数字高通FIR滤波器
FIR滤波器的设计及特点

FIR滤波器的设计及特点FIR(Finite Impulse Response)滤波器是一种数字滤波器,其特点在于其频率响应仅由其滤波器系数决定,而与输入序列无关。
它是一种线性相位滤波器,常用于数字信号处理中的陷波、低通、高通、带通等滤波应用。
窗函数法是最简单也是最常用的设计方法之一、它通过在滤波器的理想频率响应上乘以一个窗函数来得到最终的滤波器系数。
常用的窗函数包括矩形窗、汉宁窗、汉明窗和布莱克曼窗等。
窗函数的选择决定了滤波器的主瓣宽度和副瓣衰减。
最小二乘法是一种优化方法,它通过最小化输出序列与理想响应序列之间的均方误差来得到滤波器系数。
最小二乘法可以得到线性相位的滤波器设计,但计算量较大。
频域采样法是通过在频域上对理想频率响应进行采样,然后进行插值来得到滤波器系数。
频域采样法可以得到具有任意响应的滤波器,但需要对理想频率响应进行采样和插值,计算量较大。
优化算法是通过优化问题的求解方法来得到滤波器系数。
常用的优化算法包括遗传算法、粒子群算法和蚁群算法等。
优化算法可以得到满足特定需求的非线性相位滤波器设计,但计算量较大。
1.线性相位特性:FIR滤波器的线性相位特性使其在处理信号时不引入相位延迟,因此适用于对信号相位有严格要求的应用,如音频信号处理和通信系统中的调制解调等。
2.稳定性:FIR滤波器是稳定的,不会引入非物理的增益和相位。
这使得其在实际应用中更加可靠和可控。
3.容易设计:FIR滤波器的设计相对较为简单,不需要考虑稳定性和因果性等问题,只需要选择合适的滤波器结构和设计方法即可。
4.灵活性:FIR滤波器的频率响应可以通过改变滤波器系数来实现。
这使得其适用于各种滤波需求,例如低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
5.高阻带衰减:由于FIR滤波器的频率响应只受滤波器系数控制,因此可以设计出具有较高阻带衰减和较窄主瓣带宽的滤波器。
总之,FIR滤波器的设计简单、稳定性高、频率响应灵活可调等特点,使得其在数字信号处理中得到广泛应用。
FIR滤波器设计要点

FIR滤波器设计要点FIR (Finite Impulse Response) 滤波器是一种数字滤波器,其设计要点包括滤波器类型选择、滤波器系数设计、频率响应规格、窗函数和滤波器长度选择等。
以下是对这些要点的详细介绍。
1.滤波器类型选择:在设计FIR滤波器之前,需要确定滤波器的类型。
常见的FIR滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
不同类型的滤波器适用于不同的应用场景,因此在选择滤波器类型时需要考虑系统的需求。
2.滤波器系数设计:FIR滤波器的核心是滤波器系数。
滤波器系数决定了滤波器的频率响应和滤波特性。
常用的设计方法包括窗函数法、最小均方误差法和频率抽样法等。
窗函数法是最常用的设计方法,其基本思想是通过选择合适的窗函数来得到滤波器系数。
3.频率响应规格:在设计FIR滤波器时,需要明确所需的频率响应规格,包括通带增益、阻带衰减、过渡带宽等。
这些规格直接影响了滤波器的性能,因此需要根据具体应用场景来确定。
4.窗函数选择:窗函数在FIR滤波器设计中起到了重要的作用。
常用的窗函数包括矩形窗、汉宁窗、汉明窗、布莱克曼窗等。
不同的窗函数具有不同的特性,选择合适的窗函数可以得到优良的滤波器性能。
5.滤波器长度选择:滤波器长度决定了滤波器的频率分辨率和时间分辨率。
滤波器长度越长,频率响应越尖锐,但计算复杂度也越高。
