2010-2019年高考数学真题专项分类练习-集合
十年高考真题分类汇编(2010-2019) 数学 专题01 集合 解析版

十年高考真题分类汇编(2010—2019)数学专题01 集合1.(2019•全国1•理T1)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}【答案】C【解析】由题意得N={x|-2<x<3},则M∩N={x|-2<x<2},故选C.2.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C【解析】由已知得∁U A={1,6,7},∴B∩∁U A={6,7}.故选C.3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( )A.(-1,+∞)B.(-∞,2)C.(-1,2)D.⌀【答案】C【解析】由题意,得A∩B=(-1,2),故选C.5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】A【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.6.(2019•北京•文T1)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=( )A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】C【解析】∵A={x|-1<x<2},B={x|x>1},∴A∪B=(-1,+∞),故选C.7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】D【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A【解析】∁U A={-1,3},则(∁U A)∩B={-1}.9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【答案】B【解析】A={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A【解析】由交集定义知A∩B={0,2}.11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}【答案】C【解析】集合A、B的公共元素为3,5,故A∩B={3,5}.12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}【答案】C【解析】由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【答案】A【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.14.(2018•天津•理T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【答案】B【解析】∁R B={x|x<1},A∩(∁R B)={x|0<x<1}.故选B.15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【答案】C【解析】A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C【解析】∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4【答案】A【解析】满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。
2010—2019年新课标全国卷2文科数学试题分类汇编——1.集合

b2 2a
−
4ac
=
0,有两相同实数根 ( ac 同号一定有两不同实数根) 0, 无实数根
④提公因式法: x2 + 3x = 0 x ( x + 3) = 0 , ( x + 3)2 − 2( x + 3) = 0 ( x + 3)( x + 1) = 0
⑤十字线乘法:基本原理:先分解二次项和常数项,再交叉相乘再相加,和值为一次项系数,最后横向书
则 A B = 2
故选: B
(2013·1)已知集合 M ={x | −3 x 1}, N ={−3, −2, −1,0,1},则 M N = ( )
A. −2, −2, 0,1
B. −3, −2, −1, 0
C. −2, −1, 0
D.−3, −2, −1
【分析】:观察可知,本题考查求集合的数集和范围的交集,结果为数集
【详解】:根据题意 M N = −2, −1,0 ,
【易错点】:两端点值-3,1 取不到 故选: C
(2012·1)已知集合 A = x | x2 − x − 2 0 , B = x | −1 x 1 ,则(
A. A B
B. B A
C. A = B
) D. A B =
【分析】:本题考查两集合基本关系的判断,需要先化简
【详解】: A = 1,2,3, B = x | x2 9 , B = x | x2 9 = x | −3 x 3,画出范围图,如图:
故选:D
【易错点】:在交集中,实心交空心为空心
【补充】:在并集中,实心并空心为实心
【拓展】:一元二次方程的求法常见类型:
①直接开平方型:形如 x2 = 9 x = 3 ,4( x + 2)2 = 9 x + 2 = 3 ,( x + 2)2 = 4( x + 3)2 x + 2 = ( x + 3)
(新课标全国I卷)2010_2019学年高考数学真题分类汇编专题01集合与常用逻辑用语文(含解析)

专题01 集合与常用逻辑用语一、集合小题:10年10考,每年1题,都是交集、并集、补集和子集运算为主,多与解不等式等交汇,新定义运算也有较小的可能,但是难度较低;基本上是每年的送分题,相信命题组对集合小题进行大幅度变动的决心不大.1.(2019年)已知集合{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7},则UB A =I ð( )A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}【答案】C【解析】{1U =Q ,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7},{1U C A ∴=,6,7},则{6U B A =I ð,7},故选C .2.(2018年)已知集合{}02A =,,{}21012B =--,,,,,则A B =I ( ) A .{}02, B .{}12, C .{}0 D .{}21012--,,,,【答案】A【解析】∵{}02A =,,{}21012B =--,,,,,∴{}0,2A B =I ,故选A .3.(2017年)已知集合A ={x|x <2},B ={x|3﹣2x >0},则( )A .A∩B={x|x <32}B .A∩B=∅C .A ∪B ={x|x <32} D .A ∪B =R【答案】A【解析】∵集合A ={x|x <2},B ={x|3﹣2x >0}={x|x <32},∴A∩B={x|x <32},故A 正确,B 错误;A ∪B ={x|x <2},故C ,D 错误;故选A .4.(2016年)设集合A ={1,3,5,7},B ={x|2≤x≤5},则A∩B=( )A .{1,3}B .{3,5}C .{5,7}D .{1,7} 【答案】B【解析】∵A ={1,3,5,7},B ={x|2≤x≤5},∴A∩B={3,5}.故选B .5.(2015年)已知集合A ={x|x =3n+2,n ∈N},B ={6,8,10,12,14},则集合A∩B 中元素的个数为( )A.5 B.4 C.3 D.2【答案】D【解析】A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},∴A∩B={8,14},故集合A∩B中元素的个数为2个,故选D.6.(2014年)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【答案】B【解析】∵M={x|﹣1<x<3},N={x|﹣2<x<1},∴M∩N={x|﹣1<x<1},故选B.7.(2013年)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3} C.{9,16} D.{1,2}【答案】A【解析】根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选A.8.(2012年)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A ⊂≠B B.B⊂≠A C.A=B D.A∩B=∅【答案】B【解析】由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x =32,∴B⊂≠A.故选B.9.