 211111 (1) 2312n n n n − =++++⋅⋅⋅+−⋅−.当1n =时,1 122ln12S =<+=,成立;当2n ≥时,12 2112111 1[(1)][(1)] 2223232n S =++−⋅+++−⋅+⋅⋅⋅1 211111 [(1)] 2312n n n n − +++++⋅⋅⋅+−⋅−= 21231 11111111111 12()()() 2322222222n n n −−+++⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅+− 34121211111111111 ()()() 322221222n n n n n n −−−− +++⋅⋅⋅+−+⋅⋅⋅+−+−−=21211 1111111212()(1)()1 23222212n n n −−− +++⋅⋅⋅++−+⋅−−33212111 111111112 ()()()1 322122212n n n n n n − −−−− +⋅−+⋅⋅⋅+−+−−−=11 111111 12()(1)() 23222n n n −− +++⋅⋅⋅++−+−111111111 ()()() 32122n n n n n −−− +−+⋅⋅⋅+−+−−1 1111111 22()(1) 23232n n n −=+++⋅⋅⋅+−+++⋅⋅⋅+⋅ 111 22()23n<+++⋅⋅⋅+.构造函数()ln(1),01xf x x x x=+−>+ 2()0,()()1x f x f x x在单调递增0,+'∴=>∞+ ()ln(1)(0)01xf x x f x∴=+−>=+ ln(1)()1xx x 在上恒成立0,+∴+>∞+,即ln(1)1x x x<++1=,1x n 令−2n ≥,则11 ln(1)1n n <+−,从而可得11 ln(1) 221<+−,11ln(1) 331<+−,⋅⋅⋅,11ln(1)1n n <+−,将以上1n −个式子同向相加即得{} 111111ln(1)ln(1)ln(1) 2321311n n++⋅⋅⋅+<++++⋅⋅⋅++= −−−23ln()ln121n n n ⨯⨯⋅⋅⋅⨯=−,故 11122()22ln 23n S n n <+++⋅⋅⋅+<+综上可知, 22ln n S n <+.17.【解析】(Ⅰ)22 1111 1:(1)320,60,n S S S S =−−−⨯=+−=令得即所以11(3)(2)0S S +−=, 111 0,2, 2.S S a >∴==即(Ⅱ)2222 (3)3()0,:(3)()0,n n n n S n n S n n S S n n ⎡⎤ −+−−+=+−+=⎣⎦ 由得2 0(),0,30,,n n n n a n N S S S n n *>∈∴>+>∴=+从而221 2,(1)(1)2,n n n n a S S n n n n n−⎡⎤ ∴≥=−=+−−+−=⎣⎦ 当时1 221,2().n a a n n N *==⨯∴=∈又(Ⅲ)22 313 ,()(),221644kk k N k k k k *∈+>+−=−+当时 111111 113 (1)2(21)44 ()()() 244k k a a k k k k k k ∴==⋅<⋅++ +−+11111111144 (1) ()(1)4444k k k k ⎡⎤⎢⎥ =⋅=⋅−⎢⎥⎡⎤⎢⎥−+− −⋅+−⎢⎥⎣⎦⎣⎦1122111(1)(1)(1)n n a a a a a a ∴++++++1111111()() 1111114 1223(1) 444444n n ⎡⎤⎢⎥ <−+−++−⎢⎥⎢⎥ −−−−−+−⎣⎦.18.【解析】(Ⅰ) 11111121.S S a a n a S ⋅=−=∴=时,当 .1,011 =≠⇒a a 11111111222221−−−−=⇒−=−−−=−=>n n n n n n n n n a a a a S a a S a a s s a n 时,当- .*,221}{11N n a q a a n n n ∈===⇒−的等比数列,公比为时首项为(Ⅱ)n n n nqa n qa qa qa qT a n a a a T ⋅++⋅+⋅+⋅=⇒⋅++⋅+⋅+⋅= 321321321321设1432321+⋅++⋅+⋅+⋅=⇒n na n a a a qT 上式错位相减:nn n nn n n n na qq a na a a a a T q 21211)1(111321⋅−−=−−−=−++++=−++ *,12)1(N n nT n n ∈+⋅−=⇒.19.【解析】(1)由11111210,0,.22n n n n n nba n n a b a a n a b b a −−−−=>=>=++−知令11,n n n A A a b==,当1122,n n n A A b b −≥=+时211 2111222n n n n A b b b b−−−− =++++2121 1222.n n n n b b b b−−− =++++①当2b ≠时,12 (1)2,2 (2)1nn n n nb b b A b b b⎛⎫− ⎪−⎝⎭==−− ②当2,.2n nb A ==时 (2),22 2,2n nnn nb b b a b b ⎧−≠⎪=−⎨⎪=⎩(2)当2b ≠时,(欲证1111 (2)2 1,(1)2 222n n n n n nn n n n n nb b b b b a nb b b ++++−− =≤+≤+−−只需证)11111212 (2)(2)(22)2n n n n n n n n n b b b b b b++++−−−− +=++++− 1122222111 22222n n n n n n n n n b b b b b +−+−−−+=+++++++2121 222 2()222n nn nnn n n b b bb b bb −− =+++++++12(222)222n n n n n n b n b n b + >+++=⋅=⋅,11 (2) 1.22n n n n n n nb b b a b ++− ∴=<+−当112,2 1.2nn nbb a++===+时综上所述111.2nn nba++≤+。
2012年-2014高考数学真题分类汇编 集合

集合与常用逻辑用语2012年1.(2012湖南卷文)设集合M={-1,0,1},N={x |x 2=x },则M∩N=( ) A.{-1,0,1} B.{0,1} C.{1} D.{0}2.(2012湖南卷理)命题“若α=4π,则tan α=1”的逆否命题是( ) A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1C. 若tan α≠1,则α≠4πD. 若tan α≠1,则α=4π3.(2012年天津卷文)设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件4.(2012年北京卷理)已知集合A={x ∈R|3x +2>0} B={x ∈R|(x +1)(x -3)>0} 则A∩B=( ) A .(-∞,-1) B.(-1,-23) C .(-23,3) D . (3,+∞) 5.(2012年福建卷理)下列命题中,真命题是( )A .0,00≤∈∃x eR x B .22,x R x x >∈∀ C .0=+b a 的充要条件是1-=baD .1,1>>b a 是1>ab 的充分条件6.(2012年广东卷理)设集合U {1,23,4,5,6}=,,M {1,2,4}=则M C U = ( ) A .U B .{1,3,5} C .{3,5,6} D .{2,4,6}(2012年上海卷文)2、若集合{}210A x x =->,{}1B x x =<,则A B ⋂=7.(2012年安徽文)(2)设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=( ) A.(1,2) B. [1,2] C. [ 1,2) D.(1,2 ] 8. (2012年安徽文)命题“存在实数x ,使x > 1”的否定是( )(A ) 对任意实数x , 都有x > 1 (B )不存在实数x ,使x ≤ 1 (C ) 对任意实数x , 都有x ≤ 1 (D )存在实数x ,使x ≤ 19.(2012年山东卷理)2 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA )B 为( ) A {1,2,4} B {2,3,4} C {0,2,4} D {0,2,3,4} 10.(2012年山东卷文)(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是( )(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真11.(2012年浙江卷理)1.设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2) 12.(2012年天津卷文)集合{}|25A x R x =∈-≤中最小整数位 .13.(2012年天津卷理)(11)已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n -,则=m ,=n .14.(2012年湖北卷理)2 命题“∃x 0∈C R Q , 30x ∈Q ”的否定是( )A .∃x 0∉C R Q ,0x ∈Q B. ∃x 0∈C R Q ,0x ∉Q C. ∀x 0∉C R Q , 0x ∈Q D.∀x 0∈C R Q ,0x ∉Q15.(2012年湖北文)已知集合A{x| 2x -3x +2=0,x ∈R } , B={x|0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A 1B 2C 3D 416.(2012年湖北文)4.命题“存在一个无理数,它的平方是有理数”的否定是( ) A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数 C.存在一个有理数,它的平方是有理数 D.存在一个无理数,它的平方不是有理数17.(2012年江苏卷)已知集合{124}A =,,,{246}B =,,,则A B = . 18.(2012江西卷文)若全集U={x ∈R|x 2≤4} A={x ∈R||x+1|≤1}的补集CuA 为( ) A |x ∈R |0<x <2| B |x ∈R |0≤x <2| C |x ∈R |0<x≤2| D |x ∈R |0≤x≤2| 19.(2012年四川卷文)1、设集合{,}A a b =,{,,}B b c d =,则A B =( )A 、{}bB 、{,,}b c dC 、{,,}a c dD 、{,,,}a b c d 20.(2012年重庆卷文)1.命题“若p 则q ”的逆命题是( ) A. 若q 则p B. 若﹃p 则﹃q C. 若﹃q 则﹃p D. 若p 则﹃q 21.(2012年陕西卷理)1. 集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =( ) (A ) (1,2) (B ) [1,2) (C ) (1,2] (D ) [1,2]22.(2012年全国新课标文)1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅23.(2012年上海卷理)2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A 。