因此,在设计FIR滤波器时需要权衡计算复杂度和性能要求,选择合适的滤波器长度。
6.优化设计:7.实现方式:总之,设计FIR滤波器要点包括滤波器类型选择、滤波器系数设计、频率响应规格、窗函数和滤波器长度选择等。
设计者需要根据具体的应用场景和性能要求来进行合理的设计和优化,以满足系统的需求。
实验五FIR数字滤波器的设计

实验五FIR数字滤波器的设计FIR数字滤波器(Finite Impulse Response)是一种数字滤波器,它的输出仅由有限数量的输入样本决定。
设计FIR数字滤波器的步骤如下:1.确定滤波器的要求:首先需要明确滤波器的频率响应、截止频率、通带和阻带的幅频响应等要求。
2.选择滤波器类型:根据实际需求选择合适的滤波器类型,如低通滤波器、高通滤波器、带通滤波器或带阻滤波器等。
3.确定滤波器的阶数:根据滤波器类型和要求,确定滤波器的阶数。
通常情况下,滤波器的阶数越高,能够实现更陡峭的频率响应,但会引入更多的计算复杂度。
4.设计滤波器的理想频率响应:根据滤波器的要求和类型,设计滤波器的理想频率响应。
可以使用常用的频率响应设计方法,如窗函数法、最小最大法或线性相位法等。
这些方法可以实现平滑的频率响应或者良好的阻带衰减。
5.确定滤波器的系数:根据设计的理想频率响应,通过反变换或优化算法确定滤波器的系数。
常用的优化算法包括频域方法、时域方法、最小二乘法或最小相位法等。
6.实现滤波器:将所得的滤波器系数转化为滤波器的差分方程形式或直接计算滤波器的频域响应。
7.评估滤波器性能:使用合适的测试信号输入滤波器,并对滤波器的输出进行评估。
可以使用指标,如频率响应曲线、幅度响应误差、相位响应误差或阻带衰减等指标来评估滤波器性能。
8.优化滤波器性能:根据评估结果,进行必要的修改和优化设计,以满足滤波器的要求。
通过以上步骤,可以设计出满足需求的FIR数字滤波器。
需要注意的是,FIR数字滤波器设计的复杂度和性能需要权衡与平衡,以满足实际应用的要求。
FIR高通滤波器

摘 要
本文分析了国内外数字滤波技术的应用现状与发展趋势, 并介绍了数字滤波 器的概念、基本结构和分类。依据给定的性能指标,采用窗函数法设计 FIR 数字 高通滤波器, 然后通过 wavread 语音信号函数读取.wav 格式的语音信号, 并利用 所设计的滤波器对音频信号进行滤波处理。 最后对滤波前后的音频信号进行分析。 关键词 窗函数法 FIR 高通滤波器 wavread 滤波
图 2-5 FIR 滤波器相位特性图
5
基于窗函数法的 FIR 数字高通滤波器
优点 : (1)很容易获得严格的线性相位,避免被处理的信号产生相位失真,这一 特点在宽频带信号处理、阵列信号处理、数据传输等系统中非常重要; (2)可得到多带幅频特性; (3)极点全部在原点(永远稳定),无稳定性问题; (4)任何一个非因果的有限长序列,总可以通过一定的延时,转变为因果 序列,所以因果性总是满足; (5)无反馈运算,运算误差小。
3.3 窗函数法的基本原理
如果所希望的滤波器的理想的频率响应函数为 H d e j ,则其对应的单位脉 冲响应为
hd n 1 2
H e e d
j j d
(3-4)
于 hd n 往往是无限长序列,而且是非因果的,所以用窗函数 n 将 hd n 截断, 并进行加权处理,得到:
6
基于窗函数法的 FIR 数字高通滤波器
第 3 章 FIR 滤波器的设计
3.1 窗函数法
设计FIR数字滤波器的最简单的方法是窗函数法,通常也称之为傅立叶级数 法。FIR数字滤波器的设计首先给出要求的理想滤波器的频率响应 Hd (e jw ) ,设计 一个FIR数字滤波器频率响应 H (e jw ) ,去逼近理想的滤波响应 Hd (e jw ) 。然而, 窗函数法设计FIR数字滤波器是在时域进行的,因而必须由理想的频率响应