(2011年)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B .4个C.6个D.8个【答案】B【解析】∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3},∴P的子集共有22=4个,故选B.10.(2010年)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【答案】D【解析】A={x||x|≤2,x∈R }={x|﹣2≤x≤2},B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},∴A∩B={0,1,2},故选D.二、常用逻辑用语小题:10年1考,只有2013年考了一道复合命题的真假判断.这个考点包含的小考点较多,并且容易与函数、不等式、数列、三角函数和立体几何交汇,热点就是“充要条件”;难点:否定与否命题;冷点:全称与特称;思想:逆否.要注意,这类题可以分为两大类,一类只涉及形式的变换,比较简单;另一类涉及命题的真假判断,比较复杂.(2013年)已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q【答案】B【解析】因为x=﹣1时,2﹣1>3﹣1,所以命题p:∀x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,因为f(0)=﹣1<0,f(1)=1>0.所以函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:∃x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.故选B.。
理科数学2010-2019高考真题分类训练专题一集合与常用逻辑用语第一讲集合答案部分

专题一 集合与常用逻辑用语第一讲 集合答案部分2019年1.解析:依题意可得,2426023{|}{|}{} |M x x N x x x x x =-=--=-<<,<<<, 所以2|}2{M N x x =-I <<. 故选C .2.解析:由{}2560(,2)(3,)A x x x =-+>=-∞+∞U ,{}10(,1)A x x =-<=-∞,则(,1)A B =-∞I .故选A.3.解析 因为{}1,0,1,2A =-,2{|1}{|11}B x x x x ==-剟?, 所以{}1,0,1A B =-I .故选A .4.解析 因为{}1,0,1,6A =-,{}|0,B x x x =>∈R ,所以{}{}{}1,0,1,6|0,1,6A B x x x =->∈=R I I .5.解析:{1,3}U A =-ð,{1}U A B =-I ð.故选A . 6.解析 设集合{}1,1,2,3,5A =-,{}13C x x =∈<R „, 则{}1,2A C =I . 又{}2,3,4B =, 所以{}{}{}{}1,22,3,41,2,3,4A C B ==I U U .故选D.2010-2018年1.A 【解析】{|||2}(2,2)A x x =<=-,{2,0,1,2}B =-,∴{0,1}A B =I ,故选A .2.B 【解析】因为2{20}=-->A x x x ,所以2{|20}=--R ≤A x x x ð {|12}=-≤≤x x ,故选B .3.C 【解析】由题意知,{|10}A x x =-≥,则{1,2}A B =I .故选C .4.B 【解析】因为{1}B x x =≥,所以{|1}R B x x =<ð,因为{02}A x x =<<,所以()=R I A B ð{|01}x x <<,故选B .5.C 【解析】因为{1,2,3,4,5}U =,{1,3}A =,所以=U A ð{2,4,5}.故选C .6.A 【解析】通解 由223+≤x y知,xy又∈Z x ,∈Z y ,所以{1,0,1}∈-x ,{1,0,1}∈-y ,所以A 中元素的个数为1133C C 9=,故选A .优解 根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆223+=x y 中有9个整点,即为集合A 的元素个数,故选A .7.A 【解析】∵{|0}B x x =<,∴{|0}A B x x =<I ,选A .8.C 【解析】∵1B ∈,∴21410m -⨯+=,即3m =,∴{1,3}B =.选C .9.B 【解析】集合A 、B 为点集,易知圆221x y +=与直线y x =有两个交点,所以A B I 中元素的个数为2.选B .10.D 【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -<=-<I I ≤≤≤,选D.11.B 【解析】(){1246}[15]{124}A B C =-=U I I ,,,,,, ,选B.12.A 【解析】由题意可知{|12}P Q x x =-<<U ,选A .13.A 【解析】{}21A B x x =-<<-I ,故选A.14.C 【解析】因为{|||2}{|22}A x x x x =<=-<<,所以{1,0,1}A B =-I .15.C 【解析】集合A 表示函数2x y =的值域,故(0,)A =+∞.由210x -<,得11x -<<,故(1,1)B =-,所以(1,)A B =-+∞U .故选C .16.D 【解析】由题意{1,4,7,10}B =,所以{1,4}A B =I .17.D 【解析】由题意得,{|13}A x x =<<,3{|}2B x x =>,则3(,3)2A B =I .选D .18.C 【解析】由已知可得()(){}120B x x x x =+-<∈Z ,{}12x x x =-<<∈Z ,,∴{}01B =,,∴{}0123A B =U ,,,,故选C . 19.D 【解析】(,2][3,)S =-∞+∞U ,所以(0,2][3,)S T =+∞I U ,故选D .20.A 【解析】由于{|21}B x x =-<<,所以{1,0}A B =-I .21.C 【解析】{|02}R P x x =<<ð,故(){|1<<2}R P Q =x x I ð.22.A 【解析】{|12}A x x =-<<,{|13}B x x =<<,∴{|13}A B x x =-<<U .23.C 【解析】由已知得{},1,,1A i i =--,故A B =I {}1,1-,故选C .24.D 【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D.25.C 【解析】∵A B A =I ,得A B Í,反之,若A B Í,则A B A =I ;故“A B A =I ”是“A B ⊆”的充要条件.26.D 【解析】 由(4)(1)0x x ++=得4x =-或1x =-,得{1,4}M =--.由(4)(1)0x x --= 得4x =或1x =,得{1,4}N =.显然=∅I M N .27.A 【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤, 所以[]0,1M N =U ,故选A .28.A 【解析】{2,5,8}U B =ð,所以{2,5}U A B =I ð,故选A.29.C 【解析】因为集合22{(,)1,,}A x y x y x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即 25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111D C B A 中的整点(除去四个顶点),即45477=-⨯个.30.A 【解析】{}|13A x x x =-≤或≥,故A B ⋂=[-2,-1].31.D 【解析】{}|12N x x =≤≤,∴M N ⋂={1,2}.32.B 【解析】∵{}1,2B =-,∴A B ⋂={}233.C 【解析】|1|213x x -<⇒-<<,∴(1,3)A =-,[1,4]B =.∴[1,3)A B ⋂=.34.C 【解析】∵(0,2)A =,[1,4]B =,所以A B =I [1,2).35.C 【解析】{}{}{}1,0,10,1,21,0,1,2M N ⋃=-⋃=-,选C .36.A 【解析】P Q ⋂=}{34x x ≤<37.B 【解析】由题意知{|2}U x N x =∈≥,{|5}A x N x =∈,所以=A C U {|25}x N x ∈<≤,选B .38.C 【解析】∵{}{}2|200,2A x x x =-==.∴A B =I ={}0,2.39.C 【解析】A B =I {|23}x x <<40.B 【解析】∵21x <,∴11x -<<,∴M N =I {}|01x x <≤,故选B . 41.C 【解析】{}|3,3A x x =-<,{}C |15R B x x x =->≤或,∴()R A C B =I {}|31x x --≤≤42.D 【解析】由已知得,{=0A B x x ≤U 或}1x ≥,故()U C A B =U {|01}x x <<.43.A 【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}-44.C 【解析】{}2,4,7U A =ð.45.C 【解析】“存在集合C 使得,U A C B C ⊆⊆ð”⇔“∅=B A I ”,选C . 