高考数学专题数列

第五章 数 列第一节数列的概念与简单表示法1.数列的定义、分类与通项公式 (1)数列的定义:①数列:按照一定顺序排列的一列数. ②数列的项:数列中的每一个数. (2)数列的分类:(3)如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.1.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.[试一试]1.已知数列{a n }的前4项为1,3,7,15,写出数列{a n }的一个通项公式为________. 答案:a n =2n -1(n ∈N *)2.已知数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧2·3n -1(n 为偶数),2n -5(n 为奇数),则a 4·a 3=________.解析:a 4·a 3=2×33·(2×3-5)=54. 答案:541.辨明数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.2.明确a n 与S n 的关系a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1 (n ≥2).[练一练]1.若数列{a n }的前n 项和S =n 2-10n (n =1,2,3,…),则此数列的通项公式为a n =________.答案:2n -112.已知数列{a n }的通项公式为a n =pn +q n ,且a 2=32,a 4=32,则a 8=________.解析:由已知得⎩⎨⎧2p +q 2=32,4p +q 4=32,解得⎩⎪⎨⎪⎧p =14,q =2.则a n =14n +2n ,故a 8=94.答案:94由数列的前几项求数列的通项公式n ,…的通项公式的是( ) A .a n =1 B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2 D .a n =(-1)n -1+32解析:选C 由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…. 2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)-11×2,12×3,-13×4,14×5,…;(3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以通项公式a n =2(n +1)(n ∈N *).(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1).(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇数,b ,n 为偶数. (4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.[类题通法]用观察法求数列的通项公式的技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n 或(-1)n+1来调整.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.n[n n n 的通项公式: (1)S n =2n 2-3n ;(2)S n =3n +b .[解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5,由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b , 当n ≥2时,a n =S n -S n -1 =(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.[类题通法]已知数列{a n }的前n 项和S n ,求数列的通项公式,其求解过程分为三步:(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.[针对训练]已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *,求{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2, 由已知a 1=S 1>1,因此a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)·(a n +2),得a n +1-a n -3=0或a n +1=-a n .因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是以公差为3,首项为2的等差数列,故{a n }的通项公式为a n=3n -1.由递推关系式求数列的通项公式角度一 形如a n +1=a n f (n ),求a n1.(2012·大纲全国卷)已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.解:(1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1.当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1, 整理得a n =n +1n -1a n -1.即a n a n -1=n +1n -1. ∴a n =a 1·a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n -2a n -3·a n -1a n -2·a na n -1=1·31·42·53·64·…·n -1n -3·n n -2·n +1n -1=n (n +1)2(n ≥2) 当n =1时,a 1=1.综上可知,{a n }的通项公式a n =n (n +1)2.角度二 形如a n +1=a n +f (n ),求a n 2.已知a 1=2,a n +1=a n +3n +2,求a n . 解:∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=12×(3×1+1)=2符合公式,∴a n =32n 2+n 2.角度三 形如a n +1=Aa n +B (A ≠0且A ≠1),求a n 3.已知数列{a n }满足a 1=1,a n +1=3a n +2,求a n . 解:∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1.[类题通法]由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=f (n )·a n ,则可以分别通过累加、累乘法求得通项公式,另外,通过迭代法也可以求得上面两类数列的通项公式,(如角度二),注意:有的问题也可利用构造法,即通过对递推式的等价变形,(如角度三)转化为特殊数列求通项.第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2.1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.注意区分等差数列定义中同一个常数与常数的区别. [试一试]1.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A .58 B .88 C .143D .176解析:选B ∵a 4+a 8=16, ∴a 6=8,∴S 11=11a 6=88.2.(2013·重庆高考)已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8=________.解析:因为{a n }为等差数列,且a 1,a 2,a 5成等比数列,所以a 1(a 1+4d )=(a 1+d )2,解得d =2a 1=2,所以S 8=64.答案:641.等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A 、B 为常数)⇔{a n }是等差数列. 2.巧用等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d ,(n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 3.活用方程思想和化归思想在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解. [练一练]1.