fir滤波器定义式

fir滤波器定义式
摘要:
1.fir 滤波器的定义
2.fir 滤波器的应用
3.fir 滤波器的优点和缺点
正文:
一、fir 滤波器的定义
FIR 滤波器,全称为Finite Impulse Response 滤波器,即有限脉冲响应滤波器,是一种数字滤波器。
其主要作用是在数字信号处理中对信号进行滤波,去除噪声和干扰,得到期望的信号。
二、fir 滤波器的应用
FIR 滤波器广泛应用于各种数字信号处理领域,例如音频处理、图像处理、通信等。
在音频处理中,FIR 滤波器可以用来去除音频信号中的杂音和噪声,提高音频质量;在图像处理中,FIR 滤波器可以用来去除图像中的噪声和模糊,提高图像清晰度;在通信中,FIR 滤波器可以用来去除信号中的干扰,提高信号质量。
三、fir 滤波器的优点和缺点
FIR 滤波器具有以下优点:
1.线性相位:FIR 滤波器的相位是线性的,这意味着信号经过滤波器后,其频率分量的相位不会发生改变,从而保证了信号的频率响应特性。
2.无限脉冲响应:FIR 滤波器的脉冲响应是无限的,这意味着滤波器可以
对信号的各个频率分量进行精确的滤波。
3.可编程性:FIR 滤波器的参数可以通过编程进行调整,从而可以根据不同的应用需求设计出不同的滤波器。
然而,FIR 滤波器也存在一些缺点:
1.计算复杂度:FIR 滤波器的计算复杂度较高,需要进行大量的乘法和加法运算,因此在实时信号处理中可能会有一定的延迟。
2.存储空间需求:由于FIR 滤波器的脉冲响应是无限的,因此需要占用较大的存储空间。
数字滤波器的主要技术指标

数字滤波器的主要技术指标数字滤波器是一种对数字信号进行滤波处理的设备或算法,通过改变信号的频率成分,实现信号的去噪、增强或调整的目的。
主要技术指标是指用于评估数字滤波器性能的一些重要参数,下面将从频率响应、通带特性、截止频率、滤波器类型和滤波器阶数等几个方面介绍数字滤波器的主要技术指标。
1. 频率响应:频率响应是描述数字滤波器对不同频率信号的响应程度的指标。
常见的频率响应包括低通、高通、带通和带阻等。
低通滤波器能够通过低于截止频率的信号,而高通滤波器则能通过高于截止频率的信号。
带通滤波器可以通过位于两个截止频率之间的信号,而带阻滤波器则能阻止位于两个截止频率之间的信号。
2. 通带特性:通带特性是指数字滤波器在通带内的频率响应特点。
通带特性可以用来描述数字滤波器在通带内的增益、相位响应和群延迟等参数。
通带特性的好坏决定了数字滤波器对信号的处理效果,通常要求通带内的增益保持平坦,相位变化小,群延迟均匀。
3. 截止频率:截止频率是指数字滤波器在频率响应中的一个重要参数,用来区分不同类型的滤波器。
低通滤波器的截止频率是指能通过信号的最高频率,而高通滤波器的截止频率则是指能通过信号的最低频率。
带通和带阻滤波器的截止频率则是指能通过信号的上下截止频率。
4. 滤波器类型:滤波器类型是指数字滤波器根据不同的响应特性进行分类的方式。
常见的滤波器类型有FIR(有限脉冲响应)滤波器和IIR(无限脉冲响应)滤波器。
FIR滤波器的特点是稳定、线性相位和易于设计,但计算复杂度较高。
而IIR滤波器的特点是计算复杂度低,但可能不稳定且具有非线性相位。
5. 滤波器阶数:滤波器阶数是指滤波器中的延迟单元数目,用来描述滤波器的复杂度和性能。
滤波器阶数越高,滤波器的响应特性越陡峭,但同时也会增加滤波器的计算复杂度。
选择适当的滤波器阶数能够平衡滤波器的性能和计算复杂度。