46.B 【解析】A=(-∞,0)∪(2,+),∴A ∪B=R ,故选B .47.A 【解析】{}1,4,9,16B =,∴{}1,4A B ⋂=48.A 【解析】∵(1,3)M =-,∴{}0,1,2M N =I49.C 【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N I {2,1,0}=--,选C.50.A 【解析】由题意{}1,2,3A B =U ,且{1,2}B =,所以A 中必有3,没有4,{}3,4U C B =,故U A B =I ð{}3.51.C 【解析】0,0,1,2,0,1,2x y x y ==-=--;1,0,1,2,1,0,1x y x y ==-=-;2,0,1,2,2,1,0x y x y ==-=.∴B 中的元素为2,1,0,1,2--共5个.52.A 【解析】A :1->x ,}1|{-≤=x x A C R ,}2,1{)(--=B A C R I ,所以答案选A53.D 【解析】由集合A ,14x <<;所以(1,2]A B ⋂=54.B 【解析】集合B 中含-1,0,故{}1,0A B =-I55.A 【解析】∵{}2,0S =-,{}0,2T =,∴S T =I {}0.56.B 【解析】特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.57.D 【解析】()f x 的定义域为M =[1,1],故R M ð=(,1)(1,)-∞-⋃+∞,选D .58.A 【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =.59.C 【解析】[)0,A =+∞,[]2,4B =,[)()0,24,R A C B ∴=+∞I U .60.A 【解析】U C M ={,,}24661.D 【解析】{}3,4,5Q =,U Q ð={}1,2,6, U P Q ⋂ð={}1,2. 62.D 【解析】由M ={1,2,3,4},N ={2,2},可知2∈N ,但是2∉M ,则N ⊄M ,故A错误.∵M U N ={1,2,3,4,2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D63.B 【解析】A =(1,2),故B ⊂≠A ,故选B.64.D 【解析】{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=I65.C 【解析】根据题意,容易看出x y +只能取1,1,3等3个数值.故共有3个元素.66.D 【解析】{|1}P x x =< ∴{|1}R C P x x =≥,又∵{|1}Q x x =>,∴R Q C P ⊆,故选D .67.B 【解析】{1,3}P M N ==I ,故P 的子集有4个.68.D 【解析】因为集合[1,1]P =-,所以(,1)(1,)U C P =-∞-+∞U .69.D 【解析】因为{1,2,3,4}M N =U ,所以()()n n C M C N ⋂=()U C M N U ={5,6}.70.B 【解析】因为U C M N ⊂,所以()()()U U U U N N C M C C N C M ==U U=[()]U U N M I 痧={1,3,5}.71.C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x -=,解得0x =或1x =, 这时1y =或0y =,即{(0,1),(1,0)}A B ⋂=,有2个元素.72.A 【解析】集合{1,0,1}{0,1,2}={0,1}M N =-I I .73.C 【解析】因为P M P =U ,所以M P ⊆,即a P ∈,得21a ≤,解得11a -≤≤,所以a 的取值范围是[1,1]-.74.C 【解析】对于集合M ,函数|cos 2|y x =,其值域为[0,1],所以[0,1]M =,根据复<21x <,所以(1,1)N =-,则[0,1]M N =I .75.A 【解析】根据题意可知,N 是M 的真子集,所以M N M =U .76.C 【解析】{}{}{}1,2,32,3,42,3M N ==I I 故选C.77.D 【解析】{}{}|1,|12R R B x x A B x x =≥⋂=≤≤痧78.B 【解析】{}22<<x x Q -=,可知B 正确, 79.A 【解析】不等式121log 2x …,得12112201log log ()2x >⎧⎪⎨⎪⎩…,得2x „, 所以R A ð=(,0]2⎛⎫-∞+∞ ⎪ ⎪⎝⎭U .80.D 【解析】因为{3}A B =I ,所以3∈A ,又因为{9}U B A =I ð,所以9∈A ,所以选D .本题也可以用Venn 图的方法帮助理解.81.{1,8}【解析】由集合的交运算可得A B =I {1,8}.82.1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =. 83.5【解析】{1,2,3}{2,4,5}{1,2,3,4,5}A B ==U U ,5个元素.84.{}1,3-【解析】=B A I {}1,3-85.{}7,9【解析】{}1,2,3,4,5,6,7,8,9,10U =,{}4,6,7,9,10U A =ð, {}()7,9U A B ⋂=ð.86.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上符合条件的有序数组的个数是6.87.{}6,8【解析】()U A B I ð={6,8}{2,6,8}{6,8}=I .88.【解析】(1)5 根据k 的定义,可知1131225k --=+=;(2)12578{,,,,}a a a a a 此时211k =,是个奇数,所以可以判断所求集中必含元素1a ,又892,2均大于211,故所求子集不含910,a a ,然后根据2j (j =1,2,7)的值易推导出所求子集为12578{,,,,}a a a a a .89.1【解析】考查集合的运算推理.3B ,23a +=,1a =.90.【解析】(1)因为(1,1,0)α=,(0,1,1)β=,所以1(,)[(11|11|)(11|11|)(00)|00|)]22M αα=+--++--++--=, 1(,)[(10|10|)(11|11|)(01|01|)]12M αβ=+--++--++--=. (2)设1234(,,,)x x x x B α=∈,则1234(,)M x x x x αα=+++.由题意知1x ,2x ,3x ,4x ∈{0,1},且(,)M αα为奇数,所以1x ,2x ,3x ,4x 中1的个数为1或3.所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有(,)1M αβ=.所以每组中的两个元素不可能同时是集合B 的元素.所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件, 所以集合B 中元素个数的最大值为4.(3)设1212121{(,,,)|(,,,),1,0}k n n k k S x x x x x x A x x x x -=⋅⋅⋅⋅⋅⋅∈===⋅⋅⋅==(1,2,,)k n =⋅⋅⋅,11212{(,,,)|0}n n n S x x x x x x +=⋅⋅⋅==⋅⋅⋅==,则121n A S S S +=⋅⋅⋅U U U . 对于k S (1,2,,1k n =⋅⋅⋅-)中的不同元素α,β,经验证,(,)1M αβ≥. 所以k S (1,2,,1k n =⋅⋅⋅-)中的两个元素不可能同时是集合B 的元素. 所以B 中元素的个数不超过1n +. 取12(,,,)k n k e x x x S =⋅⋅⋅∈且10k n x x +=⋅⋅⋅==(1,2,,1k n =⋅⋅⋅-). 令1211(,,,)n n n B e e e S S -+=⋅⋅⋅U U ,则集合B 的元素个数为1n +,且满足条件. 故B 是一个满足条件且元素个数最多的集合.。
理科数学2010-2019高考真题十年分类专题一 集合与常用逻辑用语 第一讲集合(A组)答案部分