(2013·安徽高考)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2D .2解析:选A 根据等差数列的定义和性质可得,S 8=4(a 3+a 6),又S 8=4a 3,所以a 6=0,又a 7=-2,所以a 8=-4,a 9=-6.2.(2014·河北省质量监测)已知等差数列{a n }的前n 项和为S n ,a 4=15,S 5=55,则数列{a n }的公差是( )A.14 B .4 C .-4D .-3解析:选B ∵{a n }是等差数列,a 4=15,S 5=55, ∴a 1+a 5=22,∴2a 3=22,a 3=11, ∴公差d =a 4-a 3=4.等差数列的基本运算1.(2013·n n ,若S m -1=-m ,S m +1=3,则m =( )A .3B .4C .5D .6解析:选C 根据已知条件,得到a m 和a m +1,再根据等差数列的定义得到公差d ,最后建立关于a 1和m 的方程组求解.由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以等差数列的公差为d =a m +1-a m =3-2=1,由⎩⎪⎨⎪⎧a m =a 1+(m -1)d =2,S m =a 1m +12m (m -1)d =0, 得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m (m -1)=0,解得⎩⎪⎨⎪⎧a 1=-2,m =5. 2.已知{a n }为等差数列,S n 为其前n 项和.若a 1=12,S 2=a 3,则a 2=________;S n =________.解析:设等差数列的公差为d ,则2a 1+d =a 1+2d ,把a 1=12代入得d =12,所以a 2=a 1+d =1,S n =na 1+n (n -1)2d =14n (n +1).答案:1n (n +1)43.已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解:(1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d , 由于a 1=1,a 3=-3, 又a 3=a 1+2d , 所以d =-2, 因此a n =3-2n . (2)由a n =3-2n ,得S n =1+(3-2n )2n =2n -n 2,所以S k =2k -k 2=-35, 即k 2-2k -35=0, 解得k =7或k =-5, 又因为k ∈N *,所以k =7.[类题通法]1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程组解决问题的思想.2.数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.等差数列的判断与证明[典例] 已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2且n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列.(2)求S n 和a n .[解] (1)证明:当n ≥2时,a n =S n -S n -1=-2S n S n -1,① ∴S n (1+2S n -1)=S n -1.由上式知若S n -1≠0,则S n ≠0. ∵S 1=a 1≠0,由递推关系知S n ≠0(n ∈N *), 由①式得1S n -1S n -1=2(n ≥2).∴⎩⎨⎧⎭⎬⎫1S n 是等差数列,其中首项为1S 1=1a 1=2,公差为2.(2)∵1S n =1S 1+2(n -1)=1a 1+2(n -1),∴S n =12n.当n ≥2时,a n =S n -S n -1=-12n (n -1),当n =1时,a 1=S 1=12不适合上式,∴a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.若将条件改为“a 1=2,S n =S n -12S n -1+1(n ≥2)”,如何求解.解:(1)∵S n =S n -12S n -1+1,∴1S n =2S n -1+1S n -1=1S n -1+2.∴1S n -1S n -1=2. ∴⎩⎨⎧⎭⎬⎫1S n 是以12为首项,以2为公差的等差数列.(2)由(1)知1S n =12+(n -1)×2=2n -32,即S n =12n -32.当n ≥2时,a n =S n -S n -1=12n -32-12n -72 =-2⎝⎛⎭⎫2n -32⎝⎛⎭⎫2n -72;当n =1时,a 1=2不适合a n , 故a n=⎩⎨⎧2(n =1),-2⎝⎛⎭⎫2n -32⎝⎛⎭⎫2n -72(n ≥2).[类题通法]1.判断等差数列的解答题,常用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断.2.用定义证明等差数列时,常采用两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义.[针对训练]在数列{a n }中,a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *). (1)求a 2,a 3的值;(2)设b n =a n +32n (n ∈N *),证明:{b n }是等差数列.解:(1)∵a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *), ∴a 2=2a 1+22+3=1,a 3=2a 2+23+3=13. (2)证明:对于任意n ∈N *, ∵b n +1-b n =a n +1+32n +1-a n +32n=12n +1[(a n +1-2a n )-3]=12n +1[(2n +1+3)-3]=1,∴数列{b n }是首项为a 1+32=-3+32=0,公差为1的等差数列.等差数列的性质及最值[典例] n 是等差数列,a 1+a 3+a 5=2a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 是( )A .18B .19C .20D .21(2)设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________. [解析] (1)a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.(2)设两等差数列组成的和数列为{c n },由题意知新数列仍为等差数列且c 1=7,c 3=21,则c 5=2c 3-c 1=2×21-7=35.[答案] (1)C (2)35 [类题通法] 1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的两种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图像求二次函数最值的方法求解.(2)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[针对训练]1.(2013·安徽望江模拟)设数列{a n }是公差d <0的等差数列,S n 为其前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n =( )A .5B .6C .5或6D .6或7解析:选C 由题意得S 6=6a 1+15d =5a 1+10d , 所以a 6=0,故当n =5或6时,S n 最大,选C.2.(2013·广东高考)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 解析:因为a 3+a 8=10,所以3a 5+a 7=2(a 3+a 8)=20. 答案:20第三节等比数列及其前n 项和1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为 a n +1a n=q . (2)等比中项:如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.1.在等比数列中易忽视每项与公比都不为0.2.在运用等比数列的前n 项和公式时,必须对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误.[试一试]1.(2013·江西高考)等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12D .24解析:选A 由等比数列的前三项为x,3x +3,6x +6,可得(3x +3)2=x (6x +6),解得x =-3或x =-1(此时3x +3=0,不合题意,舍去),故该等比数列的首项x =-3,公比q =3x +3x =2,所以第四项为(6x +6)×q =-24.2.(2013·北京高考)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.解析:由题知⎩⎪⎨⎪⎧ a 1q +a 1q 3=20,a 1q 2+a 1q 4=40,解得⎩⎪⎨⎪⎧q =2,a 1=2,故S n =2(1-2n )1-2=2n +1-2.答案:2 2n +1-21.等比数列的三种判定方法(1)定义:a n +1a n=q (q 是不为零的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式:a n =cq n -1(c 、q 均是不为零的常数,n ∈N *)⇔{a n }是等比数列.(3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列. 2.等比数列的常见性质(1)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(2)若数列{a n }、{b n }(项数相同)是等比数列,则{λa n }、⎩⎨⎧⎭⎬⎫1a n 、{a 2n }、{a n ·b n }、⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(3)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k ;(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.3.