数字滤波器的主要技术指标包括频率响应、通带特性、截止频率、滤波器类型和滤波器阶数等。
fir滤波器长度和阶数的关系 -回复

fir滤波器长度和阶数的关系-回复fir滤波器是一种常见的数字滤波器,其特点是非递归、线性相位和频率响应能够准确地控制。
fir滤波器的设计过程中,滤波器的长度和阶数是两个重要的参数,它们直接影响滤波器的性能和计算复杂度。
首先,我们来解释一下滤波器的长度和阶数的概念。
滤波器的长度表示滤波器的采样点数,通常以N表示;而滤波器的阶数表示滤波器中加权系数的个数,一般以M表示。
滤波器的长度和阶数之间存在着一种简单的线性关系,即N = M + 1。
也就是说,滤波器的长度比阶数多1。
在fir滤波器设计的过程中,我们首先需要确定滤波器的阶数。
滤波器的阶数决定了滤波器能够实现的频率响应的陡峭程度。
一般来说,阶数越高,滤波器的陡峭程度越高,频率响应的过渡带越窄。
但是,阶数的增加也意味着计算复杂度的增加,因为滤波器中加权系数的个数随着阶数的增加而增加。
因此,在实际应用中,需要权衡滤波器性能和计算复杂度。
确定了滤波器的阶数之后,滤波器的长度可以通过阶数加1来计算得到。
这是因为fir滤波器的零点在单位圆上是均匀分布的,任何一个点都可能成为滤波器的传输零点。
因此,在设计滤波器时,我们需要选择足够多的传输零点来实现所需的频率响应。
滤波器的长度通过加1的方式,确保了滤波器的传输零点足够密集,从而实现了所需的频率响应。
值得注意的是,fir滤波器的性能不仅仅取决于长度和阶数,还与滤波器的设计方法、滤波器的类型以及应用需求等因素有关。
例如,窗函数法、频率采样法、最小二乘法等不同的设计方法都可以得到不同性能的fir滤波器。
此外,滤波器的类型(低通、高通、带通、带阻)以及频率响应的要求也会对滤波器的性能产生一定的影响。
总结起来,fir滤波器的长度和阶数之间存在着简单的线性关系,滤波器的长度比阶数多1。
在设计滤波器时,首先确定滤波器的阶数,通过阶数加1来计算滤波器的长度。
滤波器的长度和阶数的选择需要根据应用需求、计算复杂度和滤波器设计方法等方面进行综合考虑。
实验四FIR数字滤波器的设计

实验四FIR数字滤波器的设计
FIR数字滤波器也称作有限脉冲响应数字滤波器,是一种常见的数字滤波器设计方法。
在设计FIR数字滤波器时,需要确定滤波器的阶数、滤波器的类型(低通、高通、带通、带阻)以及滤波器的参数(截止频率、通带波纹、阻带衰减、过渡带宽等)。
下面是FIR数字滤波器的设计步骤:
1.确定滤波器的阶数。
阶数决定了滤波器的复杂度,一般情况下,阶数越高,滤波器的性能越好,但计算量也越大。
阶数的选择需要根据实际应用来进行权衡。
2.确定滤波器的类型。
根据实际需求,选择低通、高通、带通或带阻滤波器。
低通滤波器用于去除高频噪声,高通滤波器用于去除低频噪声,带通滤波器用于保留一定范围内的频率信号,带阻滤波器用于去除一定范围内的频率信号。
3.确定滤波器的参数。
根据实际需求,确定滤波器的截止频率、通带波纹、阻带衰减和过渡带宽等参数。
这些参数决定了滤波器的性能。
4.设计滤波器的频率响应。
使用窗函数、最小二乘法等方法,根据滤波器的参数来设计滤波器的频率响应。
5.将频率响应转换为滤波器的系数。
根据设计的频率响应,使用逆快速傅里叶变换(IFFT)等方法将频率响应转换为滤波器的系数。
6.实现滤波器。
将滤波器的系数应用到数字信号中,实现滤波操作。
7.优化滤波器性能。
根据需要,可以对滤波器进行进一步优化,如调整滤波器的阶数、参数等,以达到较好的滤波效果。