专题一 集合与常用逻辑用语第一讲 集合(A 组)答案部分2019年1.解析:依题意可得,2426023{|}{|}{} |M x x N x x x x x =-=--=-<<,<<<, 所以2|}2{M N x x =-<<. 故选C .2.解析:由{}2560(,2)(3,)A x x x =-+>=-∞+∞,{}10(,1)A x x =-<=-∞,则(,1)A B =-∞.故选A.3.解析 因为{}1,0,1,2A =-,2{|1}{|11}B x x x x ==-, 所以{}1,0,1A B =-.故选A .2010-2018年一、选择题1.B 【解析】因为2{20}=-->A x x x ,所以2{|20}=--R ≤A x x x{|12}=-≤≤x x ,故选B .2.C 【解析】由题意知,{|10}A x x =-≥,则{1,2}A B =.故选C .3.A 【解析】通解 由223+≤x y 知,≤x y又∈Z x ,∈Z y ,所以{1,0,1}∈-x ,{1,0,1}∈-y ,所以A 中元素的个数为1133C C 9=,故选A .优解 根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆223+=x y 中有9个整点,即为集合A 的元素个数,故选A .4.A 【解析】∵{|0}B x x =<,∴{|0}AB x x =<,选A . 5.C 【解析】∵1B ∈,∴21410m -⨯+=,即3m =,∴{1,3}B =.选C .6.B 【解析】集合A 、B 为点集,易知圆221x y +=与直线y x =有两个交点,所以A B 中元素的个数为2.选B . 7.D 【解析】由题意得,{|13}A x x =<<,3{|}2B x x =>,则3(,3)2AB =. 选D . 8.C 【解析】由已知可得()(){}120B x x x x =+-<∈Z ,{}12x x x =-<<∈Z ,,∴{}01B =,,∴{}0123A B =,,,,故选C . 9.D 【解析】(,2][3,)S =-∞+∞,所以(0,2][3,)S T =+∞,故选D .10.A 【解析】由于{|21}B x x ,所以{1,0}A B .11.A 【解析】{}|13A x x x =-≤或≥,故A B ⋂=[-2,-1].12.D 【解析】{}|12N x x =≤≤,∴M N ⋂={1,2}.13.B 【解析】∵{}1,2B =-,∴A B ⋂={}214.B 【解析】A=(-∞,0)∪(2,+∞),∴A ∪B=R ,故选B .15.A 【解析】{}1,4,9,16B =,∴{}1,4A B ⋂=16.A 【解析】∵(1,3)M =-,∴{}0,1,2M N =17.C 【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以MN {2,1,0}=--,选C.18.B 【解析】A =(-1,2),故B ⊂≠A ,故选B.19.B 【解析】{1,3}P M N ==,故P 的子集有4个.。
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)

专题01集合历年考题细目表历年高考真题汇编1.【2019年北京文科01】已知集合A={x|﹣1<x<2},B={x|x>1},则A∪B=()A.(﹣1,1)B.(1,2)C.(﹣1,+∞)D.(1,+∞)【解答】解:∵A={x|﹣1<x<2},B={x|x>1},∴A∪B={x|﹣1<x<2}∪{x|x>1}=(﹣1,+∞).故选:C.2.【2018年北京文科01】已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1} B.{﹣1,0,1} C.{﹣2,0,1,2} D.{﹣1,0,1,2}【解答】解:A={x||x|<2}={x|﹣2<x<2},B={﹣2,0,1,2},则A∩B={0,1},故选:A.3.【2018年北京文科08】设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a时,(2,1)∉A【解答】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,﹣x+y>4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;当a=1,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,x+y>4,x﹣y≤2},显然(2,1)∉A,所以当且仅当a<0错误,所以C不正确;故选:D.4.【2017年北京文科01】已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2] D.(﹣∞,﹣2]∪[2,+∞)【解答】解:∵集合A={x|x<﹣2或x>2}=(﹣∞,﹣2)∪(2,+∞),全集U=R,∴∁U A=[﹣2,2],故选:C.5.【2016年北京文科01】已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5} C.{x|2<x<3} D.{x|x<2或x>5}【解答】解:∵集合A={x|2<x<4},B={x|x<3或x>5},∴A∩B={x|2<x<3}.故选:C.6.【2015年北京文科01】若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2} B.{x|﹣5<x<2} C.{x|﹣3<x<3} D.{x|﹣5<x<3}【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B={x|﹣3<x<2}.故选:A.7.【2014年北京文科01】若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4} B.{0,4} C.{1,2} D.{3}【解答】解:∵A={0,1,2,4},B={1,2,3},∴A∩B={0,1,2,4}∩{1,2,3}={1,2}.故选:C.8.【2013年北京文科01】已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0} B.{﹣1,0} C.{0,1} D.{﹣1,0,1}【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.9.【2012年北京文科01】已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},则A∩B=()A.(﹣∞,﹣1)B.(﹣1,)C.(,3)D.(3,+∞)【解答】解:因为B={x∈R|(x+1)(x﹣3)>0}={x|x<﹣1或x>3},又集合A={x∈R|3x+2>0}={x|x},所以A∩B={x|x}∩{x|x<﹣1或x>3}={x|x>3},故选:D.10.【2011年北京文科01】已知全集U=R,集合P={x|x2≤1},那么∁U P=()A.(﹣∞,﹣1] B.[1,+∞)C.[﹣1,1] D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由集合P中的不等式x2≤1,解得﹣1≤x≤1,所以集合P=[﹣1,1],由全集U=R,得到∁U P=(﹣∞,1)∪(1,+∞).故选:D.11.【2010年北京文科01】集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},则P∩M=()A.{1,2} B.{0,1,2} C.{x|0≤x<3} D.{x|0≤x≤3}【解答】解:∵集合P={x∈Z|0≤x<3},∴P={0,1,2},∵M={x∈Z|x2<9},。
十年高考真题分类汇编(2010-2019) 数学 专题01 集合

十年高考真题分类汇编(2010—2019)数学专题01 集合1.(2019•全国1•理T1)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}【答案】C【解析】由题意得N={x|-2<x<3},则M∩N={x|-2<x<2},故选C.2.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C【解析】由已知得∁U A={1,6,7},∴B∩∁U A={6,7}.故选C.3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( )A.(-1,+∞)B.(-∞,2)C.(-1,2)D.⌀【答案】C【解析】由题意,得A∩B=(-1,2),故选C.5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】A【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.6.