求解等比数列的基本量常用的思想方法(1)方程的思想:等比数列的通项公式、前n 项和的公式中联系着五个量:a 1,q ,n ,a n ,S n ,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a 1与q ,在解题中根据已知条件建立关于a 1与q 的方程或者方程组,是解题的关键.(2)分类讨论思想:在应用等比数列前n 项和公式时,必须分类求和,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q;在判断等比数列单调性时,也必须对a 1与q 分类讨论.[练一练]1.(2014·济南调研)已知等比数列{a n }满足a 1=2,a 3a 5=4a 26,则a 3的值为( ) A.12B .1C .2D.14解析:选B ∵{a n }为等比数列,设公比为q ,由a 3a 5=4a 26可得:a 24=4a 26,∴a 26a 24=14,即q 4=14. ∴q 2=12,a 3=a 1·q 2=1.2.已知数列{a n }是公比q ≠±1的等比数列,则在{a n +a n +1},{a n +1-a n },⎩⎨⎧⎭⎬⎫a n a n +1,{na n }这四个数列中,是等比数列的有( )A .1个B .2个C .3个D .4个答案:C等比数列的基本运算1.(2013·n 3项之和S 3=21,q 的值为( ) A .1 B .-12C .1或-12D .-1或12解析:选C 根据已知条件得⎩⎪⎨⎪⎧a 1q 2=7,a 1+a 1q +a 1q 2=21, ∴1+q +q 2q 2=3.整理得2q 2-q -1=0, 解得q =1或q =-12.2.(2013·全国卷Ⅰ)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n解析:选D 由等比数列前n 项和公式S n =a 1-a n q1-q ,代入数据可得S n =3-2a n .3.设等比数列{a n }的公比q <1,前n 项和为S n ,已知a 3=2,S 4=5S 2,求{a n }的通项公式.解:由题设知a 1≠0,S n =a 1(1-q n )1-q ,所以⎩⎪⎨⎪⎧a 1q 2=2, ①a 1(1-q 4)1-q =5×a 1(1-q 2)1-q . ② 由②式得1-q 4=5(1-q 2), 即(q -2)(q +2)(q -1)(q +1)=0. 因为q <1,所以q =-1,或q =-2. 当q =-1时,代入①式得a 1=2, 通项公式a n =2×(-1)n -1;当q =-2时,代入①式得a 1=12,通项公式a n =12×(-2)n -1.综上,a n =⎩⎪⎨⎪⎧2×(-1)n -1,q =-1,12×(-2)n -1,q =-2. [类题通法]1.对于等比数列的有关计算问题,可类比等差数列问题进行,在解方程组的过程中要注意“相除”消元的方法,同时要注意整体代入(换元)思想方法的应用.2.在涉及等比数列前n 项和公式时要注意对公比q 是否等于1进行判断和讨论.等比数列的判定与证明[典例] n n n n n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{a n }的通项公式. [解] (1)证明:∵a n +S n =n , ① ∴a n +1+S n +1=n +1.②②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12. ∵首项c 1=a 1-1,又a 1+a 1=1, ∴a 1=12,c 1=-12.又c n =a n -1,故{c n }是以-12为首项,12为公比的等比数列.(2)由(1)知c n =-12×⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n ∴a n =1-⎝⎛⎭⎫12n.在本例条件下,若数列{b n }满足b 1=a 1,b n =a n -a n -1(n ≥2), 证明{b n }是等比数列.证明:∵由(2)知a n =1-⎝⎛⎭⎫12n , ∴当n ≥2时,b n =a n -a n -1 =1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 =⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12也符合上式,∴b n =⎝⎛⎭⎫12n . ∴b n +1b n =12,数列{b n }是等比数列. [类题通法]证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.[针对训练](2013·辽宁省五校联考)已知数列{a n }满足:a 1=1,a 2=a (a ≠0),a n +2=p ·a 2n +1a n(其中p 为非零常数,n ∈N *).(1)判断数列⎩⎨⎧⎭⎬⎫a n +1a n 是不是等比数列; (2)求a n .解:(1)由a n +2=p ·a 2n +1a n ,得a n +2a n +1=p ·a n +1a n .令c n =a n +1a n,则c 1=a ,c n +1=pc n .∵a ≠0,∴c 1≠0,c n +1c n=p (非零常数),∴数列⎩⎨⎧⎭⎬⎫a n +1a n 是等比数列. (2)∵数列{c n }是首项为a ,公比为p 的等比数列, ∴c n =c 1·p n -1=a ·p n -1,即a n +1a n=ap n -1.当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=(ap n -2)×(ap n -3)×…×(ap 0)×1=a n -1p2-322nn +,∵a 1满足上式, ∴a n =an -1p2-322n n +,n ∈N *.等比数列的性质[典例] (1)在等比数列中,已知a 1a 38a 15=243,则a 39a 11的值为()A .3B .9C .27D .81(2)(2014·长春调研)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =( )A .11B .12C .14D .16[解析] (1)设数列{a n }的公比为q ,∵a 1a 38a 15=243,a 1a 15=a 28,∴a 8=3,∴a 39a 11=a 38q 3a 8·q 3=a 28=9.(2)设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q3n -3=324, 因此q 3n -6=81=34=q 36,所以n =14,故选C. [答案] (1)B (2)C [类题通法]等比数列常见性质的应用等比数列的性质可以分为三类:①通项公式的变形,②等比中项的变形,③前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[针对训练]1.设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于( ) A .1∶2 B .2∶3 C .3∶4D .1∶3解析:选C 由等比数列的性质知S 3,S 6-S 3,S 9-S 6仍成等比数列,于是(S 6-S 3)2=S 3·(S 9-S 6),将S 6=12S 3代入得S 9S 3=34.2.(2014·北京西城区期末)已知{a n }是公比为2的等比数列,若a 3-a 1=6,则a 1=________;1a 21+1a 22+…+1a 2n=________.解析:∵{a n }是公比为2的等比数列, 且a 3-a 1=6,∴4a 1-a 1=6,即a 1=2, ∴a n =2·2n -1=2n ,∴1a 2n =⎝⎛⎭⎫14n , 即数列⎩⎨⎧⎭⎬⎫1a 2n 是首项为14,公比为14的等比数列,∴1a 21+1a 22+…+1a 2n =14⎝⎛⎭⎫1-14n 1-14=13⎝⎛⎭⎫1-14n . 答案:2 13⎝⎛⎭⎫1-14n第四节数列求和1.等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d ;2.等比数列的前n 项和公式 S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.3.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n (n +1)2;(2)1+3+5+7+…+2n -1=n 2; (3)2+4+6+8+…+2n =n 2+n .1.使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.2.在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[试一试]数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n 等于( )A .9B .99C .10D .100答案:B数列求和的常用方法(1)倒序相加法:如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的.(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的.(3)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (4)分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(5)并项求和法:一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.[练一练]1.若S n =1-2+3-4+5-6+…+(-1)n -1·n ,则S 50=________.答案:-252.