以上是FIR数字滤波器的设计步骤,根据实际需求进行相应的调整,可以得到理想的滤波器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字高通FIR滤波器目录1整体知识的介绍 (2)1.1MATLAB的介绍 (2)1.1.1基本功能 (2)1.1.2应用 (3)1.2滤波器的介绍 (3)1.3高通滤波器及其应用 (4)1.3.1高通滤波器的定义 (4)1.3.2高通滤波器的应用 (4)2 FIR滤波器的一般分析 (5)2.1高通滤波的时域分析 (5)2.2高通滤波器频域分析 (6)3频率取样法的数字高通滤波器的实现 (8)3.1设计条件 (8)3.2 FIR 滤波器的仿真实现 (10)3.2.1FDATOOL工具箱 (10)3.2.2 FIR滤波器参数设置 (11)3.2.3 利用SPTool仿真 (12)4实验小结 (14)5参考文献 (15)1整体知识的介绍1.1MATLAB的介绍MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
1.1.1基本功能MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
MATLAB和Mathematica、Maple并称为三大数学软件。
它在数学类科技应用软件中在数值计算方面首屈一指。
MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。
在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。
可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。
1.1.2应用MATLAB 产品族可以用来进行以下各种工作:● 数值分析● 数值和符号计算● 工程与科学绘图● 控制系统的设计与仿真● 数字图像处理技术● 数字信号处理技术● 通讯系统设计与仿真● 财务与金融工程MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。
附加的工具箱(单独提供的专用 MATLAB 函数集)扩展了 MATLAB 环境,以解决这些应用领域内特定类型的问题。
1.2滤波器的介绍数字滤波器(digital filter)是由数字乘法器、加法器和延时单元组成的一种装置。
其功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。
由于电子计算机技术和大规模集成电路的发展,数字滤波器已可用计算机软件实现,也可用大规模集成数字硬件实时实现。
数字滤波器广泛用于数字信号处理中,如电视、VCD、音响等。
按照滤波电路的工作频带为其命名:设截止频率为fp,频率低于fp的信号可以通过,高于fp的信号被衰减的电路称为低通滤波器,频率高于fp的信号可以通过,低于fp的信号被衰减的电路称为高通滤波器;而带通吗,就是频率介于低频段截止频率和高频段截止频率的信号可以通过的电路。
1.3高通滤波器及其应用1.3.1高通滤波器的定义高通滤波器是容许高频信号通过、但减弱(或减少)频率低于截止频率信号通过的滤波器。
对于不同滤波器而言,每个频率的信号的减弱程度不同。
它有时被称为低频剪切滤波器;在音频应用中也使用低音消除滤波器或者噪声滤波器。
高通滤波器与低通滤波器特性恰恰相反。
1.3.2高通滤波器的应用这样的滤波器能够把高频率的声音引导至专用高音喇叭(tweeter),并阻止可能干擾或者损害喇叭的低音信号。
使用线圈而不是电容的低通滤波器也可以同时把低频信号引导至低音喇叭(woofer)。