(2019•北京•文T1)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=( )A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】C【解析】∵A={x|-1<x<2},B={x|x>1},∴A∪B=(-1,+∞),故选C.7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】D【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A【解析】∁U A={-1,3},则(∁U A)∩B={-1}.9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【答案】B【解析】A={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A【解析】由交集定义知A∩B={0,2}.11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}【答案】C【解析】集合A、B的公共元素为3,5,故A∩B={3,5}.12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}【答案】C【解析】由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【答案】A【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.14.(2018•天津•理T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【答案】B【解析】∁R B={x|x<1},A∩(∁R B)={x|0<x<1}.故选B.15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【答案】C【解析】A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C【解析】∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4【答案】A【解析】满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。
文科数学2010-2019高考真题分类训练专题一 集合与常用逻辑用语第一讲 集合—后附解析答案

专题一 集合与常用逻辑用语第一讲 集合2019年1.(2019全国Ⅰ文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则UB A =A .{}1,6 B .{}1,7C .{}6,7D .{}1,6,72.(2019全国Ⅱ文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2)C .(–1,2)D .∅3.(2019全国Ⅲ文1)已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,24.(2019北京文1)已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = (A )(–1,1)(B )(1,2)(C )(–1,+∞)(D )(1,+∞)5.(2019天津文1)设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈< ,则()A CB =(A ){2}(B ){2,3}(C ){-1,2,3}(D ){1,2,3,4}6.(2019江苏1)已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = .7.(2019浙江1) 已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则UA B =A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-2010-2018年一、选择题1.(2018全国卷Ⅰ)已知集合{0,2}=A ,{21012}=--,,,,B ,则A B =A .{0,2}B .{1,2}C .{0}D .{21012}--,,,, 2.(2018浙江)已知全集{1,2,3,4,5}U =,{1,3}A =,则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}3.(2018全国卷Ⅱ)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{3}B .{5}C .{3,5}D .{}1,2,3,4,5,74.(2018北京)已知集合{|||2}A x x =<,{2,0,1,2}B =-,则AB =A .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}5.(2018全国卷Ⅲ)已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}6.(2018天津)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-<R ≤,则()A B C =A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}7.(2017新课标Ⅰ)已知集合{|2}A x x =<,{320}B x =->,则A .3{|}2AB x x =< B .A B =∅C .3{|}2A B x x =< D .A B =R8.(2017新课标Ⅱ)设集合{1,2,3}A =,{2,3,4}B =则AB =A .{1,2,3,4}B .{1,2,3}C .{2,3,4}D .{1,3,4} 9.(2017新课标Ⅲ)已知集合{1,2,3,4}A =,{2,4,6,8}B =,则AB 中元素的个数为A .1B .2C .3D .4 10.(2017天津)设集合{1,2,6}A =,{2,4}B =,{1,2,3,4}C =,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6} 11.(2017山东)设集合{}11M x x =-<,{}2N x x =<,则M N =A .()1,1-B .()1,2- C .()0,2D .()1,212.(2017北京)已知U =R ,集合{|22}A x x x =<->或,则UA =A .(2,2)-B .(,2)(2,)-∞-+∞ C .[2,2]- D .(,2][2,)-∞-+∞13.(2017浙江)已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么PQ =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2) 14.(2016全国I 卷)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则=ABA .{1,3}B .{3,5}C .{5,7}D .{1,7}15.(2016全国Ⅱ卷)已知集合{123}A =,,,2{|9}B x x =<,则A B =A .{210123}--,,,,,B .{21012}--,,,,C .{123},,D .{12}, 16.(2016全国Ⅲ)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =A .{48},B .{026},,C .{02610},,,D .{0246810},,,,,17.(2015新课标2)已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则AB =A .)3,1(-B .)0,1(-C .)2,0(D .)3,2(18.(2015新课标1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合AB中的元素个数为A .5B .4C .3D .219.(2015北京)若集合{|52}A x x =-<<,{|33}B x x =-<<,则AB =A .{|32}x x -<<B .{|52}x x -<<C .{|33}x x -<<D .{|53}x x -<<20.(2015天津)已知全集{1,2,3,4,5,6}U =,集合{}2,3,5A =,集合{1,3,4,6}B =,则集合UAB =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合1.(2019•全国1•理T1)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}【答案】C【解析】由题意得N={x|-2<x<3},则M∩N={x|-2<x<2},故选C.2.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C【解析】由已知得∁U A={1,6,7},∴B∩∁U A={6,7}.故选C.3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( )A.(-1,+∞)B.(-∞,2)C.(-1,2)D.⌀【答案】C【解析】由题意,得A∩B=(-1,2),故选C.5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】A【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.6.