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为________. 解析:S n =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.答案:2n +1+n 2-2分组转化法求和[典例] n 1a 2+a 4=8,且对任意n ∈N *,函数f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足 f ′⎝⎛⎭⎫π2=0.(1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎪⎫a n +12a n ,求数列{b n }的前n 项和S n .[解] (1)由题设可得f ′(x )=a n -a n +1+a n +2-a n +1sin x -a n +2cos x . 对任意n ∈N *,f ′⎝⎛⎫π2=a n -a n +1+a n +2-a n +1=0, 即a n +1-a n =a n +2-a n +1,故{a n }为等差数列. 由a 1=2,a 2+a 4=8,可得数列{a n }的公差d =1, 所以a n =2+1·(n -1)=n +1.(2)由b n =2⎝⎛⎭⎪⎫a n +12a n =2⎝⎛⎭⎫n +1+12n +1=2n +12n +2知,S n =b 1+b 2+…+b n =2n +2·n (n +1)2+121-⎝⎛⎭⎫12n 1-12=n 2+3n +1-12n .[类题通法]分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和;(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数,的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.[针对训练]已知数列{a n }的首项a 1=3,通项a n =2n p +nq (n ∈N *,p ,q 为常数),且a 1,a 4,a 5成等差数列.求:(1)p ,q 的值;(2)数列{a n }前n 项和S n 的公式.解:(1)由a 1=3,得2p +q =3,又因为a 4=24p +4q , a 5=25p +5q ,且a 1+a 5=2a 4, 得3+25p +5q =25p +8q , 解得p =1,q =1.(2)由(1),知a n =2n +n ,所以S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n (n +1)2. 错位相减法求和[典例] n 项和为S n ,且42a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,求{b n }的前n 项和T n .[解] (1)设等差数列{a n }的首项为a 1,公差为d . 由S 4=4S 2,a 2n =2a n +1,得⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+(2n -1)d =2a 1+2(n -1)d +1, 解得⎩⎪⎨⎪⎧a 1=1,d =2.因此a n =2n -1,n ∈N *.(2)由已知b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,当n =1时,b 1a 1=12;当n ≥2时,b n a n =1-12n -⎝⎛⎭⎫1-12n 1=12n ,所以b n a n =12n ,n ∈N *.由(1)知a n =2n -1,n ∈N *, 所以b n =2n -12n ,n ∈N *.所以T n =12+322+523+…+2n -12n ,12T n =122+323+…+2n -32n +2n -12n +1. 两式相减,得12T n =12+⎝⎛⎭⎫222+223+…+22n -2n -12n +1 =32-12n -1-2n -12n +1, 所以T n =3-2n +32n .[类题通法]用错位相减法求和的注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.[针对训练](2014·武昌联考)已知数列{a n }的前n 项和为S n ,且S n =2a n -1;数列{b n }满足b n -1-b n=b n b n -1(n ≥2,n ∈N *),b 1=1.(1)求数列{a n },{b n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .解:(1)由S n =2a n -1,得S 1=2a 1-1,∴a 1=1. 又S n =2a n -1,S n -1=2a n -1-1(n ≥2),两式相减,得S n -S n -1=2a n -2a n -1,a n =2a n -2a n -1. ∴a n =2a n -1,n ≥2.∴数列{a n }是首项为1,公比为2的等比数列.∴a n =1·2n -1=2n -1.由b n -1-b n =b n b n -1(n ≥2,n ∈N *),得1b n -1b n -1=1.又b 1=1,∴数列⎩⎨⎧⎭⎬⎫1b n 是首项为1,公差为1的等差数列.∴1b n =1+(n -1)·1=n . ∴b n =1n.(2)∵T n =1·20+2·21+…+n ·2n -1,∴2T n =1·21+2·22+…+n ·2n . 两式相减,得-T n =1+21+…+2n -1-n ·2n=1-2n1-2-n ·2n =-1+2n -n ·2n .∴T n =(n -1)·2n +1.裂项相消法求和角度一 形如a n =1n (n +k )型1.在等比数列{a n }中,a 1>0,n ∈N *,且a 3-a 2=8,又a 1、a 5的等比中项为16. (1)求数列{a n }的通项公式;(2)设b n =log 4a n ,数列{b n }的前n 项和为S n ,是否存在正整数k ,使得1S 1+1S 2+1S 3+…+1S n<k 对任意n ∈N *恒成立.若存在,求出正整数k 的最小值;不存在,请说明理由. 解:(1)设数列{a n }的公比为q ,由题意可得a 3=16, ∵a 3-a 2=8,则a 2=8,∴q =2.∴a n =2n +1.(2)∵b n =log 42n +1=n +12,∴S n =b 1+b 2+…+b n =n (n +3)4.∵1S n =4n (n +3)=43⎝⎛⎭⎫1n -1n +3, ∴1S 1+1S 2+1S 3+…+1S n=43⎝⎛⎭⎫11-14+12-15+13-16+…+1n -1n +3 =43⎝⎛⎭⎫1+12+13-1n +1-1n +2-1n +3<43⎝⎛⎭⎫1+12+13<229, ∴存在正整数k 的最小值为3. 角度二 形如a n =1n +k +n型2.(2014·江南十校联考)已知函数f (x )=x a 的图像过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 013=( )A. 2 012-1B. 2 013-1C. 2 014-1D. 2 014+1解析:选C 由f (4)=2可得4a =2,解得a =12,则f (x )=x 12.∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 013=a 1+a 2+a 3+…+a 2 013=(2-1)+(3-2)+(4-3)+…+( 2 014-2 013)= 2 014-1.角度三 形如a n =n +1n 2(n +2)2型3.(2013·江西高考)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564.解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0.由于数列{a n }是正项数列,所以S n >0,S n =n 2+n .于是a 1=S 1=2,n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上可知,数列{a n }的通项公式a n =2n . (2)证明:由于a n =2n ,b n =n +1(n +2)2a 2n ,则b n=n +14n 2(n +2)2=116⎣⎡⎦⎤1n 2-1(n +2)2. T n =116⎣⎡ 1-132+122-142+132-152+…+1(n -1)2-1(n +1)2⎦⎤+1n 2-1(n +2)2=116⎣⎡⎦⎤1+122-1(n +1)2-1(n +2)2 <116⎝⎛⎭⎫1+122=564. [类题通法]利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝⎛⎭⎫1a n -1a n +1,1a n a n +2=12d ⎝⎛⎭⎫1a n -1a n +2.第五节数列的综合应用等差数列与等比数列的综合问题n 的公差不为零,a 1=25,且11113成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.[解] (1)设{a n }的公差为d ,由题意得a 211=a 1a 13. 即(a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去)或d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2. 由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .[类题通法]解决等差数列与等比数列的综合问题,关键是理清两个数列的关系.如果同一数列中部分项成等差数列,部分项成等比数列,要把成等差数列或等比数列的项抽出来单独研究;如果两个数列通过运算综合在一起,要从分析运算入手,把两个数列分割开,弄清两个数列各自的特征,再进行求解.[针对训练]在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0,设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0.