参见音频桥(en:audio crossover)。
高通和低通滤波器也用于数字图像处理中在频域中进行变换。
2 FIR 滤波器的一般分析滤波就是有选择性地提取或去掉(或削弱)某一段或某几段频率范围内的信号,数字滤波器是一种用来过滤时间离散信号的数字系统,它是通过对抽样数据进行数学处理来达到选频目的。
数字滤波器根据其单位冲激响应函数的时域特性分为两种:无限长冲激响应(IIR) 滤波器和有限长冲激响应(FIR)滤波器。
IIR 滤波器保留了模拟滤波器较好的幅度特性,设计简单有效。
但这些特性是以牺牲相位特性为代价而获得的,然而现在许多数据传输,图像处理系统都越来越多的要求系统具有线性相位特性。
在这方面,FIR 滤波器具有独特的优点,它可以保持严格的线性相位特性,因此越来越受到广泛的重视。
2.1高通滤波的时域分析在时域,信号经过系统的响应y (n)体现为激励x(n)跟系统单位抽样响应h(n)的卷积和y(n)=(n)×h(n)=ΣN –1m=0h(m)x(n-m)[223] 。
对于长度为N 的FIR 系统, h(n)可以看成一个长度为N 点的固定窗口,而x(n)则看成一个队列以齐步走的方式穿过h(n)窗口,每走一步,位于窗口中的x(n)部分的点跟h(n)的对应点的值相乘(即加权)再求和,所得结果构成此时系统的响应值y(n), x(n)队列每走一步就得到一个响应值y(n),即y(n)是h(n)对位于其窗口中的x(n)的加权求和。
高通滤波要求h(n)窗口具有波形锐化作用,即利用h(n)窗口加权和使得变化快的(即高频)正弦分量保留(理想高通)或衰减幅度小(实际高通) ,而变化缓慢(即低频)的正弦分量正负抵消(理想高通)或衰减幅度大(实际高通) 。
设其中N 必须取奇数,)/10002sin(2.0)/1002sin(8.0)()()(21s s f n f n n x n x n x ⨯⨯+⨯⨯=+=ππ 2.1.1 其中: fs = 11kHz, n 为整数,即x ( n)由100Hz 的x1(n)和1kHz的x2(n)两种频率的信号组成。
高通滤波的目的就是要尽可能地去掉x(n)中的低频分量x1(n) ,同时尽可能地保留x(n)中的高频分量x2(n)。
x(n)跟h(n)卷积结果如图1所示,从图1可看出,响应y(n)中几乎只剩下右移了(N-1)/2=5个样值点的1kHz的信号x2(n) 。
2.2高通滤波器频域分析在频域,信号经过系统的响应y(n)的频谱Y(ejω)体现为激励x(n)的频谱X (ejω)跟系统单位抽样响应h(n)的频谱H(ejω)(即系统的频谱)的乘积Y(ej ω)=|H(ejω)|×|X(ejω)|×ejφH+φx,即响应的频谱Y(ejω)的幅值由系统频谱H(ejω)的幅值对激励频谱X(ejω)的幅值相乘(加权)得到,响应的频谱Y(ejω)的幅角由系统的频谱H(ejω)的幅角跟激励频谱X(ejω)的幅角相加(移相)得到[122 ]。
高通滤波要求系统幅度函数|H(jf)|对需要保留的高频信号频谱加权权重较大(理想时为1) ,对需要滤除的低频信号频谱加权权重较小(理想时为0) 。
其中L为x(n)的长度(L=100), 0≤k≤L- 1,N为h(n)的有值长度,m、k均为整数,跟数字频率k相对应的模拟频率为f=fs×k/L (Hz)。
h(n)在不同N值时的频谱如图2所示(横轴单位为kHz),当N=11时,在f=m(kHz)即f=1kHz、2kHz、3kHz 等处为1,而在f=(2m-0.5)(kHz)即f=1.5kHz、3.5kHz等处幅度最大。