(2019•北京•文T1)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=( )A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】C【解析】∵A={x|-1<x<2},B={x|x>1},∴A∪B=(-1,+∞),故选C.7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】D【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A【解析】∁U A={-1,3},则(∁U A)∩B={-1}.9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【答案】B【解析】A={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A【解析】由交集定义知A∩B={0,2}.11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}【答案】C【解析】集合A、B的公共元素为3,5,故A∩B={3,5}.12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}【答案】C【解析】由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【答案】A【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.14.(2018•天津•理T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【答案】B【解析】∁R B={x|x<1},A∩(∁R B)={x|0<x<1}.故选B.15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【答案】C【解析】A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C【解析】∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4【答案】A【解析】满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。
18.(2017•全国3•理T1,)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为A.3B.2C.1D.0【答案】B【解析】A表示圆x2+y2=1上所有点的集合,B表示直线y=x上所有点的集合,易知圆x2+y2=1与直线y=x相交,故A∩B中有2个元素.19.(2017•全国1•理T1)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=⌀【答案】A【解析】∵3x<1=30,∴x<0,∴B={x|x<0},∴A∩B={x|x<0},A∪B={x|x<1}.故选A.20.(2017•全国2•理T2)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A.{1,-3}B.{1,0}C.{1,3}D.{1,5}【答案】C【解析】由A∩B={1},可知1∈B,所以m=3,即B={1,3}.21.(2017•全国1•文T1)已知集合A={x|x<2},B={x|3-2x>0},则( )}A.A∩B={x|x<32B.A ∩B=⌀C.A ∪B={x |x <32} D.A ∪B=R 【答案】A【解析】∵A={x|x<2},B={x |x <32}, ∴A ∪B={x|x<2},A ∩B={x |x <32},故选A. 22.(2017•全国2•文T1)设集合A={1,2,3},B={2,3,4},则A ∪B=( ) A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4} 【答案】A【解析】因为A={1,2,3},B={2,3,4},所以A ∪B={1,2,3,4},故选A.23.(2017•全国3•文T1)已知集合A={1,2,3,4},B={2,4,6,8},则A ∩B 中元素的个数为( ) A.1 B.2 C.3 D.4 【答案】B【解析】由题意可得A ∩B={2,4},则A ∩B 中有2个元素.故选B.24.(2017•天津•理T1)设集合A={1,2,6},B={2,4},C={x ∈R|-1≤x ≤5},则(A ∪B )∩C=( ) A.{2} B.{1,2,4} C.{1,2,4,6} D.{x ∈R|-1≤x ≤5} 【答案】B【解析】∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6}.∵C={x ∈R|-1≤x ≤5},∴(A ∪B )∩C={1,2,4}. 25.(2017•北京•理T1)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A ∩B=( ) A.{x|-2<x<-1} B.{x|-2<x<3} C.{x|-1<x<1} D.{x|1<x<3}【答案】A【解析】A ∩B={x|-2<x<-1},故选A.26.(2017•北京•文T1)已知全集U=R,集合A={x|x<-2或x>2},则∁U A=( ) A.(-2,2) B.(-∞,-2)∪(2,+∞) C.[-2,2] D.(-∞,-2]∪[2,+∞)【答案】C【解析】因为A={x|x<-2或x>2},所以∁U A={x|-2≤x ≤2}.27.(2016•全国1•理T1)设集合A={x|x 2-4x+3<0},B={x|2x-3>0},则A ∩B=( )A.(-3,-32) B.(-3,32)C.(1,32)D.(32,3)【答案】D【解析】A=(1,3),B=(32,+∞),所以A ∩B=(32,3),故选D.28.(2016•全国2•理T2)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x ∈Z},则A ∪B=( ) A.{1} B.{1,2} C.{0,1,2,3} D.{-1,0,1,2,3} 【答案】C【解析】由题意可知,B={x|-1<x<2,x ∈Z}={0,1},而A={1,2,3},所以A ∪B={0,1,2,3},故选C. 29.(2016•全国3•理T1)设集合S={x|(x-2)•(x-3)≥0},T={x|x>0},则S ∩T=( ) A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞) 【答案】D【解析】S={x|x ≤2或x ≥3}.因为T={x|x>0},所以S ∩T={x|0<x ≤2或x ≥3},故选D. 30.(2016•全国1•文T1)设集合A={1,3,5,7},B={x|2≤x ≤5},则A ∩B=( ) A.{1,3} B.{3,5}C.{5,7} D.{1,7} 【答案】B【解析】A ∩B={3,5},故选B.31.(2016•全国2•文T1)已知集合A={1,2,3},B={x|x 2<9},则A ∩B=( ) A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2} C.{1,2,3} D.{1,2} 【答案】D【解析】B={x|-3<x<3},A ∩B={1,2}.故选D.32.(2016•全国3•文T1)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=( ) A.{4,8} B.{0,2,6} C.{0,2,6,10}D.{0,2,4,6,8,10}【答案】C【解析】根据补集的定义,知从集合A={0,2,4,6,8,10}中去掉集合B中的元素4,8后,剩下的4个元素0,2,6,10构成的集合即为∁A B,即∁A B={0,2,6,10},故选C.33.(2016•四川•理T1)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是( )A.3B.4C.5D.6【答案】C【解析】由题意,A∩Z={-2,-1,0,1,2},故其中的元素个数为5,选C.34.(2016•天津•理T1)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=( )A.{1}B.{4}C.{1,3}D.{1,4}【答案】D【解析】由题意知集合B={1,4,7,10},则A∩B={1,4}.故选D.35.(2016•山东•理T2)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( )A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)【答案】C【解析】A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1},选C.36.