(1)求证:数列{b n }是等差数列; (2)求{b n }的前n 项和S n 及{a n }的通项a n . 解:(1)证明:∵b n =log 2a n , ∴b n +1-b n =log 2a n +1a n =log 2q 为常数,∴数列{b n }为等差数列且公差d =log 2q .(2)设数列{b n }的公差为d ,∵b 1+b 3+b 5=6,∴b 3=2. ∵a 1>1,∴b 1=log 2a 1>0. ∵b 1b 3b 5=0,∴b 5=0.∴⎩⎪⎨⎪⎧ b 1+2d =2,b 1+4d =0,解得⎩⎪⎨⎪⎧b 1=4,d =-1.∴S n =4n +n (n -1)2×(-1)=9n -n 22.∵⎩⎪⎨⎪⎧log 2q =-1,log 2a 1=4,∴⎩⎪⎨⎪⎧q =12,a 1=16.∴a n =25-n (n ∈N *).等差数列与等比数列的实际应用某企业的资金每一年都比上一年分红后的资金增加一倍,并且每年年底固定给股东们分红500万元.该企业2010年年底分红后的资金为1 000万元.(1)求该企业2014年年底分红后的资金;(2)求该企业从哪一年开始年底分红后的资金超过32 500万元. [解] 设a n 为(2010+n )年年底分红后的资金, 其中n ∈N *,则a 1=2×1 000-500=1 500,a 2=2×1 500-500=2 500,…,a n =2a n -1-500(n ≥2). ∴a n -500=2(a n -1-500)(n ≥2),即数列{a n -500}是首项为a 1-500=1 000,公比为2的等比数列. ∴a n -500=1 000×2n -1,∴a n =1 000×2n -1+500.(1)a 4=1 000×24-1+500=8 500,∴该企业2014年年底分红后的资金为8 500万元. (2)由a n >32 500,即2n -1>32,得n >6,∴该企业从2017年开始年底分红后的资金超过32 500万元. [类题通法]解数列应用题的建模思路从实际出发,通过抽象概括建立数学模型,通过对模型的解析,再返回实际中去,其思路框图为:[针对训练]某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.则第n 年初M 的价值a n =________.解析:当n ≤6时,数列{a n }是首项为120, 公差为-10的等差数列, a n =120-10(n -1)=130-10n ; 当n ≥7时,数列{a n }是以a 6为首项, 34为公比的等比数列, 又a 6=70,所以a n =70×⎝⎛⎭⎫34n -6. 答案:a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,70×⎝⎛⎭⎫34n -6,n ≥7角度一 数列与不等式的交汇1.(2014·湖北七市模拟)数列{a n }是公比为12的等比数列,且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =nλ·b n +1(λ为常数,且λ≠1).(1)求数列{a n }的通项公式及λ的值; (2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.解:(1)由题意得(1-a 2)2=a 1(a 3+1), 即⎝⎛⎭⎫1-12a 12=a 1⎝⎛⎭⎫14a 1+1, 解得a 1=12,∴a n =⎝⎛⎭⎫12n. 设{b n }的公差为d ,又⎩⎪⎨⎪⎧ T 1=λb 2,T 2=2λb 3,即⎩⎪⎨⎪⎧8=λ(8+d ),16+d =2λ(8+2d ),解得⎩⎪⎨⎪⎧λ=12,d =8或⎩⎪⎨⎪⎧λ=1,d =0(舍),∴λ=12.(2)由(1)知S n =1-⎝⎛⎭⎫12n, ∴12S n =12-⎝⎛⎭⎫12n +1≥14,① 又T n =4n 2+4n ,1T n =14n (n +1)=14⎝⎛⎭⎫1n -1n +1,∴1T 1+1T 2+…+1T n=14⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =14⎝⎛⎭⎫1-1n +1<14,② 由①②可知1T 1+1T 2+…+1T n <12S n .[类题通法]数列与不等式相结合问题的处理方法解决数列与不等式的综合问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法、穿根法等.总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.角度二 数列与函数的交汇2.(2012·安徽高考)设函数f (x )=x2+sin x 的所有正的极小值点从小到大排成的数列为{x n }.(1)求数列{x n }的通项公式; (2)设{x n }的前n 项和为S n ,求S n .解:(1)令f ′(x )=12+cos x =0,得cos x =-12,解得x =2k π±2π3(k ∈Z ).由x n 是f (x )的第n 个正极小值点知, x n =2n π-2π3(n ∈N *).(2)由(1)可知,S n =2π(1+2+…+n )-23n π=n (n +1)π-2n π3.角度三 数列与解析几何的交汇3.在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上,数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列;解:(1)由已知点A n 在y 2-x 2=1上知,a n +1-a n =1, ∴数列{a n }是一个以2为首项,以1为公差的等差数列. ∴a n =a 1+(n -1)d =2+n -1=n +1.(2)证明:∵点(b n ,T n )在直线y =-12x +1上,∴T n =-12b n +1.① ∴T n -1=-12b n -1+1(n ≥2),②①②两式相减得b n =-12b n +12b n -1(n ≥2),∴32b n =12b n -1,∴b n =13b n -1. 令n =1,得b 1=-12b 1+1,∴b 1=23,∴{b n }是一个以23为首项,以13为公比的等比数列.31。
2012高考数学分类汇编-推理与证明

1.湖南16.设N =2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N 个位置,得到排列P 1=x 1x 3…x N-1x 2x 4…x N ,将此操作称为C 变换,将P 1分成两段,每段2N 个数,并对每段作C 变换,得到2p ;当2≤i ≤n-2时,将P i 分成2i段,每段2iN 个数,并对每段C 变换,得到P i+1,例如,当N=8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置.(1)当N=16时,x 7位于P 2中的第___个位置; (2)当N=2n(n ≥8)时,x 173位于P 4中的第___个位置. 【答案】(1)6;(2)43211n -⨯+ 【解析】(1)当N=16时,012345616P x x x x x x x = ,可设为(1,2,3,4,5,6,,16) ,113571524616P x x x x x x x x x = ,即为(1,3,5,7,9,2,4,6,8,,16) ,2159133711152616P x x x x x x x x x x x = ,即(1,5,9,13,3,7,11,15,2,6,,16) , x 7位于P 2中的第6个位置,;(2)方法同(1),归纳推理知x 173位于P 4中的第43211n -⨯+个位置.【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力. 需要在学习中培养自己动脑的习惯,才可顺利解决此类问题. 2.江苏20.(2012年江苏省16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:221nn n n n b a b a a ++=+,*N n ∈,(1)设nn n a b b +=+11,*N n ∈,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设nn n a b b ∙=+21,*N n ∈,且{}n a 是等比数列,求1a 和1b 的值.【答案】解:(1)∵nn n a b b +=+11,∴1n a +=∴11n n b a ++=。
2012高考数学分类汇编-数列及答案解析

则其中是“保等比数列函数”的 f ( x) 的序号为 A.① ② B.③ ④ C.① ③ D.② ④
2 2 2 2 解析:等比数列性质, an an 2 an 1 ,① f an f an 2 an an 2 an 1
2
f 2 an 1 ;
2
a1 4d 5 a1 1 1 1 1 1 an n 5 4 an an1 n(n 1 ) n n 1 d 15 d 1 5a1 2 1 1 1 1 1 1 100 S100 (1 ) ( ) ( ) 1 2 2 3 100 101 101 101 26 设函数 f ( x) 2 x cos x , 则 [ f(a] {an } 是公差为 的等差数列,f (a1 ) f (a2 ) f (a5 ) 5 , )3 8
xn [ xn 1 [
a ] xn
2 ①当 a 5 时,数列 {xn } 的前 3 项依次为 5,3,2;
②对数列 {xn } 都存在正整数 k ,当 n k 时总有 xn xk ; ③当 n 1 时, xn a 1 ; ④对某个正整数 k ,若 xk 1 xk ,则 xn [ a ] 。
对于②③④可以采用特殊值列举法: 当 a=1 时,x1=1, x2=1, x3=1, ……xn=1, …… 此时②③④均对. 当 a=2 时,x1=2, x2=1, x3=1, ……xn=1, …… 此时②③④均对 当 a=3 时,x1=3, x2=2, x3=1, x4=2……xn=1, ……此时③④均对 综上,真命题有 ①③④ .