而在f=(2m+0.5)(kHz)即f=2.5kHz、4.5kHz等处幅度最小,如图2(b);当N=5时, 在f=mfs/5处为1,即f=2.2kHz、3.3kHz等处为1,在f=(4m-1)fs/10即f=3.3kHz 处幅度最大。
而在f=(4m+1)fs/10即f=5.5kHz处幅度最小,如图2(c);当N=21时,在f=mfs/21即f=524Hz、1047Hz等处为1, 在f=(4m-1)fs/42处幅度最大,而在f=(4m+1)fs/42处幅度最小,如图图2.2.1用不同宽度的h(n)对x(n)的滤波在频域上表现如图2.2.1所示,图2.2.1(a)为x(n)的频谱|X(jf)| ,从图2中可以看出x(n)中含有100Hz和1kHz两种频率的信号,图2.2.1(b)~(d)为不同长度的h(n)对同一x(n)的滤波情况,这跟在时域中分析的结论是一致的。
3频率取样法的数字高通滤波器的实现在应用Matlab 语言进行FIR 滤波器的设计时, 可以随时对比设计要求和滤波器特性, 并可通过不断调整设计参数, 获得较合适的冲激响应和幅度响应, 以使滤波器达到最优化。
3.1设计条件wp=0.23*pi; ws=0.43*pi; 阻带衰减为50dB,抽样频率为fs=15000,频谱分析采用freqz函数,实际振幅响应采用[Hr,ww,a,L] = hr_type1(h),[db,mag,pha,w] = freqz_m2(h,l);hr_type1:计算所设计的I型滤波器的振幅响应Hr = 振幅响应a = I型滤波器的系数L = Hr的阶次h = I型滤波器的单位冲激响应freqz_m2滤波器幅值响应(绝对、相对)、相位响应db: 相对幅值响应;mag: 绝对幅值响应;pha: 相位响应;w: 采样频率;b: 系统函数H(z)的分子项(对FIR,b=h)a: 系统函数H(z)的分母项(对FIR,a=1)对应本次的输入信号为:x=sin(2*pi*t*100)/2+sin(2*pi*t*500)/2+sin(2*pi*t*1000)/2+sin(2*pi *t*2000)/2+sin(2*pi*t*3200)/2;输出的波行如图3.3.1所示:图3.3.1 输入信号的波行y=filter(h,1,x);%输出信号[a,f1]=freqz(x);f1=f1/pi*fs/2;%输入频谱[b,f2]=freqz(y);f2=f2/pi*fs/2;%输出频谱图3.1.2高通输出图3.2 FIR 滤波器的仿真实现在滤波器设计中要对理想滤波器抽样响应进行截断. 截断后不可避免的产生了频谱泄漏, 为了尽量减小频谱泄漏, 在设计滤波器时要采用不同的窗函数来满足不同用途的要求.各种窗函数的幅频响应都存在明显的主瓣和旁瓣. 主瓣宽度和旁瓣的幅值衰减特性决定了窗函数的应用. 用于滤波器的窗函数,一般要求窗函数主瓣宽度窄,以获得较好过渡带:旁瓣相对值尽可能小, 以增加通带段的平稳度和增大阻带的衰减.窗函数应满足在0 Fn<N范围内关于a 对称,在其它区域取零值.这样,所得到的截断序列就可以作为理想低通滤波器的近似;为了满足一定的技术指标,还应该调整窗函数的长度或其它参数.窗函数设计方法首先根据要求选择一个适当的理想滤波器,由于理想滤波器的脉冲响应是非因果且无限长的,用适当的窗函数来截取它的脉冲响应,从而得到线性相位和因果的FIR滤波器. 通过合理地选择窗函数的长度,可以得到符合给定指标的近似的理想滤波器. 因此,窗函数设计的核心是选择一个合适的窗函数和理想滤波器.FIR滤波器可通过窗函数法、频率抽样法和最优化设计法来设计,本文先解释FIR数字高通滤波的物理过程,然后利用MATLB的FDATool采用窗函数法设计一高通滤波器。