(2016•浙江•理T1)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=( )A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)【答案】B【解析】∵Q={x∈R|x≤-2,或x≥2},∴∁R Q={x∈R|-2<x<2}.∴P∪(∁R Q)={x∈R|-2<x≤3}=(-2,3].故选B.37.(2015•全国2•理T1)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( )A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}【答案】A【解析】∵B={x|-2<x<1},∴A∩B={-1,0}.38.(2015•全国1•文T1)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )A.5B.4C.3D.2【答案】D【解析】由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14.所以A∩B={8,14}.故选D.39.(2015•全国2•文T1)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=( )A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)【答案】A【解析】由题意,得A∪B={x|-1<x<3},即A∪B=(-1,3).40.(2015•陕西•文T1)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=( )A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]【答案】A【解析】∵M={0,1},N={x|0<x≤1},∴M∪N={x|0≤x≤1},即为[0,1].41.(2015•重庆•理T1,)已知集合A={1,2,3},B={2,3},则( )A.A=BB.A∩B=⌀C.A⫋BD.B⫋A【答案】D【解析】因为A={1,2,3},B={2,3},所以B⫋A.42.(2014•全国1•理T1)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)【答案】A【解析】由已知,可得A={x|x≥3或x≤-1},则A∩B={x|-2≤x≤-1}=[-2,-1].故选A.43.(2014•全国2•理T1)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=( )A.{1}B.{2}C.{0,1}D.{1,2}【答案】D【解析】∵N={x|x2-3x+2≤0}={x|1≤x≤2},∴M∩N={0,1,2}∩{x|1≤x≤2}={1,2}.故选D.44.(2014•全国1•文T1)已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=( )A.(-2,1)B.(-1,1)C.(1,3)D.(-2,3)【答案】B【解析】由已知得M∩N={x|-1<x<1}=(-1,1),故选B.45.(2014•全国2•文T1)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=( )A.⌀B.{2}C.{0}D.{-2}【答案】B【解析】易得B={-1,2},则A∩B={2},故选B.46.(2014•辽宁•理T1)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}【答案】D【解析】∵A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1}.故选D.47.(2013•全国2•理T1)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( )A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}【答案】A【解析】M={x|-1<x<3},N={-1,0,1,2,3},所以M∩N={0,1,2},故选A.48.(2013•全国1•文T1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=( )A.{1,4}B.{2,3}C.{9,16}D.{1,2}【答案】A【解析】∵B={1,4,9,16},∴A∩B={1,4}.49.(2013•全国2•文T1)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=( )A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}【答案】C【解析】由题意可得M∩N={-2,-1,0}.故选C.50.(2013•上海•理T15)设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1}.若A∪B=R,则a的取值范围为( )A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)【答案】B【解析】当a>1时,集合A={x|x≤1或x≥a},由A∪B=R,可知a-1≤1,即a≤2.故1<a≤2.当a=1时,集合A=R,显然A∪B=R.故a=1,满足题意.当a<1时,集合A={x|x≥1或x≤a},由A∪B=R,可知a-1≤a显然成立,故a<1.综上可知,a的取值范围是a≤2.故选B.51.(2013•广东•理T8)设整数n≥4,集合X={1,2,3,…,n},令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列选项正确的是( )A.(y,z,w)∈S,(x,y,w)∉SB.(y,z,w)∈S,(x,y,w)∈SC.(y,z,w)∉S,(x,y,w)∈SD.(y,z,w)∉S,(x,y,w)∉S【答案】B【解析】由(x,y,z)∈S,不妨取x<y<z,要使(z,w,x)∈S,则w<x<z或x<z<w.当w<x<z时,w<x<y<z,故(y,z,w)∈S,(x,y,w)∈S.当x<z<w时,x<y<z<w,故(y,z,w)∈S,(x,y,w)∈S.综上可知,(y,z,w)∈S,(x,y,w)∈S.52.(2013•山东•理2,T5)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )A.1B.3C.5D.9【答案】C【解析】当x,y取相同的数时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=2,y=0时,x-y=2;其他则重复.故集合B中有0,-1,-2,1,2,共5个元素,应选C.53.(2013•江西•文T2)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4B.2C.0D.0或4【答案】A【解析】当a=0时,显然不成立;当a≠0时,需Δ=a2-4a=0,得a=4.故选A.54.(2013•全国1•理1)已知集合A={x|x2-2x>0},B={x|−√5<x<√5},则( )A.A∩B=⌀B.A∪B=RC.B⊆AD.A⊆B【答案】B【解析】集合A={x|x<0或x>2},由图象可以看出A∪B=R,故选B.55.(2012•课标全国•理T1)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )A.3B.6C.8D.10【答案】D【解析】由x∈A,y∈A,x-y∈A,得(x,y)可取如下:(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4),故集合B中所含元素的个数为10.56.(2012•大纲•理2)已知集合A={1,3,√m},B={1,m},A∪B=A,则m=()A.0或√3B.0或3C.1或√3D.1或3【答案】B【解析】∵A∪B=A,∴B⊆A,∴m=3或m=√m.∴m=3或m=0或m=1.当m=1时,与集合中元素的互异性不符,故选B.57.(2012•全国•文1)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则( )A.A⫋BB.B⫋AC.A=BD.A∩B=⌀【答案】B【解析】由题意可得A={x|-1<x<2},而B={x|-1<x<1},故B ⫋A.58.(2012•大纲全国•文T1,)已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则( )A.A⊆BB.C⊆BC.D⊆CD.A⊆D【答案】B【解析】∵正方形组成的集合是矩形组成集合的子集,∴C⊆B.59.