1 3 1 a1 2
当 n 2 时, ( ) ( ) 2 3 2 2 an 2
十年(2014-2023)高考数学真题分项汇编文科专题5 数列小题(文科)(解析版)

n 项和
Sn,公差
d≠0, a1 d
1 .记
b1=S2,
bn+1=Sn+2–S2n, n N ,下列等式不可能成立的是
( )
A.2a4=a2+a6
B.2b4=b2+b6
C. a42 a2a8
D. b42 b2b8
【答案】D
解析:对于 A,因为数列an 为等差数列,所以根据等差数列的下标和性质,由 4 4 2 6 可得,
由 an
a1
n
1 d
0
可得 n
1
a1 d
,取
N0
1
a1 d
1 ,则当 n
N0
时, an
0,
所以,“an 是递增数列” “存在正整数 N0 ,当 n N0 时, an 0 ”;
若存在正整数 N0 ,当 n N0 时, an 0 ,取 k N 且 k N0 , ak 0 ,
假设 d
0 ,令 an
Sn =
1 2
An An+1 ×tan q Bn Bn+1 ,都为定值,所以 Sn+1 - Sn 为定值.故选 A.
3.(2022 高考北京卷·第 15 题)己知数列an 各项均为正数,其前 n 项和 Sn 满足 an Sn 9(n 1, 2,) .给
出下列四个结论:
①an 的第 2 项小于 3; ②an 为等比数列;
2a4 a2 a6 ,A 正确;
对于 B,由题意可知, bn1 S2n2 S2n a2n1 a2n2 , b1 S2 a1 a2 ,
∴ b2 a3 a4 , b4 a7 a8 , b6 a11 a12 , b8 a15 a16 .
∴ 2b4 2 a7 a8 , b2 b6 a3 a4 a11 a12 .
高考数学真题2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—9.数列

2011年—2018年新课标全国卷文科数学分类汇编9.数列一、选择题(2015·新课标Ⅰ,文7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=()A .172B .192C .10D .12(2015·新课标Ⅱ,文5)设n S 是等差数列}{n a 的前n 项和,若3531=++a a a ,则=5S ()A.5B.7C.9D.11(2015·新课标Ⅱ,文9)已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a ()A.2B.1C.21 D.81(2014·新课标Ⅱ,文5)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项S n =()A .(1)n n +B .(1)n n -C .(1)2n n +D .(1)2n n -(2013·新课标Ⅰ,文6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则().A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n(2012·新课标Ⅰ,文12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为()A .3690B .3660C .1845D .1830二、填空题(2015·新课标Ⅰ,文13)数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n =.(2014·新课标Ⅱ,文16)数列}{n a 满足nn a a -=+111,2a =2,则1a =_________.(2012·新课标Ⅰ,文14)等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =_____.三、解答题(2018·新课标Ⅰ,文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=.(1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.(2018·新课标Ⅱ,文17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.(2018·新课标Ⅲ,文17)等比数列{}n a 中,15314a a a ==,.(1){}n a 的通项公式;⑵记n S 为{}n a 的前n 项和.若63m S =,求m .(2017·新课标Ⅰ,文17)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-.(1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.(2017·新课标Ⅱ,文17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.(2017·新课标Ⅲ,文17)设数列{}n a 满足()123212n a a n a n +++-= .(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.(2016·新课标Ⅰ,文17)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.(2016·新课标Ⅱ,文17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =[lg a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.(2016·新课标Ⅲ,文17)已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(1)求23,a a ;(2)求{}n a 的通项公式.(2014·新课标Ⅰ,文17)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.(2012年高考(陕西文))已知等比数列 的公比为q=- .
(1)若 = ,求数列 的前n项和;
(Ⅱ)证明:对任意 , , , 成等差数列.
8.(2012年高考(山东文))已知等差数列 的前5项和为105,且 .
(Ⅰ)求数列 的通项公式;
(Ⅱ)对任意 ,将数列 中不大于 的项的个数记为 .求数列 的前m项和 .
12.(2012年高考(浙江理))设公比为q(q>0)的等比数列{an}的前n项和为{Sn}.若
, ,则q=______________.
13.(2012年高考(上海春))已知等差数列 的首项及公差均为正数,令 当 是数列 的最大项时, ____.
14.(2012年高考(辽宁理))已知等比数列 为递增数列,且 ,则数列的通项公式 ______________.
13.(2012年高考(北京文))已知 为等比数列.下面结论中正确的是( )
A. B.
C.若 ,则 D.若 ,则
14.(2012年高考(安徽文))公比为2的等比数列{ }的各项都是正数,且 =16,则 ( )
A. B. C. D.
15.(2012年高考(新课标理))已知 为等比数列, , ,则 ( )
2012年高考数学分类汇编
数列
一、选择题
1.(2012年高考(辽宁文))在等差数列{an}中,已知a4+a8=16,则a2+a10=( )
A.12B.16C.20D.24
2.(2012年高考(辽宁理))在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=( )
A.58B.88C.143D.176
14.(2012年高考(大纲文))已知数列 中, ,前 项和 .
(Ⅰ)求 ;
(Ⅱ)求 的通项公式.
15.(2012年高考(安徽文))设函数 的所有正的极小值点从小到大排成的数列为 .