(2012•湖北•文T1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )A.1B.2C.3D.4【答案】D【解析】A={1,2},B={1,2,3,4}.又∵A⊆C⊆B,∴C={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},故选D.60.(2011•全国•文1)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有( )A.2个B.4个C.6个D.8个【答案】B【解析】P=M∩N={1,3},∴P的子集有22=4个.61.(2011•辽宁•理T2)已知M,N为集合I的非空真子集,且M,N不相等,若N∩(∁I M)=⌀,则M∪N=( )A.MB.NC.ID.⌀【答案】A【解析】作出满足条件的韦恩(Venn)图,易知M∪N=M.62.(2011•广东•理T8)设S是整数集Z的非空子集,如果∀a,b∈S,有ab∈S,则称S关于数的乘法是封闭的.若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是( )A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的【答案】A【解析】令T=N,V=∁Z N,则T对乘法封闭,而V对乘法不封闭排除D.令T={-1,0,1},V=∁Z T,则T,V都对乘法封闭,排除B,C.故选A.63.(2011•福建•文T12)在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是( )A.1B.2C.3D.4【答案】C【解析】对于①:2 011=5×402+1,∴2 011∈[1].对于②:-3=5×(-1)+2,∴-3∈[2],故②不正确;对于③:∵任意一个整数z被5除,所得余数共分为五类,∴Z=[0]∪[1]∪[2]∪[3]∪[4],故③正确;对于④:若整数a,b 属于同一类,则a=5n1+k,b=5n2+k,∴a-b=5n1+k-5n2-k=5(n1-n2)=5n,∴a-b∈[0],若a-b∈[0],则a-b=5n,即a=b+5n,故a与b被5除的余数为同一个数,∴a与b属于同一类,所以“整数a,b属于同一类”的充要条件是“a-b∈[0]”,故④正确.∴正确结论的个数是3.64.(2011•福建•理T1)i是虚数单位,若集合S={-1,0,1},则( )A.i∈SB.i2∈SC.i3∈SD.2i∈S【答案】B【解析】∵i2=-1,而集合S={-1,0,1},∴i2∈S.65.(2010•浙江•理T1)设P={x|x<4},Q={x|x2<4},则( )A.P⊆QB.Q⊆PC.P⊆∁R QD.Q⊆∁R P【答案】B【解析】P={x|x<4},Q={x|-2<x<2},∴Q⊆P.66.(2010•天津•理T9)设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A⊆B,则实数a,b必满足( )A.|a+b|≤3B.|a+b|≥3C.|a-b|≤3D.|a-b|≥3【答案】D【解析】A={x|a-1<x<a+1,x∈R},B={x|x>b+2或x<b-2,x∈R}.若A⊆B,则需满足a+1≤b-2或a-1≥b+2,即a-b≤-3或a-b≥3,∴|a-b|≥3.67.(2010•全国•T1)已知集合A={x||x|≤2,x∈R},B={x|√x≤4,x∈Z},则A∩B等于( )A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【答案】D【解析】∵A={x|-2≤x≤2},B={0,1,2,3,…,16},∴A∩B={0,1,2}.68.(2018•江苏•T1)已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B= .【答案】{1,8}【解析】由题设和交集的定义可知,A∩B={1,8}.69.(2017•江苏•T1)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.【答案】1【解析】由已知得1∈B,2∉B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.70.(2013•湖南,文T15)对于E={a1,a2,…,a100}的子集X={a i1,a i2,…,a ik},定义X的“特征数列”为x1,x2,…,x100,其中x i1=x i2=…=x ik=1,其余项均为0.例如:子集{a2,a3}的“特征数列”为0,1,1,0,0, 0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于;(2)若E的子集P的“特征数列”p1,p2,…,p100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为.【答案】(1)2 (2)17【解析】(1){a1,a3,a5}的特征数列为1,0,1,0,1,0,…,0,∴前3项和为2.(2)根据题意知,P 的特征数列为1,0,1,0,1,0,…,则P={a 1,a 3,a 5,…,a 99}有50个元素,Q 的特征数列为1,0,0,1,0,0,1,…,则Q={a 1,a 4,a 7,a 10,…,a 100}有34个元素,∴P∩Q={a 1,a 7,a 13,…,a 97},共有1+97-16 =17个.71.(2013•江苏•T4)集合{-1,0,1}共有 个子集.【答案】8【解析】由于集合{-1,0,1}有3个元素,故其子集个数为23=8.72.(2012•天津•文T9,)集合A= {x ∈R||x -2|≤5}中的最小整数为 .【答案】-3【解析】∵|x -2|≤5,∴-3≤x ≤7,∴最小整数为-3.73.(2018•北京•理T20)设n 为正整数,集合A={α|α=(t 1,t 2,…,t n ),t k ∈{0,1},k=1,2,…,n}.对于集合A 中的任意元素α=(x 1,x 2,…,x n )和β=(y 1,y 2,…,y n ),记M(α,β)=12[(x 1+y 1-|x 1-y 1|)+(x 2+y 2-|x 2-y 2|)+…+(x n +y n -|x n -y n |)].(1)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;(2)当n=4时,设B 是A 的子集,且满足:对于B 中的任意元素α,β,当α,β相同时,M(α,β)是奇数;当α,β不同时,M(α,β)是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素α,β,M(α,β)=0.写出一个集合B,使其元素个数最多,并说明理由.【答案】(1)2 1 (2)4 (3)n+1【解析】(1)M(α,α)=12[(1+1-|1-1|)+(1+1-|1-1|)+(0+0-|0-0|)]=2;M(α,β)=12[(1+0-|1-0|)+(1+1-|1-1|)+(0+1-|0-1|)]=1.(2)当x m ,y m 同为1时,12(x m +y m -|x m -y m |)=1;当x m ,y m 中只有一个1或者两个都是0时,12(x m +y m -|x m -y m |)=0;当α,β相同时,∀α=(x 1,x 2,x 3,x 4)∈B,M(α,α)=x 1+x 2+x 3+x 4为奇数,则x k (k=1,2,3,4)中有一个1或者三个1,即为以下8种:形式1:(1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1);形式2:(1,1,1,0) (1,1,0,1) (1,0,1,1) (0,1,1,1);当α,β不同时,M(α,β)是偶数,则α,β同为1的位置有4个或2个或0个;形式1中的元素不能和形式2的三个元素同时共存;形式2中的元素不能和形式1的三个元素同时共存;如果B中元素全是形式1,当α,β不同时,M(α,β)=0满足条件;如果B中元素全是形式2,当α,β不同时,M(α,β)=2满足条件.所以B中元素至多为4个.(3)B中元素个数最多为n+1,构造如下:对于γk=(z k1,z k2,…,z kn)∈B(k=1,2,3,…,n),z kk=1,其他位置全为0;γn+1=(0,0,0,…,0),可以验证M(γi,γj)=0(i,j=1,2,…,n+1)且i≠j,下面证明:当B中元素个数大于等于n+2时,总存在α,β∈B,M(α,β)≠0.设γk=(z k1,z k2,z k3,…,z kn)∈B,k=1,2,3,…,n+1,…,m(m≥n+2);S k=z k1+z k2+…+z kn(k=1,2,3,…,n),可以得到:S1+S2+…+S m≥0+1×n+2=n+2;设C k=z1k+z2k+…+z mk(k=1,2,3,…,n),可以得到:C1+C2+…+C n=S1+S2+…+S m≥n+2,所以存在C t≥2,t∈{1,2,3,…,n},即存在α,β∈B(α≠β),使得α,β在同一个位置同为1,即M(α,β)≥1≠0,矛盾. 所以,B中元素个数最多为n+1.。