(Ⅰ)求数列 ;
(Ⅱ)设 的前 项和为 ,求 .
16.(2012年高考(辽宁理))在 中,角A、B、C的对边分别为a,b,c.角A,B,C成等差数列.
是等比数列,则称 为“保等比数列函数”.现有定义在 上的如下函
数:① ;② ;③ ;④ .
则其中是“保等比数列函数”的 的序号为( )
A.①②B.③④C.①③D.②④
10.(2012年高考(福建理))等差数列 中, ,则数列 的公差为( )
A.1B.2C.3D.4
21.(2012年高考(大纲理))已知等差数列 的前 项和为 ,则数列 的前100项和为( )
A. B. C. D.
22.(2012年高考(安徽理))公比为 等比数列 的各项都是正数,且 ,则( )
A. B. C. D.
二、填空题
1.(2012年高考(福建理))已知 得三边长成公比为 的等比数列,则其最大角的余弦值为_________.
2.(2012年高考(重庆文))首项为1,公比为2的等比数列的前4项和 ______
A.76B.80C.86D.92
9.(2012年高考(湖北文))定义在 上的函数 ,如果对于任意给定的等比数列 仍是等比数列,则称 为“保等比数列函数”.现有定义在 上的如下函数:① ;② ;③ ;④ .
则其中是“保等比数列函数”的 的序号为( )
A.①②B.③④C.①③D.②④
10.(2012年高考(福建文))数列 的通项公式 ,其前 项和为 ,则 等于( )
(1)当N=16时,x7位于P2中的第___个位置;
(2)当N=2n(n≥8)时,x173位于P4中的第___个位置.
17.(2012年高考(湖北理))回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,,99.3位回文数有90个:101,111,121,,191,202,,999.则
A.1006B.2012C.503D.0
11.(2012年高考(大纲文))已知数列 的前 项和为 , , ,则 ( )
A. B. C. D.
12.(2012年高考(北京文理)) 某棵果树前 年得总产量 与 之间的关系如图所示,从目前记录的结果看,前 年的年平均产量最高, 的值为(2012年高考(重庆文))(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分))已知 为等差数列,且 (Ⅰ)求数列 的通项公式;(Ⅱ)记 的前 项和为 ,若 成等比数列,求正整数 的值.
2.(2012年高考(浙江文))已知数列{an}的前n项和为Sn,且Sn= ,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡.
(Ⅰ)用 和 表示 ;
(Ⅱ)求对所有 都有 成立的 的最小值;
(Ⅲ)当 时,比较 与
的大小,并说明理由.
5.(2012年高考(四川文))已知数列 的前 项和为 ,常数 ,且 对一切正整数 都成立.
(Ⅰ)求数列 的通项公式;
(Ⅱ)设 , ,当 为何值时,数列 的前 项和最大?
6.(2012年高考(上海文))对于项数为m的有穷数列数集 ,记 (k=1,2,,m),即
(Ⅰ)求 的值;
(Ⅱ)边a,b,c成等比数列,求 的值.
17.(2012年高考(山东文))(本小题满分12分)
在△ABC中,内角 所对的边分别为 ,已知 .
(Ⅰ)求证: 成等比数列;
(Ⅱ)若 ,求△ 的面积S.
(2)记 为数列 中第 个为0的项与第 个为0的项之间的项数,则 的最大值是___.
8.(2012年高考(湖北文))传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:
将三角形数1,3, 6,10,记为数列 ,将可被5整除的三角形数按从小到大的顺序组成一个新数列 ,可以推测:
(Ⅰ)4位回文数有__________个;
(Ⅱ) 位回文数有_________个.
18.(2012年高考(广东理))(数列)已知递增的等差数列 满足 , ,则 ______________.
19.(2012年高考(福建理))数列 的通项公式 ,前 项和为 ,则 ___________.
20.(2012年高考(北京理))已知 为等差数列, 为其前 项和.若 , ,则 ________.
9.(2012年高考(江西文))已知数列|an|的前n项和 (其中c,k为常数),且a2=4,a6=8a3
(1)求an;
(2)求数列{nan}的前n项和Tn.
10.(2012年高考(湖南文))某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为an万元.
3.(2012年高考(上海文))已知 .各项均为正数的数列 满足 , .若
,则 的值是_________.
4.(2012年高考(辽宁文))已知等比数列{an}为递增数列.若a1>0,且2(an+an+2)=5an+1,则数列{an}的公比q = _____________________.
5.(2012年高考(课标文))等比数列{ }的前n项和为Sn,若S3+3S2=0,则公比 =_______
12.(2012年高考(广东文))(数列)设数列 的前 项和为 ,数列 的前 项和为 ,满足 , .
(Ⅰ)求 的值;
(Ⅱ)求数列 的通项公式.
13.(2012年高考(福建文))在等差数列 和等比数列 中, 的前10项和 .
(Ⅰ)求 和 ;
(Ⅱ)现分别从 和 的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.
15.(2012年高考(江西理))设数列 都是等差数列,若 ,则 __________。
16.(2012年高考(湖南理))设N=2n(n∈N*,n≥2),将N个数x1,x2,,xN依次放入编号为1,2,,N的N个位置,得到排列P0=x1x2xN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前 和后 个位置,得到排列P1=x1x3xN-1x2x4xN,将此操作称为C变换,将P1分成两段,每段 个数,并对每段作C变换,得到 ;当2≤i≤n-2时,将Pi分成2i段,每段 个数,并对每段C变换,得到Pi+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.
6.(2012年高考(江西文))等比数列 的前 项和为 ,公比不为1。若 ,且对任意的 都有 ,则 _________________。
7.(2012年高考(湖南文))对于 ,将 表示为 ,当 时 ,当 时 为0或1,定义 如下:在 的上述表示中,当 , 中等于1的个数为奇数时, ;否则 。
(1) __;
(1)求an,bn;
(2)求数列{an·bn}的前n项和Tn.
3.(2012年高考(天津文))(本题满分13分)已知 是等差数列,其前 项和为 , 是等比数列,且 .
(I)求数列 与 的通项公式;
(II)记 ( )证明: .
4.(2012年高考(四川文))已知 为正实数, 为自然数,抛物线 与 轴正半轴相交于点 ,设 为该抛物线在点 处的切线在 轴上的截距.
(Ⅰ) 是数列 中的第______项; (Ⅱ) ______.(用 表示)
9.(2012年高考(广东文))(数列)若等比数列 满足 ,则 _________.
10.(2012年高考(北京文))已知 为等差数列, 为其前 项和.若 , ,则 ________; =________.
11.(2012年高考(新课标理))数列 满足 ,则 的前 项和为_______
6.(2012年高考(上海理))设 , .在 中,正数的个数是( )